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DS-TransUNet: Dual Swin Transformer U-Net
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Abstract—Automatic medical image segmentation has made
great progress benefit from the development of deep learning.
However, most existing methods are based on convolutional
neural networks (CNNs), which fail to build long-range depen-
dencies and global context connections due to the limitation of
receptive field in convolution operation. Inspired by the success
of Transformer whose self-attention mechanism has the powerful
abilities of modeling the long-range contextual information, some
researchers have expended considerable efforts in designing the
robust variants of Transformer-based U-Net. Moreover, the patch
division used in vision transformers usually ignores the pixel-
level intrinsic structural features inside each patch. To alleviate
these problems, in this paper, we propose a novel deep medical
image segmentation framework called Dual Swin Transformer
U-Net (DS-TransUNet), which might be the first attempt to
concurrently incorporate the advantages of hierarchical Swin
Transformer into both encoder and decoder of the standard U-
shaped architecture to enhance the semantic segmentation quality
of varying medical images. Unlike many prior Transformer-
based solutions, the proposed DS-TransUNet first adopts dual-
scale encoder subnetworks based on Swin Transformer to extract
the coarse and fine-grained feature representations of different
semantic scales. As the core component for our DS-TransUNet,
a well-designed Transformer Interactive Fusion (TIF) module
is proposed to effectively establish global dependencies between
features of different scales through the self-attention mechanism,
in order to make full use of these obtained multi-scale fea-
ture representations. Furthermore, we also introduce the Swin
Transformer block into decoder to further explore the long-
range contextual information during the up-sampling process.
Extensive experiments across four typical tasks for medical image
segmentation demonstrate the effectiveness of DS-TransUNet,
and show that our approach significantly outperforms the state-
of-the-art methods.

Index Terms—Medical image segmentation; Long-range con-
textual information; Hierarchical Swin Transformer; Dual-scale;
Transformer Interactive Fusion module

I. INTRODUCTION

MEDICAL image segmentation is an important yet chal-
lenging research problem involving many common

tasks in clinical applications, such as polyp segmentation,
lesion segmentation, cell segmentation, etc. Moreover, medical
image segmentation is a complex and key step in the field of
medical image processing and analysis, and plays an important
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role in computer-aided clinical diagnosis system. Its purpose
is to segment the parts with special significance in medical
images and extract relevant features through semi-automatic or
automatic process, so as to provide reliable basis for clinical
diagnosis and pathological research, and assist doctors in
making more accurate diagnosis.

With the development of deep learning, convolutional neu-
ral networks (CNNs) have become dominant in a series
of medical image segmentation tasks. Among various CNN
variants, the typical encoder-decoder based network U-Net
[1] has demonstrated excellent segmentation potential, where
encoder extracts features through continuous down-sampling,
and then decoder progressively leverage features output from
encoder through skip connection for up-sampling, so that the
network can obtain features of different granularity for better
segmentation. Following the popularity of U-Net, many novel
models have been proposed such as UNet++ [2], Res-UNet [3],
Attention U-Net [4], DenseUNet [5], R2U-Net [6], KiU-Net
[7] and UNet 3+ [8], which are specially designed for medical
image segmentation and achieve expressive performance. Al-
though CNNs have made great success in the field of medical
image, it is difficult for them to make further breakthroughs.
Due to the inherent inductive biases, each convolutional kernel
can only focus on a sub-region in the whole image, which
makes it lose global context and fail to build long-range
dependencies. The stacking of convolution layer and down-
sampling helps expand the receptive filed and bring better
local interaction, but this is a sub-optimal choice because it
makes the model more complicated and easier to overfit. There
exists some works trying to model long-range dependencies
for convolution such as attention mechanism [9] [10] [11].
However, since these methods are not aimed at the field of
medical image segmentation, they still have great limitations in
global context modeling which means there is great potential
for improvement.

Recently, the novel architecture Transformer [12] which
was originally designed for sequence-to-sequence modeling in
natural language processing (NLP) tasks, has sparked tremen-
dous discussion in computer vision (CV) community. Trans-
former can revolutionize most NLP tasks such as machine
translation, named-entity recognition and question answering,
mainly because multi-head self attention (MSA) mechanism
can effectively build global connection between the tokens of
sequences. The ability of long-range dependencies modeling
is also suitable for pixel-based CV tasks. Specially, DEtection
TRansformer (DETR) [13] utilizes a elegant design based
on Transformer to build the first fully end-to-end object
detection model. Vision Transformer (ViT) [14], the first image
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recognition model purely based on Transformer is proposed
and achieves comparable performance with other state-of-
the-art (SOTA) convolution-based methods. To reduce the
computational complexity, a hierarchical Swin Transformer
[15] is proposed with Window based MSA (W-MSA) and
Shifted Window based MSA (SW-MSA) as illustrated in Fig.
1(b), and surpasses the previous SOTA methods in image clas-
sification, dense prediction tasks such as object detection and
semantic segmentation. SEgmentation TRansformer (SETR)
[16] shows that Transformer can achieve SOTA performance
in segmentation tasks as encoder. However, Transformer-
based models have not attracted enough attention in medical
image segmentation. TransUNet [17] utilizes CNNs to extract
features and then feeds them into Transformer for long-range
dependencies modeling. TransFuse [18] based on ViT tries to
fuse the features extracted by Transformer and CNNs, while
MedT [19] based on Axial-Attention [20] explores the fea-
sibility of applying Transformer without large-scale datasets.
The success of these models shows the great potential of
Transformer in medical image segmentation, but they all only
apply Transformer in encoder, which means such potential
of Transformer in decoder for segmentation remains to be
validated.

Moreover, multi-scale feature representations have been
proved to play an important role in vision transformers. Cross-
Attention Multi-Scale Vision Transformer (CrossViT) [21]
proposes a novel dual-branch Transformer architecture to ex-
tract multi-scale features for image classification. Multi Vision
Transformers (MViT) [22] is present for video and image
recognition by connecting multi-scale feature hierarchies with
transformer models. Multi-modal Multi-scale TRansformer
(M2TR) [23] uses a multi-scale transformer to detect the local
inconsistency at different scales. In general, multi-scale feature
presentations can bring more powerful performance to vision
transformers, but they are rarely used in the filed of image
segmentation.

To alleviate the inherent inductive biases of CNNs, this
paper proposes a novel encoder-decoder Transformer based
framework that mainly combines the advantages of Swin
Transformer and mul ti-scale vision transformers to effectively
optimize the structure of the standard U-shaped architecture
for automatic medical image segmentation. Instead of using
the traditional encoder structure, the proposed DS-TransUNet
adopts dual-scale encoder subnetworks based on hierarchi-
cal Swin Transformer under the different scales of image
inputs. Specifically, each medical image is first sliced into
non-overlapping patches at large and small scales, respec-
tively. By taking these two different scale patches as inputs,
the proposed dual-scale encoder subnetworks can effectively
extract the coarse and fine-grained feature representations
of different semantic scales, respectively. To make full use
of these obtained features, a robust Transformer Interactive
Fusion (TIF) module is designed to aggregate the multi-
scale feature representations of Swin Transformer between
these two encoder subnetworks, which is the key to our
DS-TransUNet method. In particular, the coarse-fine-tuning
feature representations from two encoder branches will be
reshaped into a token of specified size, and then fed into

the TIF module to perform an effective interaction potential
with each other through the self-attention mechanism of the
standard Transformer. Moreover, we also introduce the Swin
Transformer block into the decoder, which helps build long-
range dependencies and global context connections during up-
sampling. Finally, the fused features are gradually restored to
the same resolution as the input images for pixel-level predic-
tions. Benefitting from these improvements, the proposed DS-
TransUNet can effectively improve the semantic segmentation
quality of medical images. We evaluate the effectiveness of
DS-TransUNet across four typical tasks of medical image
segmentation, covering the datasets of Polyp Segmentation,
ISIC 2018, GLAnd Segmentation (GLAS), and 2018 Data
Science, and the experimental results consistently demonstrate
the superiorities of the proposed DS-TransUNet. The main
contributions of our work are as follows:
(1) By incorporating the advantages of hierarchical Swin

Transformer into both encoder and decoder, the pro-
posed DS-TransUNet can effectively model long-range
dependencies and multi-scale context connections during
the process of down-sampling and up-sampling. To the
best of our knowledge, this work is might be the first
attempt to combine the Swin Transformer with U-shaped
architecture for automatic medical image segmentation.

(2) We introduce dual-branch Swin Transformer to extract
multi-scale feature representations in the encoder, which
enables the model to effectively capture coarse-fine-
tuning features of different semantic scales, improving
the quality of feature learning.

(3) The TIF module is able to establish effective global
dependencies between coarse and fine-grained feature
representations based on self-attention mechanism, which
can guarantee the coarse-fine-tuning features of semantic
consistency.

(4) Extensive experiments across four typical tasks for med-
ical image segmentation show that the proposed DS-
TransUNet consistently outperforms previous state-of-
the-art methods especially in polyp segmentation task,
which demonstrates the effectiveness of our method.

II. RELATED WORK

In this section, we first summarize the most typical CNN-
based methods used in medical image segmentation, then we
make a overview of the recent related works about vision
transformers, especially in the filed of segmentation. Finally,
we review the existing methods which perform multi-scale
feature representations and compare these methods with our
proposed method.

A. Medical image segmentation based on CNNs

Convolutional neural networks (CNNs), especially encoder-
decoder based U-Net [1] and its variants have demonstrated
superb performance in medical image segmentation, e.g.,
UNet++ [2] designs a series of nested and dense skip pathways
to reduce the semantic gap, Attention U-Net [4] proposes
a novel attention gate (AG) mechanism that enables the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2021 3

model to focus on targets of different shapes and sizes, Res-
UNet [3] adds weighted attention mechanism to improve the
performance of retinal vessel segmentation, DenseUNet [5]
takes the advantages of dense connections and skip connection
of U-Net, R2U-Net [6] combines the strengths of residual
networks and U-Net to achieve better feature representation,
KiU-Net [7] proposes a novel architecture utilizing both under-
complete and over-complete features that makes improvement
in segmenting small anatomical structures, DobuleU-Net [24]
uses two U-Net in sequence and adopts Atrous Spatial Pyramid
Pooling (ASPP) [25], UNet 3+ [8] leverages deep supervisions
and full-scale skip connections, and feed attention network
(FANet) [26] unifies the previous epoch mask with the current
epoch feature map during training. Note that all these methods
are still based on CNNs.

B. Vision Transformer

Inspired by the success of Transformer [12] in various NLP
tasks, more and more Transformer-based methods appear in
CV tasks. Among the recent vision transformers, ViT [14]
is the first attempt that proves pure Transformer-based archi-
tecture can achieve SOTA performance on image recognition
when pre-training on large datasets such as ImageNet-22K
and JFT-300M. DeiT [27] introduces data-efficient training
strategies and knowledge distillation that allow ViT to perform
well on smaller ImageNet-1K dataset. Swin Transformer [15]
has linear computational complexity through proposed shifted
window based self-attention and achieves SOTA performance
in image recognition, dense prediction tasks such as object
detection and semantic segmentation. Unlike most previous
Transformer-based models, Swin Transformer is a hierarchical
architecture which has the flexibility to be a general-purpose
backbone network. SETR [16] treats semantic segmentation as
a sequence-to-sequence prediction task by using transformer
as encoder. In medical image segmentation, TransUNet [17]
proves that Transformer can be used as powerful encoders
for medical image segmentation. TransFuse [18] is proposed
to improve efficiency for global context modeling by fusing
transformers and CNNs. Furthermore, to train the model effec-
tively on medical images, MedT [19] introduces Gated Axial-
Attention based on Axial-DeepLab [20]. Inspired by these
approaches, we propose a UNet-like architecture which applies
Swin Transformer block to both encoder and decoder. It is our
belief that a unified architecture across encoder and decoder
based on Transformer could provide strong performance in
medical image segmentation.

C. Multi-Scale Tranformer

Multi-scale feature representations based on CNNs are a
classic concept in computer vision, and have shown to benefit
various CV tasks [28] [29] [30] [31]. Especially, the classic
feature pyramid networks (FPN) [32] has been widely adopted
in object detection and semantic segmentation. However, such
benefits have not been explored much in vision transformers.
The close works include: CrossViT [21] proposes a dual-
branch transformer and cross-attention for image classifica-
tion. M2TR [23] introduces a multi-scale transformer that

(a) (b)

Fig. 1: (a) The architecture of a standard Transformer block (notation
presented with Eq. (1)); (b) The architecture of a Swin Transformer
block (notation presented with Eq. (2) and Eq. (3)).

operates on different patch sizes of feature representations.
MViT [22] provides a multi-scale pyramid of features inside
the transformers. Motivated by the great potential of multi-
scale vision transformers, we propose a dual-branch encoder
which benefits from the hierarchical architecture of Swin
Transformer. Moreover, we design a efficient module called
Transformer Interactive Fusion (TIF) module to fuse the multi-
scale feature representations.

III. METHOD

In this section, the overall structure of proposed DS-
TransUNet is introduced in detail and illustrated in Fig. 2. We
first introduce the standard Transformer and Swin Transformer
adopted in DS-TransUNet, then we elaborate the encoder and
decoder based on Swin Transformer block since our model
is a U-shaped architecture. Finally, we show that our DS-
TransUNet can benefit from the dual-branch encoder design
and describe how multi-scale feature representations are effec-
tively fused by Transformer Interactive Fusion (TIF) module.

A. Swin Transformer block

The standard Transformer encoder [12] is composed of a
stack of L identical blocks. As shown in 1(a), each block
is consist of Multi-head Self Attention (MSA) and Multi
Layer Perceptron (MLP). Besides, a LayerNorm (LN) layer
is applied before each MSA module and each MLP, and a
residual connection is applied after each module. Therefore the
output zl of l-layer in Transformer encoder can be expressed
as:

ẑl = MSA(LN (zl−1)) + zl−1,

zl = MLP (LN (ẑl)) + ẑl,
(1)

In the standard Transformer architecture , every token needs
to be computed its relationships with all other tokens, where
the computational complexity is quadratic equal to the number
of tokens, making it unacceptable for many dense prediction
and high-resolution image tasks. For efficient modeling, Swin
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Fig. 2: Illustration of the proposed Dual Swin Transformer U-Net (DS-TransUNet). Given an input medical image, we first split it into
non-overlapping patches at two scales and feed them into the two branches of encoder separately, then the output feature representations of
different scales will be fused by Transformer Inter-active Fusion (TIF) module. Finally, the fused features are restored to the same resolution
as input image after the up-sampling process based on Swin Transformer block, hence obtaining the final mask predictions.

Trasnformer [15] proposes Window based MSA (W-MSA) and
Shifted Window based MSA (SW-MSA).

In W-MSA, the input feature will be divided into non-
overlapping windows, and each window contains M × M
patches (set to 7 by default). W-MSA will only conduct self-
attention within local windows. As shown in Fig. 1(b), ẑl and
zl represent the outputs of W-MSA and MLP in lth layer ,
which are computed as:

ẑl = W-MSA(LN (zl−1)) + zl−1,

zl = MLP (LN (ẑl)) + ẑl,
(2)

The problem of W-MSA is the lack of effective information
interaction between windows, in order to introduce cross-
window interaction without additional computation, there ex-
ists a SW-MSA followed by the W-MSA.

The window configuration of SW-MSA is different from the
previous W-MSA layer where it proposes an efficient batch

processing method by cyclic-shifting to the upper-left. After
this shift, a batch window may be consisted of multiple non-
adjacent sub-windows in the feature map and keep the equal
number of batch windows as regular partitioning at the same
time. While conducting self-attention within local windows
in both W-MSA and SW-MSA, the relative position bias is
included in computing similarity.

With such shifted window partitioning mechanism, the
outputs of SW-MSA and MLP module can be written as:

ẑl+1 = SW-MSA(LN (zl)) + zl,

zl+1 = MLP (LN (ẑl+1)) + ẑl+1,
(3)

B. Encoder

In the overall structure of our model, we refer to [1] using
the U-shaped architecture. For encoder, the Swin Transformer
[15] is used for feature extraction. As shown in Fig. 2, the
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input medical image will first be sliced into H
s ×

H
s non-

overlapping patches, where s is the patch size. Each patch
is treated as a “token” and will be projected to dimension
C by linear embedding layer. Since the patches are obtained
by convolution operation, no additional position information
is needed here. These patch tokens are formally fed into
Swin Transfomer, which contains four stages, and each stage
holds a certain number of Swin Transformer blocks that in-
clude window multi-head self attention (W-MSA) and shifted
window multi-head self attention (SW-MSA). To produce
a hierarchical representation, the number of tokens will be
reduced as the network gets deeper; in the first three stages,
input features will go through patch merging layer to reduce
the feature resolution and increase dimension after Swin
Transformer blocks’ transformation. Specifically, the patch
merging layer concatenates features of each group of 2 × 2
neighboring patches, and then applies a linear layer on the
channel-dimensional concatenated features. This will reduce
the number of tokens by 2 × 2 = 4, 2× downsampling of
resolution and increase the output dimension by 2. So the
output resolutions of four stages are H

s ×
H
s , H

2s ×
H
2s , H

4s ×
H
4s

and H
8s ×

H
8s ; and the dimensions are C, 2C, 4C and 8C

respectively.

C. Decoder

As shown in Fig. 2, the decoder mainly consists of three
stages. Unlike the previous U-Net [1] and its variants, each
stage of our model includes not only up-sampling (Nearest
Upsampling) and skip connection, but also Swin Transfomer
block. Specifically, the output of stage 4 in encoder is used
as initial input of decoder. In each stage of decoder, the input
features are up-sampled by 2, and then concatenated with the
appropriate skip connection feature maps from encoder in the
same stage. After that, the output is fed into Swin Transformer
block. We choose this design since 1) it allows us to make full
use of the features from encoder and up-sampling 2) it can
build long-range dependencies and global context interaction
in decoder to achieve better decoding performance. The impact
of introducing Swin Transformer block in decoder will be
discussed in section V-B.

After the three stages above, we can get the output with
resolution of H

4 ×
H
4 . Using a 4× upsampling operator directly

will lost a lot of shallow features, so we down-sampling the
input image by cascading two blocks to get the low level
feature with resolution of H×W and H

2 ×
H
2 , where each block

consists a 3 × 3 convolutional layer, a group normalization
layer and a ReLU layer successively. All these output features
will be used to get the final mask predictions through skip
connection.

D. Multi-Scale Feature Representations

Although self-attention can effectively build long-range de-
pendencies between patches, patch division ignores the pixel-
level intrinsic structure features inside each patch, which will
lead to the lose of shallow features such as edges and lines
information. Moreover, ViT [14] can obtain better performance
with fine-grained patch size. Taking these into account, and in

order to improve the segmentation performance and enhance
the robustness of our model, we employ multi-scale Swin
Transformer for feature extraction.

Patches of different scales can complement each other in
feature extraction; the large scale can better capture coarse-
grained feature, while small patch can better obtain the fine-
grained feature. Although the convolutional layer can in-
troduce location information between patches implicitly, the
information is lost at pixel level within each patch. In [21],
dual-branch Transfomrer can alleviate the above problems to
a certain extent, and achieve better performance than ViT
in image recognition. Motivated by this, we propose multi-
scale Swin Transformer in encoder. More specifically, we use
two independent branch with patch size of s = 4 (primary)
and s = 8 (complementary) for feature extraction at different
spatial levels. As result, the output with resolutions of H

4 ×
H
4 ,

H
8 ×

H
8 , H

16×
H
16 and H

32×
H
32 can be obtained from small-scale

branch, while output resolutions of large-scale are H
8 ×

H
8 ,

H
16 ×

H
16 , H

32 ×
H
32 and H

64 ×
H
64 .

E. Transformer Interactive Fusion Module (TIF)

After obtaining the output features from dual-branch en-
coder, the remaining problem is how to fuse them since
effective feature fusion is the core of multi-scale feature
representations learning. A direct approach is to simply con-
catenate the multi-scale features and then perform convolu-
tion operation. However, such straightforward approach fails
to capture the long-range dependencies and global context
connection between features at different scales. Therefore, we
propose a novel Transformer Interactive Fusion (TIF) module,
which utilizes the MSA mechanism to enable efficient and
effective interaction between multi-scale features. In particular,
we select the standard Transformer block [12] instead of
Swin Transformer block in TIF, mainly because the latter
essentially operates on rectangle-based feature map, while in
multi-scale features fusion module, we need to generate a
token at specified size based on feature map of one branch, and
then compute self-attention together with the token sequence
reshaped by another branch. Moreover, we only need to
perform monolayer self-attention operation twice at each stage,
which means the computational complexity is acceptable.

As shown in Fig. 3, the proposed TIF can integrate features
from two branches of different scales. In the following, we
choose the small scale branch for specific analysis, and the
same procedure is also applicable to large scale branch.

To be specific, for outputs of two branches from the same
stage i (i = 1, 2, 3, 4) denoted as F i = [f i1, f

i
2, ..., f

i
h×w] ∈

RC×(h×w) (primary branch) and Gi = [gi1, g
i
2, ..., g

i
h
2 ×

w
2

] ∈
Rc×(h

2 ×
w
2 ) (complementary branch), respectively. Then we

obtain the transformation output of Gi by:

ĝi = Flatten
(
Avgpool

(
Gi

))
, (4)

where ĝi ∈ RC×1, Avgpool is a 1 dimension average pooling
layer, followed by flatten operation. The token ĝi represents
the global abstract information of Gi to interact with F i at
pixel level . Meanwhile, F i is concatenated with ĝi into a
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Fig. 3: Illustration of Transformer Interactive Fusion module (TIF), which serves as the core component of DS-TransUNet in the multi-scale
features fusion process.

sequence of 1 + h×w tokens, which is fed into Transformer
layer for computing global self-attention:

F̂ i = Transformer
(
[ĝi, f i1, f

i
2, ..., f

i
h×w]

)
,

= [f̂ i0, f̂
i
1, ..., f̂

i
h×w] ∈ RC×(1+h×w)

F i
out = [f̂ i1, f̂

i
2, ..., f̂

i
h×w] ∈ RC×(h×w)

(5)

where Transformer plays the same role as Eq. 1 and F i
out

as the final output of small scale branch in TIF. This
approach introduces connections between each token in
F i = [f i1, f

i
2, ..., f

i
h×w] ∈ RC×(h×w) and the whole Gi,

so that fine-grained feature can also obtain coarse-grained
information from the large scale branch. Therefore, the TIF
module can bring effective feature fusion of multi-scale
branch which helps achieve better segmentation performance.
The impact of TIF compared to ordinary multi-scale features
fusion based on CNN will be discussed in section V-B.

IV. EXPERIMENTS

To evaluate the the learning and generalization ability of our
Dual Swin Transformer U-Net (DS-TransUNet), we conduct
experiments on four common medical image segmentation
tasks with several publicly available datasets, and compare
them with other SOTA methods. In this section we present
the basic information about all the datasets briefly. Besides,
we also describe the evaluation metrics and implementation
details.

A. Datasets

Polyp Segmentation: For polyp segmentation task, we
select five public polyp datasets including Kvasir [33], CVC-
ColonDB (ColonDB) [34], EndoScene [35], ETIS [36], and
CVC-ClinicDB (ClinicDB) [37]. The split and training settings
of these datasets are different in [38], [24] and [39], so
we conduct experiments according to these three articles
respectively.

• In [39], only Kvasir is used, which contains 880 images
for training and 220 images for testing. For this split, we
resize each image to a resolution of 512× 512.

• According to [24], we only use ClinicDB during exper-
iment, of which 550 images are used for training while
62 for testing. Besides, all the images used are resized to
384× 384.

• As for [38], the training sets consist 900 images in
Kvasir and 550 images in ClinicDB, while the testing
sets contain five datasets, which are Kvasir with 100
images, ClinicDB with 62 images, ColonDB with 380
images, EndoScene with 60 images and ETIS with 196
images. Since the resolutions of images in datasets are
not uniform, we resize them to 384× 384.

ISIC 2018 Dataset: The dataset comes from ISIC-2018
challenge [40] [41] and is useful for skin lesion analysis. It
includes 2596 images and their corresponding annotations,
which are resized to 256 × 256. The images are randomly
split into 2076 images for training and 520 images for testing.
This process is repeated five times and the average is taken as
result.

GLAS Dataset: GLAnd Segmentation (GLAS) datatset
is from 2015 challenge on gland segmentation in histology
images, which provides images of Haematoxylin and Eosin
(H&E) stained slides. It contains 165 images which are split
into 85 images for training and 80 for testing according to [7].
Besides, images are resized into 128× 128.

2018 Data Science Bowl: The dataset is from 2018 Data
Science Bowl challenge [42] and used to find the nuclei in
divergent images, including 670 images in total. We use the
same settings as [38], 80% of dataset for training, 10% for
validation, and 10% for testing. Moreover, all the images are
resized into 256× 256.

B. Evaluation Metrics

To compare SOTA methods with our proposed DS-
TransUNet, the standard evaluation metrics that we use include
mean Dice Coefficient (mDice) (a.k.a. F1), mean Intersection
over Union (mIoU), precision and recall, which are associated
with four values i.e., true-positive (TP), true-negative (TN),
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(a) Qualitative results on Kvasir dataset (train-ing/testing split:880/120)

(b) Qualitative results on CVC-ClinicDB dataset (training/testing split:550/62)

(c) Qualitative results on five polyp segmentation datasets

Fig. 4: Qualitative results on polyp segmentation task of DS-TransUNet compared to other models. Our model shows better learning and
generalization ability, which leads to higher-quality segmentation performance.

false-positive (FP), and false-negative (FN).

mDice =
2× TP

2× TP + FP + FN
,

mIoU =
TP

TP + FP + FN
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

(6)

C. Implementation Details

Multi-scale training strategy is used in all experiments
instead of data augmentation. The loss functions used are
weighted IoU loss LW

IoU and binary cross-entropy loss LW
BCE .

Inspired by [38], we find deep supervision helps the model
training by additionally supervising the output S2 of stage 4
in encoder and S3 of stage 1 in decoder, which means the final
loss function Ltotal can be written as:

Ltotal = αL(G,S1) + βL(G,S2) + γL(G,S3),

L = LW
IoU + LW

BCE ,
(7)

where G is the groundturth in training sample and α, β, γ are
hyperparameters which are set to 0.6, 0.2, 0.2 empirically.
We train our model with SGD optimizer with momentum 0.9,
weight decay 1e-4 and learning rate equals to 0.01.

All models are trained for 100 epochs. Moreover, early
stopping and Cosine Annealing schedule are also used. All
models are built using PyTorch framework and trained on
a NVIDIA RTX 3090 GPU. Our model is provided in two
variants: the base version (DS-TransUNet-B) uses Swin-Base

[15] as primary scale branch (small scale branch) for encoder,
while the large version (DS-TransUNet-L) uses Swin-Large
[15]. Both the two version use Swin-Tiny [15] as complemen-
tary scale branch (large scale branch) for encoder. All these
sizes of Swin Transformer use pretrained weights released
from [15]. The detailed parameters of model are summarized
in Table I, where Layer Number and Head Number mean the
number of Swin Transformer block and head self-attention
in each stage respectively. Moreover, Window Size represents
the size of non-overlapping windows divided in W-MSA, and
Swin-Decoder refers to the Swin Transformer block used in
decoder.

V. RESULT

In this section, we conduct experiments to compare our
proposed model with SOTA methods on four segmentations
tasks. Besides, we also present the experimental results and
visualize some qualitative results to evaluate the learning and
generalization ability of our DS-TransUNet. Finally, we also
perform ablation study on polyp segmentation task to analyze
the effect of each proposed technique uesd in DS-TransUNet.

A. Comparison with State-of-the-art Methods
Results on Polyp Segmentation: Our quantitative results

on polyp segmentation task achieve SOTA performance com-
pared to other models, which is present in Table II, III and V.
Next, we analyze the quantitative results on the three kinds of
data splits.

In [39], only Kvasi dataset [33] is used and the evaluation
metrics used include mDice, mIoU, recall and precision. From
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TABLE I: DETAILS OF SWIN TRANSFORMER MODEL VARIANTS.

Methods Hidden Size C MLP Size D Layer Number Head Number Window Size

Swin-Tiny 96 384 [2, 2, 6, 2] [3, 6, 12, 24] 7

Swin-Base 128 512 [2, 2, 18, 2] [4 ,8, 16, 32] 7

Swin-Large 192 768 [2, 2, 18, 2] [6, 12, 24, 48] 7

Swin-Decoder 128 512 [2, 2, 2] [8, 4, 2] 7

(a) Quantitative results on ISIC 2018 dataset

(b) Quantitative results on GLAS dataset

(c) Quantitative results on 2018 Data Science Bowl dataset

Fig. 5: Qualitative results of DS-TransUNet on three medical image segmentation tasks compared to other models.
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TABLE II: QUANTITATIVE RESULTS ON KVASIR DATASET
(TRAINING/TESTING SPLIT:880/120). FOR EACH COLUMN,
THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method mDice mIou Recall Precision

U-Net [1] 0.597 0.471 0.617 0.672

Res-UNet [3] 0.690 0.572 0.725 0.745

ResUNet++ [43] 0.714 0.613 0.742 0.784

DoubleU-Net [24] 0.813 0.733 0.840 0.861

FCN8 [44] 0.831 0.737 0.835 0.882

PSPNet [45] 0.841 0.744 0.836 0.890

HRNet [46] 0.845 0.759 0.859 0.878

DeepLabv3+ [47] 0.864 0.786 0.859 0.906

FANet [26] 0.880 0.810 0.906 0.901

HarDNet-MSEG [48] 0.904 0.848 0.923 0.907

DS-TransUNet-B (ours) 0.911 0.856 0.935 0.914

DS-TransUNet-L (ours) 0.913 0.859 0.936 0.916

TABLE III: QUANTITATIVE RESULTS ON CVC-ClINICDB
DATASET (TRAINING/TESTING SPLIT:550/62). FOR EACH
COLUMN, THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method F1 mIoU Recall Precision

SFA [49] 0.7000 0.6070 - -

ResUNet-mod [50] 0.7788 0.4545 0.6683 0.8877

UNet++ [2] 0.7940 0.7290 - -

ResUNet++ [24] 0.7955 0.7962 0.7022 0.8785

U-Net [1] 0.8230 0.7550 - -

PraNet [38] 0.8990 0.8490 - -

DoubleU-Net [24] 0.9239 0.8611 0.8457 0.9592

FANet [26] 0.9355 0.8937 0.9339 0.9401

DS-TransUNet-B (ours) 0.9350 0.8845 0.9464 0.9306

DS-TransUNet-L (ours) 0.9422 0.8939 0.9500 0.9369

Table II, we can see that not only DS-TransUNet-L, but also
DS-TransUNet-B outperforms the previous SOTA HarDNet-
MSE [48] on all metrics. Specifically, DS-TransUNet-L
achieves a mDice of 0.913, mIoU of 0.859, recall of 0.936
and precision of 0.916 with an improvement of 0.9%, 1.1%,
1.3% and 0.9%. As visualized in Fig. 4(a), our DS-TransUNet
achieve the best segmentation performance among all models,
especially for fuzzy polyps at the edge of image, which
are often missed-out in colonoscopy because their color and
structure are similar to the surrounding intestinal tissue.

According to [24], only CVC-ClinicDB dataset is used
during experiment. Table III shows that our proposed DS-
TransUNet-L achieves SOTA results on almost all metrics (F1,
mIoU, and recall). Specifically, DS-TransUNet-L outperforms
the previous SOTA FANet [26] by an improvement of 0.67%,
0.02% and 1.6% in terms of F1, mIoU and recall, while pro-
duces a comparable precision score compared to DoubleU-Net
[24]. From Fig. 4(b), we can see that polyps with large area
can also be accurately segmented. Moreover, the higher recall
score also shows that our DS-TransUNet is more clinically
useful.

TABLE IV: QUANTITATIVE RESULTS ON ISIC 2018 DATASET.
FOR EACH COLUMN, THE BEST RESULTS ARE HIGH-
LIGHTED IN BOLD.

Method F1 mIoU Recall Precision

U-Net [1] 0.6740 0.5490 0.7080 -

Attention U-Net [4] 0.6650 0.5660 0.7170 -

R2U-Net [6] 0.6790 0.5810 0.7920 -

Attention R2U-Net [6] 0.6910 0.5920 0.7260 -

BCDU-Net (d=3) [51] 0.8510 - 0.7850 -

FANet [26] 0.8731 0.8023 0.8650 0.9235

DoubleU-Net [24] 0.8962 0.8212 0.8780 0.9459

DS-TransUNet-B (ours) 0.9101 0.8481 0.9108 0.9337

DS-TransUNet-L (ours) 0.9132 0.8523 0.9217 0.9271

Referring to [38], where the training sets are consist of
Kvasir and CVC-ClinicDB, and testing sets additionally in-
clude three unseen datasets. As for quantitative evaluation, we
use mDice and mIoU following [38]. Our proposed model
achieves SOTA performance on all five challenging dataset,
which is the only model that produces over 0.92 and 0.93
mDice on Kvasir. In particular, DS-TransUNet-B and DS-
TransUNet-L both outperform the latest TransFuse [18] on
the two in-domain datasets. As for unseen datasets (ColonDB,
EndoSene and ETIS), our DS-TransUNet also greatly ex-
ceeds all SOTA methods by a large margin. Specifically,
DS-TransUNet-B achieves better performance on all datasets
except EndoScene, while DS-TransUNet-L even yields the top
performance on all five datasets. In general, our proposed
method outperforms SOTA methods with mDice improvement
of 1.7%, 0.4%, 2.5%, 0.7% and 3.5%, and achieves about
1.9% improvement in terms of the average mDice score
compared with TransFuse, which shows the advantages and
strong learning ability of our proposed model. The qualitative
segmentation performance in Fig. 4(c) also shows the great
generalization ability of DS-TransUNet.

Results on ISIC 2018 Dataset: For 2018 ISIC dataset,
the metrics used are F1 Score, mIoU, recall and precision.
Table IV presents the specific results, where our proposed
model achieves better segmentation performances than SOTA
DoubleU-Net [24] and the latest FANet [26]. DS-TransUNet-L
produces 0.9132 on F1, 0.8523 on mIoU and recall of 0.9217
with an improvement of 1.70%, 3.11% and 4.37% compared
with SOTA method, respectively. Although DoubleU-Net out-
performs in terms of precision, our proposed model produces
the best overall performances on four metrics. As shown in
Fig. 5(a), the qualitative results qualitatively manifest that our
proposed method can not only accurately predict the location
and boundary of skin lesion, but also better distinguish it from
normal skin.

Results on GLAS Dataset: Our quantitative results on the
GLAS dataset are shown in Table VI. Comparing with the
leading SOTA method KiU-Net [7], our proposed methods
DS-TransUNet-B and DS-TransUNet-L both outperform KiU-
Net on both mDice and mIoU. Especially DS-TransUNet-L
achieves a 3.94% improvement in terms of mDice and 5.67%
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TABLE V: QUANTITATIVE RESULTS ON FIVE POLYP SEGMENTATION DATASETS COMPARED TO PREVIOUS SOTA METHODS.
FOR EACH COLUMN, THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Kvasir ClinicDB ColonDB EndoScene ETIS Average

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

U-Net [1] 0.818 0.746 0.823 0.755 0.512 0.444 0.398 0.335 0.710 0.626 0.652 0.581

U-Net++ [2] 0.821 0.743 0.794 0.729 0.483 0.410 0.401 0.344 0.707 0.624 0.641 0.570

PraNet [38] 0.898 0.840 0.899 0.849 0.709 0.640 0.871 0.797 0.628 0.567 0.800 0.739

HarDNet-MSEG [48] 0.912 0.857 0.932 0.882 0.731 0.660 0.887 0.821 0.677 0.613 0.828 0.767

TransFuse-S [18] 0.918 0.868 0.918 0.868 0.773 0.696 0.902 0.833 0.733 0.659 0.849 0.785

TransFuse-L [18] 0.918 0.868 0.934 0.886 0.744 0.676 0.904 0.838 0.737 0.661 0.847 0.786

DS-TransUNet-B (ours) 0.934 0.888 0.938 0.891 0.798 0.717 0.882 0.810 0.772 0.698 0.865 0.801

DS-TransUNet-L (ours) 0.935 0.889 0.936 0.887 0.798 0.722 0.911 0.846 0.761 0.687 0.868 0.806

TABLE VI: QUANTITATIVE RESULTS ON THE GLAS DATASET.
FOR EACH COLUMN, THE BEST RESULTS ARE HIGH-
LIGHTED IN BOLD.

Method mDice mIoU

Seg-Net [52] 78.61 65.96

U-Net [1] 79.76 67.63

MedT [19] 81.02 69.61

UNet++ [2] 81.13 69.61

Attention UNet [4] 81.59 70.06

KiU-Net [7] 83.25 72.78

DS-TransUNet-B (ours) 86.54 77.36

DS-TransUNet-L (ours) 87.19 78.45

TABLE VII: QUANTITATIVE RESULTS ON THE 2018 DATA
SCIENCE BOWL. FOR EACH COLUMN, THE BEST RESULTS
ARE HIGHLIGHTED IN BOLD.

Method F1 mIoU Recall Precision

U-Net [1] 0.7573 0.9103 - -

UNet++ [2] 0.8974 0.9255 - -

Attention UNet [4] 0.9083 0.9103 - 0.9161

DoubleU-Net [24] 0.9133 0.8407 0.6407 0.9496

FANet [26] 0.9176 0.8569 0.9222 0.9194

DS-TransUNet-B (ours) 0.9200 0.8589 0.9427 0.9054

DS-TransUNet-L (ours) 0.9219 0.8612 0.9378 0.9124

of mIoU over SOTA method. GLAS is a dataset with only 85
training samples, and we can achieve SOTA performance only
by using multi-scale training, which effectively proves that
our proposed method can produce high-quality segmentation
performance even on a small-scale datasets. Besides, we also
present the visualization of generated mask images in Fig.
5(b), which demonstrates that our model is able to better
distinguish the gland itself from the surrounding tissue, and
bring excellent gland segmentation performance.

Results on 2018 Data Science Bowl: For 2018 data
science bowl challenge, we compare our result with the SOTA
models. Table VII shows that DS-TransUNet-L achieves a F1
of 0.9219, mIoU of 0.8612 and recall of 0.9378, which are

0.43%, 0.43% and 1.56% higher than the best performing
FANet [26]. Besides, DS-TransUNet-B can yield the highest
recall score of 0.9427. In general, although UNet++ and
DoubleU-Net still keep the SOTA performance in mIoU
(0.9255) and precision (0.9496) respectively, our proposed
model achieves the best balance among the four metrics
compared to the other SOTA methods. From the qualitative
results in Fig. 5(c), we can observe that our DS-TransUNet
can better capture the presence of cell nuclei and bring better
segmentation prediction.

B. Ablation study

In order to evaluate the ability of Swin Transformer in
medical image segmentation and the influence of various
factors on our proposed model, we further conduct ablation
studies on four variants of our DS-TransUNet. The datasets
we select are based on polyp segmentation task, which can
verify the learning and generalization ability of models.

• Base model, which directly processes the final output of
Swin Transformer by a progressive upsampling strategy.
Specifically, the output in stage 4 of Swin Transformer is
up-sampled by cascading three blocks, where each block
consists convolution layers and 2× upsampling opera-
tions. After that, we obtain the output with resolution of
H
4 ×

H
4 , and then perform the same processing as de-

scribed in III-C to make the final pixel-level predictions.
• Swin U-Net, which is based on U-shape architecture.

It uses Swin Transformer as encoder, while keeps the
same structure in decoder as [1], which only utilizes
convolution layer, 2× upsampling and skip connection.

• Swin Decoder, which is based on Swin U-Net, further
adding Swin Transformer block for long-range dependen-
cies modeling after each up-sampling process. The spe-
cific Swin Transformer block parameters used in decoder
are shown in Table I.

• Multi-Scale SD, whose full name is Multi-Scale Swin
Decoder, leverages dula-branch Swin Transformer for
feature extraction in encoder based on Swin Encoder.
Compared with DS-TransUNet, it utilizes convolution
layer for multi-scale feature representations fusion instead
of TIF.
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TABLE VIII: BLATION STUDY ON POLYP SEGMENTATION TASK. FOR EACH COLUMN, THE BEST RESULTS ARE HIGH-
LIGHTED IN BOLD.

Kvasir ClinicDB ColonDB EndoScene ETIS Average

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

TransFuse-S 0.918 0.868 0.918 0.868 0.773 0.696 0.902 0.833 0.733 0.659 0.849 0.785

TransFuse-L 0.918 0.868 0.934 0.886 0.744 0.676 0.904 0.838 0.737 0.661 0.847 0.786

Base model (Base) 0.919 0.863 0.915 0.861 0.747 0.657 0.878 0.804 0.722 0.635 0.836 0.764

Base model (Large) 0.922 0.867 0.914 0.861 0.786 0.698 0.884 0.812 0.735 0.652 0.848 0.778

Swin U-Net (Base) 0.920 0.868 0.914 0.862 0.758 0.674 0.884 0.811 0.711 0.636 0.837 0.770

Swin U-Net (large) 0.926 0.876 0.923 0.875 0.791 0.709 0.889 0.816 0.734 0.650 0.853 0.785

Swin Decoder (Base) 0.927 0.877 0.936 0.889 0.785 0.697 0.886 0.813 0.741 0.666 0.855 0.788

Swin Decoder (Large) 0.929 0.879 0.929 0.880 0.798 0.717 0.904 0.836 0.759 0.677 0.864 0.798

Multi-Scale SD (Base) 0.931 0.882 0.927 0.878 0.784 0.704 0.864 0.789 0.716 0.632 0.844 0.777

Multi-Scale SD (Large) 0.927 0.876 0.928 0.877 0.786 0.707 0.862 0.785 0.737 0.655 0.848 0.780

DS-TransUNet-B 0.934 0.888 0.938 0.891 0.798 0.717 0.882 0.810 0.772 0.698 0.865 0.801

DS-TransUNet-L 0.935 0.889 0.936 0.887 0.798 0.722 0.911 0.846 0.761 0.687 0.868 0.806

Table VIII presents the experimental results of four variants
of DS-TransUNet on polyp segmentation task, in terms of
both mean Dice and mean IoU. Moreover, we select the latest
TransFuse [18] as baseline.

Effect of Swin Transformer: Swin Transformer block is
the core component of our proposed method, which computes
representation with W-MSA and SW-MSA, and surpasses the
previous SOTA methods in multiple CV tasks. To explore
the feature extraction ability of Swin Transformer in medical
image segmentation task, we compare Base model with the
previous SOTA TransFuse. In Table VIII we can see that Swin
Transformer achieves satisfied segmentation performance as
encoder. Although it is not as good as TransFuse in overall
performance, it still produces close and comparable results.
Especially Base model (Large), shows an improvement of
0.4% and 1.3% in Kvasir and ColonDB in terms of mDice
respectively compared to the best results of TransFuse.

Effect of Swin Transformer block in decoder: In order
to explore the influence of Swin Transformer in decoder, we
conduct the experiments of two specially designed models
based on Swin Transformer as encoder: Swin U-Net and Swin
Decoder. The specific results shown in Table VIII indicate
that the U-shaped encoder-decoder based architecture can
effectively improve the segmentation performance. Especially
Swin U-Net (Large), has achieved 0.4% improvement in terms
of the average mean Dice score compared to TransFuse.

By simply adding Swin Transformer block after each up-
sampling in Swin U-Net, Swin Decoder can easily build long-
range dependencies and global context connection in decoder.
As shown in Table VIII, we can see that Swin Decoder already
achieves better performance than the latest TransFuse on all
five challenging datasets with an improvement of 1.5% in
terms of the average mDice score, which means that Swin
Decoder has better learning and generalization ability than
previous SOTA methods. Specially, the best results of Swin
Decoder outperform TransFuse with mDice improvement of
1.1%, 0.2%, 2.1% and 2.2% in all dataset except EndoScene.

Therefore, the decoder design based on Swin Transformer
block can effectively improve the segmentation performance.

Effect of multi-scale feature representations and TIF:
Multi-Scale SD adds another Swin Transformer branch in
encoder, and simply fuses the multi-scale features through
convolution operation. Such a straightforward approach does
not bring performance improvements. The experimental results
shown in Table VIII indicates that despite the additional
encoder branch is added which brings more granular informa-
tion, it fails to achieve better performance compared to Swin
Encoder with single branch. This is mainly because common
convolution layer can not effectively fuse multi-scale feature,
but makes the model more difficult to converge

By adding TIF module to Multi-scale SD, we can get the
final proposed DS-TransUNet, which yields the best perfor-
mance among all variants. To evaluate the effectiveness of
the proposed TIF module, we compare DS-TransUNet with
Swin Decoder in Table VIII. It can be observed that the
best results of DS-TransUNet achieve mDice improvements
of 0.6%, 0.2%, 0.7%, 1.3% on Kvasir, ClinicDB, EndoScene
and ETIS compared to Swin Decoder with single branch, while
show a 0.5% improvement on ColonDB in terms of mIoU. In
general, TIF allows more efficient interaction between features
of different scales, which brings more effective feature repre-
sentations fusion of multi-scale branches and helps achieve
better segmentation performance.

VI. CONCLUSION

In this work we present the Dual Swin Transformer U-Net
(DS-TransUNet), a U-shaped encoder-decoder based frame-
work for medical image segmentation. Our DS-TransUNet is
based on the hierarchical Swin Transformer. Not only the en-
coder, we also innovatively add Swin Transformer block in de-
coder. Moreover, we introduce dual-branch Swin Transformer
in encoder to extract multi-scale feature representations. We
further propose a novel Transformer Interactive Fusion (TIF)
module to build long-range dependencies between features of
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different scales through self-attention mechanism, thus effec-
tively fusing the multi-scale features from encoder. Extensive
experiments on four medical image segmentation tasks show
that our DS-TransUNet significantly outperforms other state-
of-the-art methods especially in polyp segmentation task. In
the future, our work will focus on designing more lightweight
Transformer-based models and better learning the pixel-level
intrinsic structural features generated by the patch division in
vision transformers.
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