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SUMMARY

This paper introduces a novel method for the free vibration analysis of Mindlin plates. The proposed
method takes the advantage of both the local bases of the discrete singular convolution (DSC)
algorithm and the pb-2 Ritz boundary functions to arrive at a new approach, called DSC-Ritz method.
Two basis functions are constructed by using DSC delta sequence kernels of the positive type. The
energy functional of the Mindlin plate is represented by the newly constructed basis functions and
is minimized under the Ritz variational principle. Extensive numerical experiments are considered
by different combinations of boundary conditions of Mindlin plates of rectangular and triangular
shapes. The performance of the proposed method is carefully validated by convergence analysis. The
frequency parameters agree very well with those in the literature. Numerical experiments indicate that
the proposed DSC-Ritz method is a very promising new method for vibration analysis of Mindlin
plates. Copyright � 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Plates are some of the most important structural elements and its theoretical descriptions were
established by Chladni [1] and Kirchhoff [2]. The classical thin (Kirchhoff) plate theory has
limited success for thick plates because no account is taken for the effect of transverse shear
deformation on the mechanical behaviour of thick plates [3]. To allow for this effect, Mindlin [4]
proposed a simple model by assuming a constant transverse shear–strain distribution through the
plate thickness. Analytical solution to Mindlin plates is scarce [5, 6], and numerical computations
are indispensable for obtaining approximate solutions that are important in engineering practices.

Typically, structural computations are accomplished by using either global methods or
local methods. Global methods, such as the Rayleigh method [7], Ritz methods [8–14], series

∗Correspondence to: G. W. Wei, Department of Mathematics, Michigan State University, East Lansing, MI 48824,
U.S.A.

†E-mail: wei@math.msu.edu Received 23 April 2003
Revised 16 January 2004

Copyright � 2004 John Wiley & Sons, Ltd. Accepted 7 May 2004



DSC-RITZ METHOD FOR THE FREE VIBRATION ANALYSIS 263

expansion [15], methods of differential quadrature [16] and generalized differential quadrature
[17, 18], etc, are highly accurate but are often cumbersome to implement in dealing with com-
plex geometries and non-conventional boundary conditions. In contrast, local methods, such as
finite strip methods [19] and spline finite strip methods [20], are easy to implement for complex
geometries and discontinuous boundary conditions. However, the accuracy of local methods is
relatively low compared to that of global methods. As point out by Zienkiewicz, local methods
might converge slowly and are too expensive for the prediction of short waves (i.e., high-order
eigenmodes) [21].

Recently, the discrete singular convolution (DSC) algorithm [22] has emerged as a novel
approach that exhibits global methods’ accuracy for integration and local methods’ flexibility
for handling complex geometries and boundary conditions. The mathematical foundation of
the DSC algorithm is the theory of distributions and wavelet analysis. The same theory also
underpins the basis for singular transforms of Hilbert type, Abel type and delta type. These
transforms have important applications to analytical signal processing, tomography and sur-
face interpolation. Numerical solutions to differential equations are formulated via the singular
kernels of the delta type. Based on the DSC framework, a unification was discussed for a
number of conventional computational methods, including global, local, Galerkin, collocation,
and finite difference methods [23, 24].

The DSC algorithm has found its success in fluid dynamic simulation [25] and electromag-
netic wave propagation [26]. One of the most successful applications that the DSC algorithm
has accomplished so far is the analysis of solid structures [24, 27–35]. The DSC algorithm was
utilized to provide at least 11 significant digits for the first 100 modes of a simply supported
square plate governed by the fourth-order biharmonic equations [27]. The DSC algorithm has
been used for vibration analysis of plates with simply supported, clamped, and transversely
supported edges [33], mixed edge supports [30], complex internal supports [24, 32], irregu-
lar internal supports [35], and plates subjected to high-frequency vibration levels [31, 34]. In
particular, analysis of plates with irregular supports is a challenging task because of possi-
ble ill-conditioned matrix. Analysis of high-frequency vibration modes is another challenging
problem in structural design [21]. Low-order methods, like h-version finite element methods,
converge slowly for high-order modes. Standard global methods fail to work for high-order
modes due to the numerical round off errors when the degree of polynomial is increased to a
certain level. The DSC algorithm provides accurate prediction of thousands of vibration modes,
which was not available to engineers previously [31, 34].

Another distinct development in numerical analysis of plates is the pb-2 Rayleigh–Ritz
method [36, 37]. The method avoids the difficulty of global methods for implementing bound-
ary conditions by appropriately choosing the basis function so that the boundary conditions
are automatically satisfied. Essentially, the product of a two-dimensional polynomial function
(p-2) and a boundary function (b) is utilized. The boundary function constitutes proper powers
of polynomials that are simultaneous solutions to the differential equations of the boundary
conditions. In the past decade, the pb-2 Rayleigh–Ritz method has had substantial success in the
vibration analysis of Mindlin plates [37–43]. Much advance in this direction was summarized
in a monograph [36].

The objective of the present work is to explore a new computational method, which is a
combination of the DSC algorithm and pb-2 Rayleigh–Ritz method, and thus, called DSC-Ritz
method. The essential idea is to utilize the local DSC approximations and the pb-2 Rayleigh–
Ritz boundary functions. As a result, the DSC-Ritz method has the advantage of both methods.
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The method was proposed and tested on vibration analysis of beams and thin plates by two
of the present authors [44]. This paper further investigates the efficiency and convergence of
the DSC-Ritz method for the vibration analysis of Mindlin plates.

Albeit the proposed DSC-Ritz method has a distinct mathematical foundation, it shares
some similarities with the smooth particle hydrodynamics [45, 46], meshless method [47], and
element-free kp-Ritz method [48, 49]. The latter makes use of the cubic spline function to
construct the shape function and the penalty method to enforce essential boundary conditions.
Such similarities enhance our understanding of the philosophy of both the previous meshless
type of methods and the DSC-Ritz.

The organization of this paper is as follows. Section 2 is devoted to theoretical formulations.
The philosophy of the DSC algorithm is briefly discussed. The energy formulation of Mindlin
plates is described. Detailed boundary conditions are given and the DSC-Ritz formalism is
presented with two sets of new basis functions. In Section 3, the new method are applied to
the numerical analysis of Mindlin plates with different shapes and combinations of boundary
conditions. Validation is conducted by extensive convergence study and by a comparison with
the literature. This paper ends with a conclusion.

2. THEORETICAL FORMULATIONS

In this section, a brief review is given to the theory of DSC before the formalism of Mindlin
plates is described. The DSC-Ritz method of solution is introduced in the last subsection.

2.1. Discrete singular convolution

Singular convolutions occur commonly in many science and engineering problems and are
a special class of mathematical transformations. It is most convenient to discuss singular
convolutions in the context of the theory of distributions. The latter has a significant impact in
mathematical analysis. It provides a rigorous justification for a number of informal manipulations
in engineering and has significant influence over many mathematical disciplines, such as operator
calculus, differential equations, functional analysis, harmonic analysis, harmonic analysis and
transformation theory. Let T be a distribution and �(t) be an element of the space of test
functions. A singular convolution can be defined as

F(t) = (T �)(t) =
∫ ∞

−∞
T (t − x)�(x) dx (1)

Here T (t − x) is a singular kernel. Depending on the form of the kernel T , the singular
convolution is the key issue for a wide range of science and engineering problems, such as
Hilbert transform, Abel transform and Radon transform. In the present study, only the singular
kernels of the delta type are required

T (x) = �(n)(x), (n = 0, 1, 2, . . .) (2)

Here, kernel T (x) = �(x) is the delta distribution and is of particular importance for interpo-
lation of surfaces and curves. Higher-order kernels, T (x) = �(n), (n = 1, 2, . . .) are essential
for numerically solving differential equations and for image processing, noise estimation, etc.
However since these kernels are very singular, they cannot be directly digitized in computers.
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Hence, the singular convolution, (1), is of little direct numerical merit. To avoid the difficulty
of using singular expressions directly in computer, we construct sequences of approximations
(T�) to the distribution T

lim
�→�0

T�(x) → T (x) (3)

where �0 is a generalized limit. Obviously, in the case of T (x) = �(x), each element in the
sequence, T�(x), is a delta sequence kernel. With a sufficiently smooth approximation, it is
useful to consider a discrete singular convolution

F�(t) =∑
k

T�(t − xk)f (xk) (4)

where F�(t) is an approximation to F(t) and {xk} is an appropriate set of discrete points on
which the DSC (4) is well defined. Note that, the original test function �(x) has been replaced
by f (x).

Obviously, as the Fourier transform of the delta distribution is unit in the Fourier domain,
the distribution can be regarded as a universal reproducing kernel [22]

f (x) =
∫

�(x − x′)f (x′) dx′ (5)

As a consequence, delta sequence kernels are approximate reproducing kernels or bandlimited
reproducing kernels which provide good approximation to the universal reproducing kernel in
certain frequency bands.

There are many delta sequence kernels arising in the theory of partial differential equations,
Fourier transforms and signal analysis, with completely different mathematical properties. The
reader is referred to References [22, 24] for an elaboration on historical aspects of the delta
distribution and its approximations. For the purpose of numerical computations, the delta se-
quence kernels of both positive type and Dirichlet type are of particular importance and have
very distinct mathematical and numerical properties.

Definition
Let {��} be a sequence of kernel functions on (−∞, ∞) which are integrable over every
bounded interval. We call {��} a delta sequence kernel of positive type if

1.
∫ a

−a
�� → 1 as � → �0 for some finite constant a.

2. For every constant � > 0,
(∫ −�

−∞ + ∫∞
�

)
�� → 0 as � → �0.

3. ��(x) � 0 for all x and �.

Although the delta sequence kernels of Dirichlet type have been extensively studied in our
previous numerical work in the framework of the collocation, use of delta sequence kernels
of positive type has rarely been considered. However, a variety of delta sequence kernels
of positive type were described in detail in Reference [24]. Important examples include im-
pulse functions, Gauss’ delta sequence kernel, Lorentz’s delta sequence kernel, Landau’s delta
sequence kernel, Poisson’s delta sequence kernel family, Fejér’s delta sequence kernel and its
generalization. Most of these kernels were utilized in our previous test [44]. In this work, we
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Figure 1. Geometry of rectangular Mindlin plate.

focus our study on two typical kernels, Gauss’ delta sequence kernel

��(x) = 1√
2��

e−x2/2�2
(6)

and Fejer’s delta sequence kernel

�k(x) =
{

Fk(x) |x| � �, k = 0, 1, 2 . . .

0 otherwise
(7)

where

Fk(x) = sin2
( 1

2 kx
)

2�k sin2
( 1

2 x
) , −∞ < x < ∞ (8)

A major advantage of many DSC delta sequence kernels is their localization. For example, the
Gauss’ kernel is an element of the Schwartz space functions. The decay property of the Fejer’s
kernel can be improved by choosing appropriate parameter �. It was well understood that the use
of delta sequence kernels of positive type has to be formulated in a Galerkin algorithm [23].
For conservative systems, such as vibration of plates, the Galerkin algorithm is essentially
identical to the Ritz variational formulation. Thus, the rest of this section is devoted to these
issues.

2.2. Energy functionals of Mindlin plates

In this subsection, we briefly review the theory of Mindlin plates to establish concepts and
notations. More detailed description can be found elsewhere [40]. Let us consider a flat,
isotropic, thick, rectangular (or triangular) plate of uniform thickness h, length a, width b,
Young’s modulus E, shear modulus G and Poisson’s ratio �. The geometry of a rectangular
plate is shown in Figure 1. The plate may have an arbitrary combination of different supporting
edges. The goal is to determine the natural frequencies of the plate.

According to the first-order shear deformable plate theory [4], the displacement fields of the
plate in orthogonal co-ordinates can be expressed as

u(x, y, z) = z�x(x, y), v(x, y, z) = z�y(x, y), w(x, y, z) = w(x, y) (9)
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where u, v are inplane displacements in the x-, and y-directions, respectively, w the transverse
displacement, and �x(x, y) and �y(x, y) the bending slopes along the y- and x-axes, respectively.
Note that �x and �y depend on variables x and y, and the transverse displacement, w, is assumed
to be independent of z, i.e. no thickness deformation is allowed. In view of Equation (9) and
using Green’s definition for strains,

� = {εxx, εyy, �xy, �xz, �yz}T =
{

�u

�x
,

�v

�y
,

�u

�y
+ �v

�x
,

�u

�z
+ �w

�x
,

�v

�z
+ �w

�y

}T

(10)

where � is the strain tensor having various non-vanishing components described in Equation (10).
To construct the energy functional, we consider the strain energy functional of the plate [40]

U = 1

2

∫
V

�T[B]� dV (11)

where V is the volume of the plate, and [B] a matrix determined by material property and is
given by

[B] =




E

1 − �2

�E

1 − �2 0 0 0

�E

1 − �2

E

1 − �2 0 0 0

0 0 G 0 0

0 0 0 	G 0

0 0 0 0 	G




(12)

where G = E/[2(1+�)] and 	 is the shear correction factor that is used to compensate the error
due to the assumption of constant transverse shear strain distribution over the plate thickness
in the Mindlin plate theory.

The strain energy, Equation (11), can be evaluated from Equations (9), (10) and (12) to yield

U = 1

2

∫
V

{
Ez2

1 − �2

[(
��x

�x
+ ��y

�y

)2
− 2(1 − �)

(
��x

�x

��y

�y
− 1

4

(
��x

�y
+ ��y

�x

)2)]

+	G

[(
�x + �w

�x

)2
+
(

�y + �w

�y

)2]}
dV (13)

As expected, the well-known strain energy for thin plates can be obtained if we set �x =
−�w/�x and �y = −�w/�y in Equation (13).

Another important component in the energy functional is the kinetic energy T . For free
vibration, the kinetic energy for the plate is given by T = 1

2
2
∫
A
[�hw2 + 1

12�h3(�2
x +�2

y)] dA,
where 
 is the angular frequency and � the mass density of the plate.

It is well-known that the total energy functional can be expressed as the difference of the
strain and kinetic energy � = U −T . The latter can be used as the starting point for numerical
computations.
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Table I. Convergence study for rectangular plates with CCCC boundary conditions.

Number Mode sequence number
Parameter of grid

a/b h/b Kernel of kernel points 1 2 3 4 5 6

1.0 0.1 Gauss r = 1.8 N = 2 5.1701 11.7620 11.7620 15.8121 67.0104 67.0104
N = 4 3.3116 6.3073 6.3073 8.8231 13.2954 13.4748
N = 6 3.2984 6.2891 6.2891 8.8145 10.3843 10.4813
N = 7 3.2959 6.2884 6.2884 8.8169 10.3803 10.4789
N = 8 3.2963 6.2868 6.2868 8.8113 10.3815 10.4800
N = 9 3.2956 6.2867 6.2867 8.8122 10.3794 10.4783

Fejer k = 2, r = 3.0 N = 2 5.0659 11.6873 11.6873 15.7348 67.0056 67.0056
N = 4 3.3261 6.3049 6.3049 8.8273 12.7812 12.9637
N = 6 3.2994 6.2896 6.2896 8.8148 10.3856 10.4824
N = 7 3.2958 6.2881 6.2881 8.8163 10.3800 10.4788
N = 8 3.2959 6.2864 6.2864 8.8105 10.3805 10.4790
N = 9 3.2954 6.2861 6.2861 8.8109 10.3789 10.4780

Reference [50] — — 3.2954 6.2858 6.2858 8.8098 10.3788 10.4778
0.2 Gauss r = 1.8 N = 2 3.0967 6.0297 6.0297 7.9581 17.7249 17.7249

N = 4 2.6913 4.6967 4.6967 6.3031 7.8131 7.9568
N = 6 2.6881 4.6913 4.6913 6.2991 7.1775 7.2765
N = 7 2.6876 4.6911 4.6911 6.2994 7.1768 7.2761
N = 8 2.6876 4.6909 4.6909 6.2987 7.1769 7.2762
N = 9 2.6875 4.6908 4.6908 6.2988 7.1767 7.2760

Fejer k = 2, r = 3.0 N = 2 3.0614 5.9964 5.9964 7.9215 17.7204 17.7204
N = 4 2.6938 4.6945 4.6945 6.3016 7.6527 7.7922
N = 6 2.6882 6.2991 7.1776 7.2766 10.0401 10.0401
N = 7 2.6875 4.6910 4.6910 6.2993 7.1768 7.2761
N = 8 2.6875 4.6908 4.6908 6.2986 7.1768 7.2761
N = 9 2.6875 4.6908 4.6908 6.2986 7.1767 7.2760

Reference [50] — — 2.6875 4.6907 4.6907 6.2985 7.1767 7.2759

2.0 0.1 Gauss r = 1.8 N = 2 3.9931 6.6569 11.2876 12.4816 66.2449 66.7871
N = 4 2.3210 2.9639 5.5927 6.1438 6.3301 8.4179
N = 6 2.3115 2.9546 4.0767 5.5732 5.6676 6.1296
N = 7 2.3096 2.9541 4.0726 5.5727 5.6094 6.1317
N = 8 2.3099 2.9525 4.0741 5.5716 5.6085 6.1270
N = 9 2.3094 2.9525 4.0717 5.5714 5.6091 6.1277

Fejer k = 2, r = 3.0 N = 2 3.9065 6.5928 11.2267 12.4198 66.2428 66.7837
N = 4 2.3329 2.9726 5.5829 6.0194 6.1410 8.1921
N = 6 2.3123 2.9551 4.0789 5.5736 5.6496 6.1301
N = 7 2.3095 2.9539 4.0723 5.5725 5.6113 6.1312
N = 8 2.3096 2.9521 4.0729 5.5712 5.6080 6.1264
N = 9 2.3093 2.9519 4.0711 5.5709 5.6075 6.1265

Reference [50] — — 2.3092 2.9515 4.0708 5.5708 5.6066 6.1256

0.2 Gauss r = 1.8 N = 2 2.3537 3.5408 5.6688 6.2580 16.9896 17.5132
N = 4 1.9529 2.4562 3.8709 4.2110 4.6042 5.5662
N = 6 1.9501 2.4532 3.2918 4.2053 4.3958 4.5993
N = 7 1.9496 2.4532 3.2906 4.2050 4.3717 4.5996
N = 8 1.9496 2.4527 3.2909 4.2049 4.3710 4.5987
N = 9 1.9495 2.4527 3.2903 4.2048 4.3711 4.5988
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Table I. Continued.

Fejer k = 2, r = 3.0 N = 2 2.3226 3.5142 5.6394 6.2280 16.9876 17.5100
N = 4 1.9555 2.4576 3.7638 4.2075 4.6030 5.4963
N = 6 1.9502 2.4534 3.2922 4.2054 4.3917 4.5994
N = 7 1.9496 2.4531 3.2905 4.2050 4.3727 4.5995
N = 8 1.9496 2.4526 3.2906 4.2049 4.3708 4.5985
N = 9 1.9495 2.4525 3.2902 4.2048 4.3708 4.5986

Reference [50] — — 1.9495 2.4524 3.2901 4.2047 4.3706 4.5984

Table II. Impact study of parameter r on rectangular plates with SSSS boundary conditions
with a/b = 1.0, h/b = 0.1 and N = 9.

Mode sequence number
Parameter of

Kernel grid points 1 2 3 4 5 6

Gauss r = 1.0 1.9453 4.6162 4.6162 7.0784 8.6202 8.6202
r = 1.2 1.9357 4.6106 4.6106 7.0736 8.6184 8.6184
r = 1.4 1.9326 4.6089 4.6089 7.0721 8.6182 8.6182
r = 1.6 1.9318 4.6085 4.6085 7.0718 8.6175 8.6175
r = 1.8 1.9317 4.6084 4.6084 7.0717 8.6167 8.6167
r = 2.0 1.9317 4.6084 4.6084 7.0717 8.6163 8.6163
r = 2.2 1.9317 4.6084 4.6084 7.0716 8.6162 8.6162
r = 2.4 1.9317 4.6084 4.6084 7.0716 8.6162 8.6162
r = 2.6 1.9317 4.6084 4.6084 7.0716 8.6162 8.6162
r = 2.8 1.9317 4.6084 4.6084 7.0716 8.6162 8.6162
r = 3.0 1.9317 4.6084 4.6084 7.0698 8.6162 8.6162

Fejer r = 1.0 — — — — — —
(k = 2) r = 1.2 — — — — — —

r = 1.4 — — — — — —
r = 1.6 — — — — — —
r = 1.8 2.3076 4.8234 4.8234 7.2601 8.9147 8.9195
r = 2.0 1.9736 4.6327 4.6327 7.0935 8.6279 8.6279
r = 2.2 1.9357 4.6110 4.6110 7.0741 8.6168 8.6168
r = 2.4 1.9321 4.6086 4.6086 7.0719 8.6171 8.6171
r = 2.6 1.9317 4.6084 4.6084 7.0717 8.6166 8.6166
r = 2.8 1.9317 4.6084 4.6084 7.0716 8.6163 8.6163
r = 3.0 1.9317 4.6084 4.6084 7.0716 8.6162 8.6162

Reference [50] — 1.9317 4.6084 4.6084 7.0716 8.6162 8.6162

With normalized co-ordinates � = x/a, � = y/b, the integration of Equation (13) with
respect to z yields

U = 1

2

∫
Ā

{
D

[(
1

a

��x

��
+ 1

b

��y

��

)2
− 2(1 − �)

(
1

ab

��x

��

��y

��
− 1

4

(
1

b

��x

��
+ 1

a

��y

��

)2)]

+	Gh

[(
�x + 1

a

�w

��

)2
+
(

�y + 1

b

�w

��

)2]}
ab dĀ
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Table III. Impact study of parameter k on rectangular plates with SSSS boundary conditions
with a/b = 1.0, h/b = 0.1 and N = 9.

Mode sequence number
Parameter of

Kernel grid points 1 2 3 4 5 6

Fejer k = 1 — — — — — —
(r = 3.0) k = 2 1.9317 4.6084 4.6084 7.0716 8.6162 8.6162

k = 3 1.9317 4.6084 4.6084 7.0717 8.6163 8.6163
k = 4 1.9317 4.6084 4.6084 7.0717 8.6164 8.6164
k = 5 1.9318 — — 7.0717 8.6164 8.6164
k = 6 1.9318 4.6084 4.6084 7.0717 8.6164 8.6164
k = 7 1.9318 4.6084 4.6084 7.0717 8.6164 8.6164
k = 8 1.9318 4.6084 4.6084 7.0717 8.6164 8.6164
k = 9 1.9318 4.6084 4.6084 7.0717 8.6164 8.6164
k = 10 1.9318 4.6084 4.6084 7.0717 8.6164 8.6164

Reference [50] — 1.9317 4.6084 4.6084 7.0716 8.6162 8.6162

and

T = 1

2

2
∫

Ā

[
�hw2 + 1

12
�h3(�2

x + �2
y)

]
ab dĀ (14)

where D = Eh3/[12(1 − �2)], and Ā is the non-dimensionalized area of the plate and
dĀ = d� d�.

2.3. Boundary conditions

The most commonly occurring support conditions for Mindlin plates are [36]:
(a) Free edge (F)—Boundary conditions for free edges are given by

Qn = 0, Mn = 0 and Mnt = 0 (15)

where Qn is the shearing force, Mn the bending moment and Mnt the twisting moment.
(b) Simply supported edge (S)—Simply supported edges for rectangular Mindlin plates are

given by

w = 0, Mn = 0 and �t = 0 (16)

where �t is the rotation of the mid-plane normal in the tangent plane to the plate boundary.
(c) Simply supported edge (S∗)—There is another kind (second kind) of simply supported

boundary conditions, which is used for triangular Mindlin plates. The S∗ conditions state
that

w = 0, Mn = 0 and Mnt = 0 (17)

(d) Clamped edge (C)—Clamped edges are constrained by

w = 0, �n = 0 and �t = 0 (18)

where �n is the rotation of the mid-plane normal to the clamped edge.
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Table IV. Comparison study for rectangular plates with CSSF boundary conditions.

Mode sequence number
Parameter of

a/b h/b Kernel kernel 1 2 3 4 5 6

0.6 0.1 Gauss r = 2.2 3.9925 5.1760 7.7095 11.0451 11.5248 12.1483
Fejer k = 2, r = 3.0 3.9921 5.1750 7.7079 11.0439 11.5232 12.1467

Reference [50] — 3.9914 5.1735 7.7053 11.0416 11.5201 12.1436

0.2 Gauss r = 2.2 3.1819 4.0443 5.8257 7.6466 8.2754 8.3575
Fejer k = 2, r = 3.0 3.1818 4.0441 5.8254 7.6463 8.2750 8.3571

Reference [50] — 3.1817 4.0438 5.8250 7.6458 8.2745 8.3564

1.0 0.1 Gauss r = 2.2 1.6197 2.9170 4.6617 5.7684 5.9723 8.5749
Fejer k = 2, r = 3.0 1.6198 2.9175 4.6621 5.7689 5.9731 8.5779

Reference [50] — 1.6195 2.9165 4.6612 5.7675 5.9711 8.5744

0.2 Gauss r = 2.2 1.4452 2.4997 3.7407 4.6356 4.6770 6.4321
Fejer k = 2, r = 3.0 1.4452 2.4997 3.7408 4.6358 4.6771 6.4328

Reference [50] — 1.4451 2.4996 3.7406 4.6355 4.6769 6.4323

1.5 0.1 Gauss r = 2.2 0.8085 2.1511 2.2748 3.6625 4.3984 5.1505
Fejer k = 2, r = 3.0 0.8083 2.1507 2.2743 3.6616 4.3976 5.1500

Reference [50] — 0.8081 2.1500 2.2739 3.6601 4.3968 5.1492

0.2 Gauss r = 2.2 0.7576 1.9207 1.9980 3.0821 3.6021 4.2406
Fejer k = 2, r = 3.0 0.7575 1.9206 1.9979 3.0819 3.6020 4.2405

Reference [50] — 0.7575 1.9205 1.9978 3.0817 3.6018 4.2404

2.0 0.1 Gauss r = 2.2 0.5101 1.3735 1.8743 2.6380 2.7755 4.0636
Fejer k = 2, r = 3.0 0.5101 1.3737 1.8747 2.6386 2.7766 4.0652

Reference [50] — 0.5100 1.3734 1.8742 2.6380 2.7754 4.0633

0.2 Gauss r = 2.2 0.4873 1.2599 1.7036 2.3007 2.4200 3.3949
Fejer k = 2, r = 3.0 0.4873 1.2599 1.7036 2.3008 2.4201 3.3950

Reference [50] — 0.4872 1.2598 1.7035 2.3006 2.4199 3.3946

2.5 0.1 Gauss r = 2.2 0.3659 0.9417 1.7464 1.7796 2.3454 2.8718
Fejer k = 2, r = 3.0 0.3658 0.9416 1.7461 1.7789 2.3447 2.8692

Reference [50] — 0.3657 0.9413 1.7457 1.7785 2.3437 2.8686

0.2 Gauss r = 2.2 0.3526 0.8833 1.6007 1.6092 2.0840 2.4915
Fejer k = 2, r = 3.0 0.3526 0.8834 1.6007 1.6091 2.0840 2.4912

Reference [50] — 0.3526 0.8833 1.6006 1.6090 2.0837 2.4909

2.4. The DSC-Ritz method

In the DSC-Ritz method, we approximate the transverse deflection and the bending slopes by

w(�, �) =
N∑

i=1

N∑
j=1

cm
m(�, �), �x(�, �) =
N∑

i=1

N∑
j=1

dm�xm(�, �), �y(�, �) =
N∑

i=1

N∑
j=1

em�ym(�, �)

(19)
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Table V. Comparison study for rectangular plates with CFSF boundary conditions.

Mode sequence number
Parameter of

a/b h/b Kernel kernel 1 2 3 4 5 6

0.6 0.1 Gauss r = 2.2 3.8551 4.3259 5.9149 8.7782 10.9140 11.3617
Fejer k = 2, r = 3.0 3.8546 4.3255 5.9122 8.7774 10.9129 11.3610

Reference [50] — 3.8539 4.3185 5.9067 8.7540 10.9102 11.3454

0.2 Gauss r = 2.2 3.0817 3.4128 4.5432 6.4929 7.5612 7.8452
Fejer k = 2, r = 3.0 3.0816 3.4126 4.5424 6.4926 7.5614 7.8450

Reference [50] — 3.0815 3.4108 4.5416 6.4876 7.5603 7.8406

1.0 0.1 Gauss r = 2.2 1.4738 1.9536 3.6499 4.5031 5.0483 6.7909
Fejer k = 2, r = 3.0 1.4737 1.9536 3.6483 4.5026 5.0479 6.7874

Reference [50] — 1.4735 1.9491 3.6452 4.5017 5.0395 6.7807

0.2 Gauss r = 2.2 1.3255 1.7030 3.0534 3.6265 4.0054 5.2086
Fejer k = 2, r = 3.0 1.3254 1.7030 3.0530 3.6264 4.0052 5.2075

Reference [50] — 1.3254 1.7019 3.0526 3.6262 4.0031 5.2064

1.5 0.1 Gauss r = 2.2 0.6666 1.1014 2.1049 2.6693 2.8575 4.2273
Fejer k = 2, r = 3.0 0.6665 1.1015 2.1047 2.6691 2.8565 4.2269

Reference [50] — 0.6664 1.0978 2.1044 2.6635 2.8547 4.2261

0.2 Gauss r = 2.2 0.6320 1.0008 1.8622 2.2975 2.4924 3.4779
Fejer k = 2, r = 3.0 0.6320 1.0008 1.8622 2.2974 2.4922 3.4778

Reference [50] — 0.6320 0.9999 1.8621 2.2960 2.4920 3.4776

2.0 0.1 Gauss r = 2.2 0.3766 0.7610 1.2045 1.7474 2.4606 2.5667
Fejer k = 2, r = 3.0 0.3766 0.7612 1.2043 1.7474 2.4604 2.5660

Reference [50] — 0.3765 0.7578 1.2041 1.7428 2.4599 2.5648

0.2 Gauss r = 2.2 0.3649 0.7025 1.1154 1.5614 2.1606 2.2777
Fejer k = 2, r = 3.0 0.3648 0.7026 1.1153 1.5613 2.1601 2.2806

Reference [50] — 0.3648 0.7016 1.1152 1.5601 2.1600 2.2804

2.5 0.1 Gauss r = 2.2 0.2413 0.5817 0.7761 1.2859 1.5995 2.1852
Fejer k = 2, r = 3.0 0.2412 0.5820 0.7760 1.2859 1.5992 2.1850

Reference [50] — 0.2412 0.5785 0.7759 1.2818 1.5991 2.1798

0.2 Gauss r = 2.2 0.2362 0.5409 0.7366 1.1714 1.4594 1.9300
Fejer k = 2, r = 3.0 0.2362 0.5410 0.7365 1.1713 1.4593 1.9296

Reference [50] — 0.2362 0.5400 0.7365 1.1702 1.4592 1.9281

where N is the number of grid points in both x- and y-direction, cm, dm and em are the
unknown coefficients, and the subscript m is determined by

m = (i − 1)N + j (20)

and


m = ��ij (�, �)Bw, �xm = ��ij (�, �)Bx, �ym = ��ij (�, �)By (21)
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Figure 2. First six mode shapes of a CCCC rectangular plate (a/b = 1.0, h/b = 0.10).

where Bw, Bx and By are boundary functions. We adopt the idea from the pb-2 Ritz method for
the treatment of boundary conditions. Namely, the boundary functions must satisfy the geometric
boundary conditions given by expressions in Equations (15)–(18). Therefore, boundary functions
for the deflection can be expressed as [40]

Bw =
L∏

j=1
[�j (�, �)]�j (22)

where �j is the boundary equation of the j th supporting edge, L is the number of plate edges
(for rectangle L = 4, for triangle L = 3), and �j depending on the support edge condition,
takes the form of

�j = 0 if the j th edge is free (F) (23)

�j = 1 if the j th edge is clamped (C) or simply supported (S and S∗) (24)
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Figure 3. First six mode shapes of an SSSS rectangular plate (a/b = 1.0, h/b = 0.10).

The boundary functions for the bending slopes can be expressed as

Bx =
L∏

j=1
[�j (�, �)]�j (25)

�j = 0 if the j th edge is free (F) or simply supported (S∗) or (S) in the y-direction

(26)

�j = 1 if the j th edge is clamped (C) or simply supported (S) in the x-direction
(27)

and

By =
L∏

j=1
[�j (�, �)]�j (28)

�j = 0 if the j th edge is free (F) or simply supported (S∗) or (S) in the x-direction
(29)
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Figure 4. First six mode shapes of a CSSF rectangular plate (a/b = 1.0, h/b = 0.10).

�j = 1 if the j th edge is clamped (C) or simply supported (S) in the y-direction
(30)

Note that ��ij (�, �) in Equation (21) is a DSC delta kernel. Up to an arbitrary constant which
is taken care by the minimization, the two-dimensional forms for the aforementioned two DSC
kernels can be given by

��ij (x, y) = e−(x−xi)
2/2�2

e−(y−yj )2/2�2
(31)

for Gauss’ kernel, and

��ij (x, y) =
sin2

(�

�
(x − xi)

)
sin2

(�

�
(y − yj )

)
sin2

(�

�
(x − xi)/(2k + 1)

)
sin2

(�

�
(y − yj )/(2k + 1)

) , k = 1, 2, . . . (32)

for Fejer’s kernel. In all the above kernels, xi and yj are grid point co-ordinates along the x-
and y-axis, respectively. The parameter � are chosen as � = r�, where � is the grid spacing,
and r is an adjustable parameter determining the radius of influence, and is usually chosen
between 1.0 and 3.0 in this work.
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Figure 5. First six mode shapes of a CFSF rectangular plate (a/b = 1.0, h/b = 0.10).

To determine the unknown coefficients, we substitute the Ritz trial functions in Equation (19)
into the total energy functional � = U −T and minimize the latter with respect to the unknown
coefficients. As a result, we obtain a set of linear algebraic equations

([K] − 
2[M])




{c}
{d}
{e}


 = {0} (33)

where vectors c, d and e are given by

{c} =




c1

c2

...

cp




; {d} =




d1

d2

...

dq




; {e} =




e1

e2

...

er




(34)
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Table VI. Convergence study for triangular plates with CCC boundary conditions, h/b = 0.15.

Mode sequence number
Number of

�◦ Kernel grid points 1 2 3 4 5 6

30◦ Gauss N = 7 6.4541 9.4010 12.1168 12.4831 15.9068 16.0461
(r = 2.2) N = 8 6.4540 9.4005 12.1159 12.4624 15.6491 15.9005

N = 9 6.4538 9.4004 12.1155 12.4606 15.6164 15.8997
N = 10 6.4537 9.4004 12.1152 12.4606 15.6133 15.8994

Fejer N = 6 6.4550 9.4189 12.1201 12.7464 15.9591 17.7321
(r = 3.0) N = 7 6.4545 9.4046 12.1183 12.5210 15.9135 16.0755

N = 8 6.4544 9.4017 12.1171 12.4734 15.7607 15.9050
N = 9 6.4543 9.4016 12.1167 12.4631 15.6429 15.9021

Reference [40] — 6.454 9.402 12.12 12.46 15.64 15.90

60◦ Gauss N = 7 10.2784 16.6672 16.6677 23.1279 23.9966 23.9975
(r = 2.2) N = 8 10.2782 16.6671 16.6672 23.1275 23.9960 23.9966

N = 9 10.2782 16.6669 16.6671 23.1273 23.9959 23.9963
N = 10 10.2781 16.6669 16.6670 23.1272 23.9958 23.9961

Fejer N = 6 10.2796 16.6704 16.6706 23.1634 24.0138 24.0473
(r = 3.0) N = 7 10.2794 16.6697 16.6698 23.1322 24.0017 24.0034

N = 8 10.2794 16.6696 16.6697 23.1316 24.0004 24.0004
N = 9 10.2794 16.6696 16.6696 23.1315 24.0003 24.0003

Reference [40] — 10.28 16.67 16.67 23.13 24.00 24.00

90◦ Gauss N = 7 15.9415 22.9157 26.5298 30.8848 33.9444 38.4088
(r = 1.2) N = 8 15.9410 22.9155 26.5294 30.8834 33.8866 38.3859

N = 9 15.9411 22.9155 26.5288 30.8830 33.8857 38.3723
N = 10 15.9409 22.9155 26.5289 30.8830 33.8854 38.3717

Fejer N = 6 15.9446 22.9264 26.5780 31.1306 34.1731 38.6439
(r = 3.0) N = 7 15.9440 22.9208 26.5374 30.9030 34.0434 38.4578

N = 8 15.9438 22.9202 26.5348 30.8917 33.9053 38.4258
N = 9 15.9438 22.9202 26.5342 30.8896 33.8958 38.3850

Reference [40] — 15.94 22.92 26.53 30.89 33.89 38.38

and they all have a common number of components

p = q = r = NN (35)

the matrix [K] has the structure of

[K] =



[Kcc] [Kcd ] [Kce]
[Kdd ] [Kde]

Symmetric [Kee]


 (36)
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Table VII. Impact study of parameter r on triangular plates with S*S*S* boundary con-
ditions with apex angle � = 90◦, h/b = 0.15 and N = 10 for Gauss’ kernel and N = 9

for Fejer’s kernel.

Mode sequence number
Parameter of

Kernel grid points 1 2 3 4 5 6

Gauss r = 1.0 11.2942 19.2944 23.2819 28.1813 31.2322 36.2219
r = 1.2 11.2787 19.2803 23.2763 28.1640 31.2255 36.2189
r = 1.4 11.2754 19.2750 23.2750 28.1561 31.2218 36.2174
r = 1.6 11.2748 19.2727 23.2745 28.1527 31.2197 36.2170
r = 1.8 11.2746 19.2715 23.2744 28.1511 31.2184 36.2176
r = 2.0 11.2744 19.2712 23.2743 28.1504 31.2187 36.2193
r = 2.2 11.2757 19.2710 23.2743 28.1496 31.2201 36.2193
r = 2.4 11.2753 19.2710 23.2690 28.1486 31.2194 36.2185
r = 2.6 11.2888 19.2701 23.2744 28.1537 31.2796 36.2318
r = 2.8 — — — — — —
r = 3.0 — — — — — —

Fejer r = 1.0 — — — — — —
(k = 2) r = 1.2 — — — — — —

r = 1.4 — — — — — —
r = 1.6 12.0234 19.3896 23.4293 28.3548 31.2846 36.6767
r = 1.8 11.4122 19.2952 23.3038 28.1863 31.2368 36.3158
r = 2.0 11.2889 19.2777 23.2827 28.1621 31.2221 36.2448
r = 2.2 11.2763 19.2738 23.2775 28.1567 31.2210 36.2483
r = 2.4 11.2748 19.2725 23.2756 28.1535 31.2253 36.2591
r = 2.6 11.2746 19.2718 23.2749 28.1520 31.2316 36.2694
r = 2.8 11.2746 19.2715 23.2749 28.1520 31.2386 36.2781
r = 3.0 11.2757 19.2740 23.2797 28.1580 31.2511 36.2927

Reference [50] — 11.28 19.27 23.28 28.16 31.24 36.28

Table VIII. Impact study of parameter k on triangular plates with S*S*S* boundary
conditions with a/b = 1.0, h/b = 0.1 and N = 9.

Mode sequence number
Parameter of

Kernel grid points 1 2 3 4 5 6

Fejer k = 1 — — — — — —
(r = 3.0) k = 2 11.2757 19.2740 23.2797 28.1580 31.2511 36.2927

k = 3 11.2746 19.2716 23.2748 28.1522 31.2362 36.2750
k = 4 11.2746 19.2718 23.2749 28.1527 31.2338 36.2713
k = 5 11.2746 19.2719 23.2748 28.1523 31.2326 36.2698
k = 6 11.2746 19.2720 23.2748 28.1523 31.2319 36.2689
k = 7 11.2746 19.2720 23.2754 28.1524 31.2316 36.2683
k = 8 11.2746 19.2720 23.2748 28.1524 31.2314 36.2680
k = 9 11.2746 19.2720 23.2748 28.1524 31.2312 36.2677
k = 10 11.2746 19.2720 23.2748 28.1524 31.2314 36.2680

Reference [50] — 11.28 19.27 23.28 28.16 31.24 36.28
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Table IX. Comparison study for triangular plates with S*CC boundary conditions.

Parameter of Mode sequence number
kernel

�◦ h/b Kernel 1 2 3 4 5 6

30◦ 0.10 Gauss r = 1.8 6.619 10.35 13.79 14.33 18.55 18.94
Fejer r = 3.0 6.617 10.35 13.78 14.33 18.64 18.94

Reference [40] — 6.617 10.35 13.78 14.33 18.62 18.94

0.15 Gauss r = 1.8 5.857 8.882 11.50 11.99 15.19 15.40
Fejer r = 3.0 5.857 8.883 11.50 11.99 15.23 15.41

Reference [40] — 5.857 8.883 11.49 11.99 15.22 15.41

0.20 Gauss r = 1.8 5.151 7.637 9.671 10.13 12.66 12.77
Fejer r = 3.0 5.150 7.636 9.673 10.13 12.68 12.77

Reference [40] — 5.151 7.638 9.671 10.13 12.68 12.77

60◦ 0.10 Gauss r = 1.6 10.62 19.20 19.44 28.24 29.78 29.81
Fejer r = 3.0 10.62 19.20 19.44 28.24 29.77 29.81

Reference [40] — 10.63 19.20 19.44 28.24 29.78 29.81

0.15 Gauss r = 1.6 9.044 15.48 15.80 22.11 23.21 23.26
Fejer r = 3.0 9.045 15.48 15.80 22.12 23.22 23.26

Reference [40] — 9.045 15.48 15.80 22.12 23.22 23.26

0.20 Gauss r = 1.6 7.722 12.75 13.09 17.93 18.78 18.83
Fejer r = 3.0 7.722 12.75 13.09 17.93 18.78 18.83

Reference [40] — 7.724 12.75 13.10 17.93 18.78 18.83

90◦ 0.10 Gauss r = 1.2 17.28 27.26 33.08 38.99 43.56 50.91
Fejer r = 3.0 17.28 27.26 33.08 38.98 43.57 50.93

Reference [40] — 17.28 27.26 33.08 38.98 43.57 50.93

0.15 Gauss r = 1.2 14.00 21.13 25.46 29.40 32.72 37.86
Fejer r = 3.0 14.00 21.13 25.47 29.40 32.72 37.88

Reference [40] — 14.00 21.23 25.47 29.40 32.72 37.88

0.20 Gauss r = 1.2 11.55 17.01 20.45 23.32 25.89 28.73
Fejer r = 3.0 11.55 17.00 20.45 23.32 25.89 28.73

Reference [40] — 11.55 17.01 20.45 23.32 25.89 28.74

and similarly the matrix [M] is given by

[M] =



[Mcc] [Mcd ] [Mce]
[Mdd ] [Mde]

Symmetric [Mee]


 (37)

where the elements of [K] are given by

Kccij = b

a
	Gh

∫
Ā

�
i

��

�
j

��
dĀ + a

b
	Gh

∫
Ā

�
i

��

�
j

��
dĀ (38)
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Table X. Comparison study for triangular plates with CFF boundary conditions.

Parameter of Mode sequence number
kernel

�◦ h/b Kernel 1 2 3 4 5 6

30◦ 0.10 Gauss r = 1.8 0.3117 1.326 1.980 3.148 4.726 5.648
Fejer r = 3.0 0.3115 1.326 1.981 3.148 4.727 5.647

Reference [40] — 0.3115 1.326 1.980 3.148 4.725 5.647

0.15 Gauss r = 1.8 0.3092 1.292 1.852 2.995 4.272 5.223
Fejer r = 3.0 0.3091 1.292 1.852 2.995 4.272 5.223

Reference [40] — 0.3091 1.292 1.851 2.995 4.272 5.223

0.20 Gauss r = 1.8 0.3063 1.251 1.709 2.820 3.800 4.780
Fejer r = 3.0 0.3063 1.251 1.709 2.820 3.801 4.780

Reference [40] — 0.3062 1.251 1.709 2.820 3.801 4.780

60◦ 0.10 Gauss r = 1.8 1.376 5.000 5.540 12.01 12.12 13.85
Fejer r = 3.0 1.376 5.000 5.540 12.01 12.12 13.85

Reference [40] — 1.376 4.999 5.540 12.00 12.12 13.85

0.15 Gauss r = 1.8 1.339 4.529 5.066 10.34 10.43 11.77
Fejer r = 3.0 1.339 4.530 5.066 10.34 10.43 11.77

Reference [40] — 1.339 4.529 5.066 10.34 10.43 11.77

0.20 Gauss r = 1.8 1.295 4.051 4.586 8.801 9.059 10.05
Fejer r = 3.0 1.295 4.051 4.586 8.802 9.059 10.05

Reference [40] — 1.295 4.051 4.586 8.802 9.060 10.06

90◦ 0.10 Gauss r = 1.8 3.741 9.661 13.41 20.10 22.19 27.95
Fejer r = 3.0 3.7410 9.661 13.41 20.11 22.19 27.95

Reference [40] — 3.741 9.661 13.41 20.11 22.19 27.96

0.15 Gauss r = 1.8 3.511 8.391 11.31 16.43 17.96 21.96
Fejer r = 3.0 3.511 8.392 11.31 16.43 17.96 21.96

Reference [40] — 3.511 8.392 11.31 16.43 17.96 21.96

0.20 Gauss r = 1.8 3.266 7.249 9.582 13.65 14.81 17.84
Fejer r = 3.0 3.266 7.249 9.582 13.65 14.81 17.84

Reference [40] — 3.267 7.250 9.583 13.65 14.81 17.85

Kcdij = b	Gh

∫
Ā

�
i

��
�xj dĀ (39)

Kceij = a	Gh

∫
Ā

�
i

��
�yj dĀ (40)

Kddij = b

a
D

∫
Ā

��xi

��

��xj

��
dĀ+a

b

D(1 − �)

2

∫
Ā

��xi

��

��xj

��
dĀ+ab	Gh

∫
Ā

�xi�xj dĀ (41)

Kdeij = �D
∫

Ā

��xi

��

��yj

��
dĀ + D(1 − �)

2

∫
Ā

��xi

��

��xj

��
dĀ (42)
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a

β

b/2

b/2

Figure 6. Geometry of a triangular Mindlin plate.

Figure 7. First six mode shapes of a CCC right angled isosceles
triangular plate with base length b (h/b = 0.15).

Keeij = a

b
D

∫
Ā

��yi

��

��yj

��
dĀ + b

a

D(1 − �)

2

∫
Ā

��yi

��

��yj

��
dĀ + ab	Gh

∫
Ā

�yi�yj dĀ (43)

where

i = 1, 2, . . . , p; j = 1, 2, . . . , p
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Figure 8. First six mode shapes of an S*S*S* right angled isosceles
triangular plate with base length b (h/b = 0.15).

Figure 9. First six mode shapes of an S*CC right angled isosceles
triangular plate with base length b (h/b = 0.15).

for all of the above-mentioned elements. Finally, the entries of [M] are given by

Mccij = ab�h

∫
Ā


i
j dĀ (44)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:262–288



DSC-RITZ METHOD FOR THE FREE VIBRATION ANALYSIS 283

Figure 10. First six mode shapes of a CFF right angled isosceles
triangular plate with base length b (h/b = 0.15).

Mcdij = 0 (45)

Mceij = 0 (46)

Mddij = 1

12
ab�h3

∫
Ā

�xi�xj dĀ (47)

Mdeij = 0 (48)

Meeij = 1

12
ab�h3

∫
Ā

�yi�yj dĀ (49)

where

i = 1, 2, . . . , p; j = 1, 2, . . . , p

and for simplicity, we choose p = N × N in this work.
For vibration analysis, our objective is to obtain the frequency parameter, 
, which can

be accomplished by solving the generalized eigenvalue problem defined by Equation (33). We
resort to a standard eigenvalue solver for the solution of Equation (33).

3. NUMERICAL RESULTS AND DISCUSSION

In this section, we explore the usefulness and test the accuracy of the DSC-Ritz method.
Consideration is given to the first six frequency parameters for thick rectangular and isosceles
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triangular plates with different combinations of simply supported, clamped and free edges. Note
that a simply supported edge for the rectangular plate is considered to be the first type (S) and
for the triangular plates is treated as the second type (S*) in the paper. Numerical integrations are
carried out by using Gaussian quadratures with appropriate number of polynomials (about 50).

3.1. Rectangular plates

For brevity and convenience, a four-letter symbol is used to denote the support conditions of
a rectangular Mindlin plate. For example, an SCFS plate has a simply supported left edge,
a clamped bottom edge, a free right edge and a simply supported top edge, respectively. For
the purpose of comparison study, numerical calculations have been performed for rectangular
Mindlin plates of four different combinations of edge support conditions, namely CCCC, SSSS,
CSSF, and CFSF plates. The vibration frequencies of a rectangular Mindlin plate are expressed
in terms of a non-dimensional frequency parameter � = (
b2/�2)

√
�h/D , where b is the

width of the plate.
The Poisson’s ratio � = 0.3 and the shear correction factor 	 = 5

6 have been used in the
calculation.

Convergence studies have been carried out for the CCCC plate. By varying the number of
uniform DSC grid points N both in x and y directions, the convergence patterns of the first
six frequency parameters have been investigated. The results are summarized in Table I for the
cases of thick rectangular plates with plate thickness ratios h/b = 0.1 and 0.2, plate aspect
ratios a/b = 1.0 and 2.0, and r = 1.8 for the Gauss kernel and r = 3.0 and k = 2 for the
Fejer kernel, respectively. The pb-2 Ritz results [50] have also been given in Table I for a
comparison.

Table I shows that the frequency parameters decrease as the number of DSC grid points
varies from 2 to 7. For most cases, the frequency parameters for the CCCC plate have achieved
good convergence even with the number of DSC grid points N = 6. When the number of
grid points N increase from 6 to 9, the frequency parameters oscillate slightly around those
of the reference pb-2 Ritz. It is evident from the convergence studies that, in general, when
the number of DSC grid points is set to be N = 9 for both Gauss’ kernel and Fejer’s kernel,
the DSC-Ritz method will produce accurate and reliable frequency parameters for rectangular
Mindlin plates. All subsequent calculations for rectangular Mindlin plates are based on N = 9.

Tables II and III show the impact of kernel parameters r and k on the frequency parameters
of SSSS rectangular plates. It is evident that the DSC-Ritz method is robust against parameter
variation. The selection of r = 1.8 for the Gauss kernel and r = 3.0 and k = 2 for the Fejer
kernel is appropriate for the present calculation.

These convergence and impact studies have established our confidence on the robustness
and reliability of the DSC-Ritz method. To further explore the application of the method
to rectangular plates with different combinations of edge support conditions, the first six fre-
quency parameters for CSSF and CFSF rectangular Mindlin plates are computed with the Gauss
kernel and the Fejer kernel and presented in Tables IV and V. The plate thickness is set to
be h/b = 0.1 and 0.2 and the plate aspect ratio is taken as a/b = 0.6, 1.0, 1.5, 2.0 and 2.5,
respectively. The pb-2 Ritz results from Reference [50] are also presented in Tables IV and V.
Excellent agreement is observed between the DSC-Ritz and pb-2 Ritz frequency parameters for
all considered cases. Such agreement confirms the validity of the proposed DSC-Ritz method
for vibration analysis of rectangular Mindlin plates.
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Figures 2–5 present the mode contour shapes for the first six modes of the CCCC, SSSS,
CSSF, and CFSF square plates with plate thickness h/b = 0.10. We observe that the mode
shapes for square Mindlin plates of various edge support conditions are correctly predicted by
the DSC-Ritz method.

3.2. Isosceles triangular plates
To verify the validity and versatility of the DSC-Ritz method for the analysis of plates of other
geometries, we apply it to the determination of the first six vibration frequency parameters
� = (
b2/2�)

√
�h/D for thick isosceles triangular plates as shown in Figure 6. Coordinate

transformation is similar to that in Reference [50]. Uniform reference meshes are used in
the computational domain. For the purpose of comparison study, numerical calculations have
been performed for isosceles triangular plates with different apex angles (� = 30, 60 and
90◦), thickness ratios (h/b = 0.10, 0.15 and 0.20) and four different combinations of boundary
conditions (S*S*S*, CCC, S*CC, CFF). Note that the three-letter symbol used to describe the
plate edge support conditions refers to the left edge, the lower inclined edge and the upper
inclined edge, respectively. The Poisson ratio � = 0.3 and the shear correction factor 	 = �2/12
are used in the calculation.

Convergence studies are carried out for the CCC isosceles triangular plates with the apex
angle � = 30, 60 and 90◦, and the thickness ratio h/b = 0.15. The results obtained by the
DSC-Ritz method are presented in Table VI with different numbers of DSC grid points N .
The pb-2 Ritz solutions [40] are also presented in Table VI. Unlike the convergence cases for
rectangular Mindlin plates where the frequency parameters oscillates slightly as the number of
DSC grid points N increases from 6 to 9, the frequency parameters for the triangular Mindlin
plates decrease monotonically as N increases. It is evident from the convergence studies that
in general N = 10 is required for Gauss kernel and N = 9 is required for Fejer kernel to get
accurate solutions. Thus, all vibration results determined herein are based on N = 10 for the
Gauss kernel and N = 9 for the Fejer kernel, respectively.

Tables VII and VIII show the impact of kernel parameters r and k on the frequency pa-
rameters of S*S*S* triangular plates. It is seen that results are more sensitive to the local
influence domain parameter r than to the parameter k. However, for both Gauss and Fejer
kernels, there are a wide range of r values that give correct results judged by the litera-
ture [40]. We choose k = 2 in the rest of the work. The value of r is specified in all
computations. Certainly, a detailed study of the impact of the parameter space as that given by
Driscoll and Fornberg for their radial basis functions [51] would aid our understanding. This
issue will be addressed elsewhere.

Tables IX and X present the comparison studies of the first six frequency parameters for
S*CC and CFF isosceles triangular plates. It can be seen that the results are all in good
agreement with those in Reference [40].

Figures 7–10 show the mode contour shapes for four right angled isosceles triangular Mindlin
plates with thickness ratio h/b = 0.15. Again, the DSC-Ritz method is able to predict the correct
vibration mode shapes for triangular Mindlin plates.

4. CONCLUSION

This paper introduces a novel numerical method, the DSC-Ritz method, for the vibration
analysis of thick plates based on the Mindlin first-order shear deformable plate theory. The key
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idea is to take the advantage of DSC local delta sequence kernels and the pb-2 Ritz boundary
functions. Two DSC delta sequence kernels of positive type are employed to construct new basis
functions. The Ritz variational principle is utilized to determine unknown expansion coefficients
and to arrive at a set of generalized eigenvalue equations. The solution of the generalized
eigenvalue equations results in the desirable frequency parameters and modal shapes. Numerical
experiments are conducted for rectangular plates and triangular plates with various combinations
of simply supported, clamped and free edge conditions. The reliability and robustness of the
proposed method are carefully validated by extensive convergence tests and by a comparison
with those in the literature. Numerical results indicate that the proposed DSC-Ritz method is
a simple approach for the vibration analysis of Mindlin plates.

Comparing to our previous DSC algorithm, which makes use of delta sequence kernels
of Dirichlet type and the collocation formulation for differential equations, the present DSC-
Ritz method employs delta sequence kernels of positive type and is relied on Ritz energy
minimization principle (essentially the Galerkin formulation). Obviously, the philosophy of
discrete approximations to the singular delta distribution, i.e. the universal reproducing kernel,
underpins both DSC methods. We believe that these DSC methods are promising new approaches
for structural analysis in general.
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