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Abstract: FPGA-based accelerators have shown great potential in improving the performance of
CNN inference. However, the existing FPGA-based approaches suffer from a low compute unit
(CU) efficiency due to their large number of redundant computations, thus leading to high levels
of performance degradation. In this paper, we show that no single CU can perform best across all
the convolutional layers (CONV-layers). To this end, we propose the use of dual sizes of compute
unit (DSCU), an approach that aims to accelerate CNN inference in FPGAs. The key idea of DSCU is
to select the best combination of CUs via dynamic programming scheduling for each CONV-layer
and then assemble each CONV-layer combination into a computing solution for the given CNN to
deploy in FPGAs. The experimental results show that DSCU can achieve a performance density of
3.36 × 10−3 GOPs/slice on a Xilinx Zynq ZU3EG, which is 4.29 times higher than that achieved by
other approaches.

Keywords: FPGA; redundant computation; dynamic programming

1. Introduction

Convolutional neural networks (CNNs) have been adopted to solve various problems
in fields such as computer vision, natural language processing, and speech recognition [1–3].
However, the size of the CNN models used has been continuously increasing in order to
obtain a better inference accuracy. Computing on such large-scale models require significant
amounts of computational resources, large runtimes, and large amounts of energy. To
address the above challenges, different hardware accelerators have been deployed in
real-life applications, including GPUs, FPGAs, and ASICs [4–6]. FPGAs have emerged
as promising candidates due to their better flexibility, short time-to-market period, and
efficient energy consumption. More importantly, high-level synthesis (HLS) techniques
have greatly lowered the difficulty of programming FPGAs. Therefore, a number of
different FPGA-based CNN accelerators have been proposed.

Loop-tiling FPGA-based approaches suffer from a low compute unit (CU) efficiency
due to their large number of redundant computations when conducting inference tasks for
CNNs. The CUs used in existing approaches are not efficiently utilized and the number of
computations that takes place in CUs is redundant. The Design Automation Conference
System Design Contest (DAC-SDC) is a UAV application contest. The task of the contest is to
train the neural network according to the data set and build a customized accelerator system
on the FPGA platform to complete object detection inference. Loop-tiling accelerators are
very popular in DAC-SDCs. Skynet is one of the loop-tiling accelerators designed by the
DAC-SDC2019 champion team. We compared the actual and theoretical computation
results of Skynet layer by layer. As shown in Figure 1, the redundant computation in CNN
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inference—that is, the calculation of 0 value to complement the computation unit—accounts
for about 56% of the total. Such a large quantity of redundant cycles can greatly reduce the
overall performance of CNN inference. Therefore, the existing FPGA-based approaches
cannot meet the performance requirements of CNN inference at present.

Figure 1. Comparison of actual computation and theoretical computation on Skynet [7].

The reasons behind these technical difficulties are as follows. On one hand, all the
existing FPGA-based approaches use a single CU across different convolutional layers
(CONV-layers), ignoring the fact that no single CU can perform best on all of the different
CONV-layers. The use of a fixed CU size can lead to much redundant computation, thus
causing overall performance degradation. On the other hand, a CNN model consists of dif-
ferent CONV-layers, and the computation workloads of any two CONV-layers are usually
asymmetric. Such workload asymmetry results in large performance fluctuations when
using a single CU for CNN inference computing. Once again, this fact is not considered in
the design of existing FPGA-based approaches.

Hence, we propose DSCU, an approach that aims to accelerate CNN inference using
dual sizes of CUs in FPGAs. The key idea of DSCU is to select the best combination of
CUs with dynamic programming scheduling for each CONV-layer of a given CNN. DSCU
selects the best combination of CUs via dynamic programming scheduling for each CONV-
layer, then assembles a computing solution for the given CNN to deploy on FPGAs. We
implement DSCU in the most advanced FPGA-customized networks, and the experimental
results show that the DSCU can achieve a performance density of 3.36× 10−3 GOPs/slice,
which represents a speed increase of 7.47×, 4.13×, and 1.28× compared with the results of
M. Peemen [8], C. Zhang [9], and C. Hao [10], respectively.

The technical contributions of this paper are threefold:

• We propose DSCU, which selects the best combination of CUs through dynamic
programming to solve a common problem in accelerating CNN inference, redundant
computation.

• We introduce a CNN accelerator design of DSCU for the Xilinx Zynq ZU3EG.
• We conduct a comprehensive evaluation of DSCU over multiple CONV-layers and

FPGA-customized networks.

The rest of this paper is organized as follows. Section 2 presents a further optimization
challenge by reviewing the mainstream accelerators. Section 3 shows the details of the
DSCU approach. Section 4 verifies the superiority of the DSCU through various experi-
ments. Finally, we conclude this paper in Section 5. This paper is based on our previous
work published in MCSoC 2021 [11], with substantial extensions. In this paper, the design
of CU is described, and the CU latency is modeled in more detail. A weighted voting
method is proposed to generate CNN solution. More experiments were carried out to
verify the effect of DSCU on redundant computations.
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2. Background and Motivation
2.1. Convolutional Neural Network

The CNN is composed of a variety of computing layers, including the CONV-layer,
the deeply separable convolutional layer [12], the pooling layer, the full connection layer,
and the activation layer. Among these, the CONV-layer is computationally intensive and
takes up much of the computing resources, as shown in Algorithm 1. The convolution
computation configuration includes the features width C, height R, input channel N,
output channel M, kernel size K× K, and slide window S. The total number of convolution
computations can be calculated using M× N × C× R× K× K.

Algorithm 1: Function CONV
Input:
input[N][R][C],
weight[M][N][K][K],
output[M][R][C]

1 for row = 0; row < R; row ++ do
2 for col = 0; col < C; col ++ do
3 for to = 0; to < M; to ++ do
4 for ti = 0; ti < N; ti ++ do
5 for i = 0; i < K; i ++ do
6 for j = 0; j < K; j ++ do
7 output[to][row][col]+=
8 weight[to][ti][i][j]∗
9 input[ti][S ∗ row + i][S ∗ col + j];

10 return;

2.2. High-Level Synthesis of FPGAs

In recent years, we have seen promising developments in high-level synthesis (HLS)
for FPGAs [13]. Most FPGA vendors’ HLS compilers are designed to describe accelerated
computations in C/C++, which are then synthesized into FPGA accelerators directly in
bit stream in the form of RTL or by calling downstream CAD tools. This is evidenced
by the wide availability of commercial C/OpenCL-based HLS compilers, such as Xilinx
Vivado/Vitis HLS [14] and Intel SDK for OpenCL [15]. However, these are quite different
from the traditional performance tuning process of CPU software programming. Achieving
a high performance with HLS requires extensive hardware knowledge. Programmers need
to apply pragmas directives from vendors to guide the HLS tool to generate the desired
accelerator architecture. Loop pipelining is a key optimization technique used in HLS to
improve system throughput by overlapping the execution of operations from different loop
iterations. To further increase the hardware parallelism, HLS designs commonly use loop
unrolling in combination with pipelining to increase the number of parallel operations
per pipeline.

2.3. Related Work on Loop-Tiling CNN Accelerator

The early research in this area has focused on the acceleration of convolution compu-
tation [9]. Fixed sizes of CUs have been deployed for computing. Loop unrolling and loop
pipelining have been used for parallel processing. An accelerator of the loop-tiling method
is proposed here. During the process of loop tiling, a common problem is that the data are
difficult to calculate.

Previous work has often used hardware customization techniques to address the
performance challenges of FPGA-based accelerators. A great deal of work has been carried
out to optimize RTL from different perspectives, including custom compute engines and
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custom data representations. FESA is a fusion-enabled systolic architecture for sparse neural
networks which can reduce PEs’ no-load rate and improve performance by supporting
channel fusion [16]. HLS tools provide programmers with high-level abstractions and
derive efficient RTL from them, saving programmers from extensive hand-coding and
tuning using low-level HDLs [13]. HLS tools have been increasingly deployed for FPGA-
based acceleration. Much of this work is implemented using HLS. This allows a better focus
on accelerator scheduling and architecture design, rather than being limited by hardware
programming. For massive and different layer sizes, deep neural architecture (DNA)
reconfigure data paths to support a hybrid data reuse pattern, which reduces the total
energy consumption by 5.9–8.4 times compared to conventional methods [17]. To provide
a high utilization of data alignment for accelerator computing, an appropriative scheduling
module was designed to order sparsely compressed input data. This way, the processing
efficiency can be improved [18]. With the development of a CNN, the network often has
the same efficient computing structure. Based on depth-separable convolution repetitive
structures, a tile-level pipeline of the loop-tiling approach is proposed to improve the
CNN accelerator. The time-division multiplexing structure is used to process the data
flow, which further improves the performance. This method was used in the DAC system
design contest and won the championship in 2019 [7]. An FPGA-based MobileNetV2
accelerator used stream interfaces and autogenerated control to enable the fast design of
flexible architectures [19]. It can achieve a high throughput of 1050 frames per second at
a power consumption of 34 watts under full load with the accelerator framework using
Quartus Prime.

The optimization of the accelerator configuration is the key challenge when deploying
the customized CNN accelerator. There are two main aspects that need to be considered
when tuning the CNN: the neural network structure and the hardware resources. The
mathematical model was constructed to optimize the accelerator according to the specific
application [20]. Tomato was used with a mixture of short powers of 2 which were combined
with the templated hardware designs to automatically produce efficient inference circuits
in FPGAs [21]. C. Hao optimized the number of channels by top-down heuristic searching
on a single CU considering DNN-specific characteristics [10]. A programming flow for
CNN on FPGA is proposed to generate high-performance accelerators by assembling
CNN preimplemented components as a puzzle based on the graph topology [22]. This
method can predict the minimum resources necessary without needing to synthesize any
HDL code.

2.4. Motivation

We find that all features can be integrated by CUs without any redundant computation
in an ideal loop-tiling CNN accelerator, as shown in Figure 2a. However, the accelerator
with a single CU has to deal with different CONV-layers. Additionally, even the neural
network designed using a hardware–software codesign cannot avoid redundant compu-
tation, as shown in Figure 2b. Essentially, the problem is that the CU is single. The use
of different sizes of CUs can ease this problem in principle. Some CUs with efficient sizes
can be listed as candidate CUs. However, each CONV-layer of a given CNN will need
different combinations of CUs. Therefore, choosing the best combination of CUs to avoid
redundant computations with limited resources is a challenge. The principle of choice
needs to be considered, including the resource usage and transmission latency of a CU.
We consider that the redundant computation can be eliminated by choosing dual sizes
of CUs from candidate CUs for each layer, as shown in Figure 2c. By reviewing the past
studies on FPGA-based accelerators, we find that redundant computation is closely related
to the four dimensions of CU size: height, width, number of input channels, and number
of output channels. Since height and width are closely related to practical applications,
which are often ignored, it is not effective to optimize height and width using existing
optimization methods.
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In this case, we propose the use of a scheduling unit to choose a combination of CUs
by dynamic programming and assemble the whole combinations for computing. In this
way, dual sizes of CUs with efficient scheduling can deal with redundant computation
challenges from height–width channel optimization.

CU  size

CU  size CU size1
CU size2

Actively used Idle hardware

(a) Optimal scheduling (b) Single CU scheduling (c) Multiple CUs scheduling

Figure 2. Three common situations in CNN accelerator [11].

3. The DSCU Approach
3.1. Workflow of DSCU

DSCU mainly includes two computing stages: selection and execution (Figure 3).
(1) Selection. Firstly, DSCU generates a set of candidate CUs according to the computing
workloads of each CONV-layer. Based on the candidate CUs, DSCU selects the best
combination of CUs with dynamic programming scheduling for each CONV-layer. Then,
DSCU assembles the best combinations into a whole CNN as the computing solution.
(2) Execution. Finally, DSCU performs CNN inference on FPGAs with the produced solution.

Figure 3. Workflow of DSCU [11].

3.2. Architecture of DSCU

Common FPGA acceleration structures include five parts, which are processing el-
ements (PEs), on-chip buffer, shared dynamic random-access memory (shared DRAM),
on-/off-chip interconnect and CUs. A CU is the minimum scheduling unit for computation
layers such as convolution and pooling. On this basis, DSCU adds the task scheduling unit
and modifies single CU to candidate CUs, as shown in Figure 4. All data for processing are
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stored in the shared DRAM. The CNN configuration data are stored in the on-chip task-
scheduling unit in advance. The task-scheduling unit chooses the best combination of CUs
from candidate CUs for each CONV-layer of a given CNN as the whole computing solution.

Figure 4. Architecture of DSCU [11].

With the produced solution, on-/off-chip interconnects move the data from the shared
DRAM to the on-chip buffer. Furthermore, the data are delivered to the CUs to complete a
given CNN inference iteratively. The CU is one of the computation units with a fixed size,
such as CONV3×3, CONV1×1, MAXPOOL in Figure 4. The CU performs computations by
calling PE. The PE was designed as a tree-structured computing unit, which is the lowest
level unit in Figure 4.

We optimized for the redundant computation problem of the accelerator. Through
the coordination of the task-scheduling unit with dynamic programming and dual sizes of
CUs, DSCU can alleviate redundant computation to the greatest extent.

3.3. Design Details of Accelerated CNN Inference

DSCU was designed for CNN inference. DSCU can complete CNN layer computa-
tions such as convolution, pooling, and activation. Algorithm 2 is an example of DSCU
computing a single CONV3×3. Computing a layer can be divided into four basic units:
Load-weight, Load-feature, CU-CONV3×3, Save-result. The computation layer has been
divided by the task-scheduling unit into smaller-size layers that fit the CU to complete. The
Load-weight and Load-feature units carry the weight and feature map from the shared
DRAM to the on-chip buffer, respectively, according to the task-scheduling unit. The
CU-CONV3×3 unit obtains data from the on-chip buffer to compute. The Save-result unit
restores the result to the original format according to the task-scheduling unit and moves it
to the shared DRAM. This process is repeated until all computations are complete. This
process is shown in Figure 5.

A CU requires two aspects of data from the on-chip buffer by Load-weight and
Load-feature. These two parts of the data transfer do not interfere with each other, so
they can be carried out synchronously. To sum up, the execution sequence of a single
CONV3×3 is shown in Figure 6. This indicates that n executions are required to complete
the computation.
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Algorithm 2: Computing a single CONV3×3 layer
Input: layers_con f ig={layer0, layer1, . . ., layern}, layeri includes input channel,

output channel, width, height and so on.
1 instruction_set[] = Task_scheduling(layers_config);
2 for ins : instruction_set do
3 weight[] = Load_weight(ins);
4 input[] = Load_feature(ins);
5 compute CU-CONV3×3(input,weight,output);
6 save_result(output);

7 return;

Figure 5. The process of CONV-layer computing in DSCU [11].

Figure 6. The execution sequence of a CONV3×3 [11].

CU-CONV3×3 is one of the convolution computation units with a fixed size. The
essence of CONV-layer is a multiplication and addition (MAC) operation. For the CONV3×3,
the PE in DSCU was designed as an 18 fixed-point number arithmetic unit based on a MAC
tree, as shown in Figure 7. In CU-CONV3×3, the last layer of the loop body is completely
unrolled, so CU-CONV3×3 will call the Tout PEs to participate in the computation, as shown
in Algorithm 3. “#pragma HLS PIPELINE” and “#pragma HLS UNROLL” are defined by
Xilinx HLS to generate the desired architecture.

Other computation layers are designed similarly. In actual CNN, the convolution,
pooling, and activation layers are usually executed consecutively. DSCU adopts the method
of a CONV-RELU-MAXPOOL fusion layer. The CU for these layers can be performed in
series, and the results can be transferred out of the chip at the end. This method can save
the latency of Save-result and Load-feature in Figure 8.
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Figure 7. The structure of PE-CONV3×3.

Algorithm 3: Function CU-CONV3×3
Input:
input[Tin][Tw][Th],
weight[Tout][Tin][3][3],
output[Tout][Tw][Th]

1 for w : Tw do
2 for h : Th do
3 for ti : Tin do
4 # pragma HLA PIPELINE
5 for to : Tout do
6 # pragma HLS UNROLL
7 temp=output[to][w][h]; //load output buffer
8 temp+=PE-mac9(input[ ],weight[ ]); //multiply and add
9 output[to][w][h]=temp; //write back

10 return;

Figure 8. The comparison between CONV-RELU-MAXPOOL fusion layer and normal layer.

3.4. The Latency Model of Basic Unit in DSCU

In order to better coordinate with the scheduling module, according to the above
design, the latency of Load-weight, Load-feature, CU and Save-result can be summarized
for evaluation. The symbols used in this section are listed in Table 1.

The functions of Load-feature and Save-result are to transport the feature map to
on-chip and to transport the feature map to off-chip, respectively. The latency required is
the time of the feature map transportation, and one datum can be transported each time,
as shown in Equations (1) and (2). The function of Load-weight is to transport the weights
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required by the convolution layer to the on-chip. The required latency is the time of the
weights, such as CONV3×3 weights, CONV1×1 weights, which can carry one datum at a
time, as shown in Equation (3).

LatencyLoad- f eature = Tw× Th× Tin (1)

LatencySave-result = Tw× Th× Tin (2)

LatencyLoad-weight = Tin× Tout× K× K (3)

According to the corresponding algorithm, the latency of a CU can be obtained. A
CU was designed as a unit with parallel computing capability. Parallelism can be divided
into two types, the parallelism of channel dimension Factorp and the special parallelism
brought by a PE. For instance, FactorMac is the parallelism in CONV-layer and FactorPool is
the parallelism in Pool-layer, as shown in Equations (4)–(6).

LatencyRelu = Tw× Th× Tin
FactorP

(4)

LatencyCONV = Tw× Th× K× K× Tin
FactorMac

× Tout
FactorP

(5)

LatencyMAXPOOL =
Tw
2
× Th

2
× K× K

FactorPool
× Tout

FactorP
(6)

In addition, a CU for the depth separable convolution was designed. The depth
separable convolution consists of CONV-depthwise and CONV-pointwise. For CONV-
depthwise, a dedicated CU was designed, and the latency of the CU is shown in Equation (7).
CONV-pointwise can be complete with CU-CONV with K = 1, as shown in Equation (8).

LatencyCONV-depthwise = Tw× Th× K× K
FactorMac

× Tout
FactorP

(7)

LatencyCONV-pointwise = Tw× Th× 1× 1× Tin
FactorMac

× Tout
FactorP

(8)

Table 1. List of symbols.

Symbol Description

Tw The width of the feature map for a CU
Th The height of the feature map for a CU
Tin The input channel of a CU (it is also the channel of the feature map)
Tout The output channel of a CU

K The kernel of the computation layer
FactorP The degree of parallelism for channel dimension

FactorMac Computations that can be performed synchronously in CONV-layer
FactorPool Computations that can be performed synchronously in MAXPOOL-layer

3.5. Task Scheduling with Dynamic Programming for a Single Layer

The dynamic programming method is an effective method to solve optimization
problems. The three elements of the programming problem include the objective function,
decision variable and constraint condition. For the above design, the core of the single layer
solution was to determine the size and quantity of CUs. So the application can be modeled
as Equations (9)–(11).

L(num1, num2, . . . , numn) = Latency1 × num1 +
n

∑
x=2

(Latencyx ×max(0, numx − numx−1)) (9)
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min L(num1, num2, . . ., numn) (10)

s.t.


Latency1 > Latency2 > . . . > Latencyn > 0

∑n
x=1 DSPx ≤ targetDSP

∑n
x=1 BRAMx ≤ targetBRAM

num1, num2, . . ., numn ∈ N (11)

There are n CUs with different sizes. Latencyx represents the latency required for the
xth CU to complete computation. DSPx represents the number of DSP computing resources
required to be consumed by the xth CU. BRAMx represents the number of BRAM storage
resources that need to be consumed by the xth CU. Generally, the design will not be
limited to other resources for FPGA. So we just discuss DSP and BRAM’s limitations in this
model. Based on the analysis from the previous section, it is proved that Latencyx can be
approximately proportional to Twx × Thx and in this model the latency can be estimated
by Twx × Thx. The Latency size of CUs was arranged in descending order artificially.

Equation (10) represents the objective function and L(num1, num2, . . . , numn) is the
total latency used in computing. As designed in the previous part, the CUs are independent
of each other, so they can be executed in parallel. Parallel tasks are uniformly assigned each
time. When a task contains CU1, the latency of num1 tasks in parallel should be Latency1 ×
num1. Now, the task executes num1 times (without CU1) instead. If num2 − num1 are
greater than 0, the latency of the next num2 − num1 tasks is Latency2 × (num2 − num1).
Otherwise, the latency is ignored, and so on in Equation (9). The reason for this calculation
is that the task-scheduling unit of the DSCU is designed to synchronize instructions.
That is, the next instruction will be issued only after all CUs instructions are completed.
Equation (11) is a constraint, where targetDSP and targetBRAM, respectively, represent the
number of DSP and BRAM resources of the target board. This model is not only limited to
dual sizes of CUs and can handle the scheduling of multiple sizes of CUs. For DSCU, n is 2.

We used a dynamic programming method to solve the mathematical model. First, to
facilitate the elaboration, some definitions are proposed:

Definition 1. Numberunit = {1, 2, . . . , n} n ∈ N represents the numbering set of the CUs.

Definition 2. Unit is a triple, i.e., Unit = 〈Tw, Th, Latency〉. Unit describes a CU ’s attributes:
Tw is the width of the unit of data to be processed, Th is the height of the unit of data to be processed,
and Latency is the latency of CU.

Definition 3. dp is a (n + 1)-tuple, i.e., dp = 〈Cost, N1, N2, . . . , Nn〉 n ∈ N, n is the number
of units’ sizes. dp is used to record the intermediate amount of problem solving for optimization
problems. Nx(x ∈ Numberunit) represents the number of CUs in the current space of x. Cost rep-
resents the heuristic function for optimization, which means the latency cost required by calculating
N1, N2, . . ., Nn CUs in the current space. The latency cost is defined in Equation (9).

Definition 4. A two-dimensional array dp[i][j], where i is the width and j is the height. dp[i][j]
describes how to save the maximum latency and the information record of full load computation for
each CU under the conditions that the width of the data unit is i and the height is j. The latency cost
is stored in Cost, and the corresponding number of CUs is stored in N1, N2, . . . , Nn.

Definition 5. An array Unit[x] is used to record a CU ’s attributes, where x is the number of CU.

According to the problem, we give the recursion Equations (12)–(14) of dp.Nx[i][j] and
dp.Cost[i][j], where k is used to traverse dp.N, and the triadic operation ((C)?A : B) means
that if equation C is true, it is A; otherwise, it is B. According to the recursive equation, this
updates the solution in the current case of i and j in dp.
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N0 = dp.Nx[0][0]
N1 = dp.Nx[i−Unit.Tw[x]][j]
N2 = dp.Nx[i][j−Unit.Th[x]]
N3 = dp.Nx[i−Unit.Tw[x]][j−Unit.Th[x]]

x ∈ Numberunit, i ∈ N, j ∈ N (12)

dp.Nk[i][j] =



0 , if i = 0 and j = 0
N0 + (k = x)?1 : 0, if i = Unit.Tw[x] and j = Unit.Th[x]
N1 + (k = x)?1 : 0, if i 6= Unit.Tw[x] and j = Unit.Th[x]
N2 + (k = x)?1 : 0, if i = Unit.Tw[x] and j 6= Unit.Th[x]
N1 + N2− N3 + (k = x)?1 : 0, otherwise.

(13)

dp.Cost[i][j] =min{dp.Cost[i][j], L(dp.N1[i][j], . . ., dp.Nn[i][j])}
k, x ∈ Numberunit, i ∈ N, j ∈ N

(14)

In the actual solution, i and j, respectively, represent the width and height of the
feature data, and the optimal solution is recorded in dp[i][j]. The task-scheduling unit
selects the best combination of CUs with dynamic programming scheduling and the single
layer optimal solution can be generated for the complete inference. Such task scheduling
chooses the best combination of CUs that make full use of the resources of the target board
and avoid the problem of redundant computation as much as possible. In this way, the
feature map can be efficiently allocated to each CU for parallel processing.

3.6. Generation of a CNN Solution by Voting

A complete CNN consists of multiple layers. Through the single-layer scheduling the
solution for each layer can be obtained. A CNN can only be implemented with one solution.
In this section, a voting method is presented to determine the CNN’s final solution.

It was assumed that a CNN was constituted of n layers, and the voting method was
divided into three steps:

• Firstly, all optimal single layer solutions were obtained by the single-layer scheduling.
It was assumed that there are k different solutions.

• Secondly, k types of solutions were voted on. One vote was counted for each layer
that used the ith solution, i ∈ [1, k].

• Finally, the solution with the highest number of votes was selected as the CNN’s
final solution.

The weights of all layers voting were exactly the same, that is, the number of votes
for each layer was 1. Furthermore, the combination with the highest number of votes was
finally counted as the final plan, which achieved a good result. However, the different
computation amount of each layer cannot be fully considered this way. We believe that
each layer has a different contribution to the final global latency. The layer with a smaller
contribution to the global latency can be set with a small weight. The layer with a larger
contribution to the global latency can be set with a large weight.

To this end, we adopted a different weight method to take advantage of this feature.
Specifically, the latency of each layer and the computation amount are positively correlated
from the analysis in the previous section. Therefore, it is more appropriate to correlate the
weight of voting with the computation amount. The voting weight of each layer can be
obtained by normalizing the computation amount of each layer as shown in Equation (15).
Wi is the weight of the ith layer. Ci is the computation amount of the ith layer. Cmax, Cmin
are the maximum and minimum computation amount in all layers.

Wi =
Ci − Cmin

Cmax − Cmin
(15)
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When the votes were finally counted, the result was accumulated according to the
weights, as shown in Algorithm 4.

Algorithm 4: Voting from multipe layers
Input: n is the number of CNN. Layer_solution[n] are the best solutions for each

layer. W[n] are the weights of voting on each layer.
Output: f inal_solution is the whole CNN solution.

1 Create a map VOTE< solution, int >, which is used to store the voting results;
2 for i = 0; i < n; i ++ do
3 VOTE[Layer_solution[i]] += W[i];

4 f inal_solution = the solution in VOTE with the most votes;
5 return f inal_solution;

Our method has more advantages in running time. C. Zhang [9] adopted the method
of enumeration to select the final solution, and AlexNet was used for testing, requiring
approximately 1,000,000 execution cycles. With 10 candidate CUs selected, the theoretical
running period of our method is about 600,000 cycles. The specific DSCU acceleration
performance is discussed in the next section.

4. Results

Various indicators of comparison between DSCU and some previous typical loop-
tiling accelerators [8–10] were derived. Our evaluation showed that DSCU can perform
CNN inference efficiently and make better use of resources on an FPGA. In order to verify
the effect of DSCU on redundant computing problems, we carried out a comparison
between a single CU accelerator and DSCU including complete CNN and computational
layer experiments.

4.1. Experimental Setup

Software and hardware setup: We implemented DSCU on Xilinx Vivado + HLS 2018.3
software. We used Xilinx ultra96 V2 as the target platform. Ultra96 V2 consisted of a
XCZU3EG FPGA chip, ARM Cortex-A53 and 2 G DDR3 memory. There were 216 Block
RAMs(BRAMs), 70,560 LUT elements (LUTs), 141,120 flip-flops (FFs), and 360 DSPs on
Xilinx Zynq ZU3EG.

DSCU setting: After preliminary evaluation and certification, the Ultra96 v2 DSCU
can work at 100 MHz on average. DSCU can run up to 300 MHz after fine tuning of the
Load-wegiht, Load-feature and Save-result units.

Evaluation methodology: DSCU was deployed on the FPGA of Ultra96 V2. A test
program based on Xilinx PYNQ framework was built on the ARM of Ultra96 V2. This
program had these functions: The data were loaded into DDR3 memory. The PYNQ
interface of the FPGA was invoked to map the DSCU hardware physical address to the
memory. DSCU was enabled and the timer was started at the same time. The timer was
stopped when DSCU hardware execution ended. The execution time was the latency for
DSCU. We evaluated DSCU from two aspects, namely, inference latency and redundant
computation rate, and we conducted a set of experiments as follows:

• On one hand, we used DSCU to run CNNs comparing with other accelerators for an
overall evaluation, in order to verify that DSCU can complete CNN inferences faster.

• On the other hand, we forced the effect of DSCU on redundant computing problems.
We chose some customized CNNs and customized layers with different input feature
maps for testing.

4.2. Overall Performance

In the software part, the neural network firstly pretrained with low bit quantization
on the GPU. Then, in the hardware part, DSCU was implemented based on the HLS tool.
The placement and routing was completed with the Vivado tool set. All of the following
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experiments were carried out in this way. This mainly discusses inference latency and
redundant computation rate, not the accuracy of the neural network. The reason is that the
accelerated design of DSCU in this paper does not affect the accuracy of the neural network.
The quantization algorithm is the key to affect the accuracy of the neural network, and the
LSFQ [23] method was used in this paper. This is described in our previous work, where
the influence of the hardware-awareness quantization on the accuracy of neural network
was discussed in detail. The resource utilization of our implementation is reported in
Table 2. DSCU has almost fully utilized the FPGA’s hardware resource.

Table 2. FPGA resource utilization.

Resource Utilization DSP BRAM LUT FF

DSCU
88%

(317/360)
49%

(106/216)
66%

(46,675/70,560)
36%

(50,154/141,120)

In Table 3, various existing FPGA-based CNN accelerators are listed and compared to
our implementation in this work. Skynet was the champion CNN for DAC-SDC2019. The
team presented a design of an accelerator for Skynet and analyzed its performance [10].
Ultranet was the champion CNN for DAC-SDC2020 [23]. As shown in the eighth row of
Table 3, our accelerator has a throughput of 29.59 GOPS. Compared with C.Hao [10], DSCU
increases the throughput by 1.27× on average.

Table 3. Performance of comparsion between DSCU and existing accelerators [11].

ICCD2013 [8] FPGA2015 [9] DAC2019 [10] DSCU

Precision fixed point 32 bit float weight: 11 bits activation: 9 bits weight: 8 bits activation: 8 bits
Frequency 150 MHz 100 MHz 215 MHz 300 MHz
Platform Virtex6 VLX240T Virtex7 VX485T Zynq ZU3EG Zynq ZU3EG

FPGA capacity 37680 slices, 768 DSP 75900 slices, 2800 DSP 8800 slices, 360 DSP 8800 slices, 360 DSP
CNN – Alexnet Skynet Ultranet [23]

Model size 2.74 GMAC 1.33 GLOP 0.46 GMAC 0.20 GMAC
Performance 17.0 GOPs 61.62 GOPs 23.15 GOPs 29.59 GOPs

Performance Density 4.5× 10−4 GOPs/slice 8.12× 10−4 GOPs/slice 2.63× 10−3 GOPs/slice 3.36× 10−3 GOPs/slice

Since different work exploits different parallelism opportunities and use different
FPGA platforms, it is hard to have a straightforward comparison between them. In order
to provide a fair comparison, the performance density [9] is used in Table 3. As shown in
the last row of Table 3, our implementation achieves 3.36× 10−3 GOPs/slice, which is the
highest performance density in Table 3. DSCU achieves a speedup of up to 7.47×, 4.13×,
and 1.28× compared with M.Peemen [8], C.Zhang [9], and C.Hao [10], respectively.

4.3. Observed Experiments with Redundant Computation

Experiments were conducted from the perspective of the entire network and a single
computation layer. The performance of the DSCU was tested and compared with that of a
single CU accelerator. According to the results, we observed the solution of DSCU to the
redundant computing problem.

DSCU was tested on Mnist-Lenet [24], DJI-UAV-Skynet [7], and DJI-UAV-Ultranet [23].
DJI-UAV [25] is the dataset of DAC-SDC. Based on the network characteristics, the CU
configuration for a single CU accelerator and DSCU is shown in Table 4. To optimize
scheduling under Ultra96 V2 resource constraints, the final configuration of DSCU was two
identical CUs.

DSCU can effectively reduce the computation latency. At the same time, due to
the design of dual CUs, the resources of board can be more fully utilized, as shown in
Table 5. Similarly, these experiments were also carried out on Ultra96 V2 at a frequency of
100 MHz The customized CNNs usually consider hardware computing. On the basis of
these networks, DSCU can be further optimized from a single CU accelerator, the average
latency can be sped up by about ×1.43, and the redundant computation rate decreased by
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an average of 30%. Lenet is a classical simple classification network. The inference latency
of the actual network can still be reduced by about 20.9%. For Ultranet and Skynet, DSCU
boosts computing efficiently with the combination of CUs. Another advantage of DSCU
is reflected in Lenet’s evaluation. Because the Lenet has only a two-layer convolution,
the ideal accelerator can be achieved in the dimension of width and height. The existing
redundant computation lies in the channel dimension. However, DSCU can also make full
use of the platform resources for parallel computing.

Table 4. The CU configuration for a single CU accelerator and DSCU [11].

Accelerator Configuration
(Tin, Tout, Tw, Th)

Single CU DSCU

CU CU1 CU2

MNIST-Lenet 16 × 16 × 16 × 16 16 × 16 × 8 × 8 16 × 16 × 8 × 8
DJI-UAV-Skynet 16 × 16 × 40 × 40 16 × 16 × 20 × 20 16 × 16 × 20 × 20

DJI-UAV-Ultranet 16 × 16 × 40 × 40 16 × 16 × 20 × 20 16 × 16 × 20 × 20

Table 5. Comparison of performance by DSCU and existing accelerators on customized CNNs.

Accelerator
Ultranet Skynet Lenet

Single CU DSCU Single CU DSCU Single CU DSCU

Latency (ms) 456 291 972 664 3.54 2.8
Speedup ×1 ×1.57 ×1 ×1.46 ×1 ×1.26

Redundant 70.5% 40.5% 45.3% 20.0% 8.3% 8.3%computation rate

Resource usage

FFs 38,891 50,154 41,560 53,321 23,387 29,873
LUTs 35,296 46,675 36,102 49,821 19,782 28,165
DSPs 231 317 261 359 99 201

BRAMs 92 106 85 127 35 52

Next, we tested DSCU for customized layers. We deployed DSCU on the hardware
platform according to the configuration in Table 6. The accelerator with a single CU was
32 × 32 × 80 × 40. There were two kinds of candidate CUs, 32 × 32 × 40 × 20 and 32 ×
32 × 20 × 20, according to the platform resource limitation. All experiments were carried
out at the frequency of 300 MHZ.

Table 6. The configuration of customized layers.

No.
Configuration

Input Size Layer Type Output Size

1 32 × 20 × 10 CONV3×3(32,64)
↓

Relu(64,64)
↓

MaxPooling(64,64)

64 × 10 × 5
2 32 × 104 × 104 64 × 52 × 52
3 32 × 208 × 208 64 × 104 × 104
4 32 × 416 × 416 64 × 208 × 208
5 32 × 160 × 80 64 × 80 × 40
6 32 × 320 × 160 64 × 160 × 80

The experimental results are shown in Figure 9. The vertical axis is the number
of cycles computing the convolution. It can be seen that compared with the single CU
accelerator, DSCU has obvious savings in latency, which can be proved to avoid some
redundant computation. The tested samples covered most of the feature maps situations,
as a result, efficiency was improved by 39.2% on average. Among them, the test samples
1–4 had a large redundant computation under the current hardware accelerator setting,
so the computation efficiency was significantly improved. In the test samples 5–6, neither
of the two accelerators had redundant computation theoretically, and the optimization of
scheduling increased parallelism, thus improving the computational efficiency.
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Figure 9. Comparison of the latency cycles of customized layers.

5. Conclusions

In this paper, the common problem of redundant computation of FPGA-based CNN
accelerators was discussed. To solve this problem, DSCU was proposed. We implemented
a CNN accelerator DSCU on FPGA. Firstly, DSCU selects the best combination of CUs
via dynamic programming scheduling for each CONV-layer. Then, DSCU assembles the
best combination into a given CNN as the computing solution. Finally, DSCU performs
CNN inference on FPGAs with the produced solution. The experiment showed that DSCU
was more effective than the existing methods in accelerating CNN inference. DSCU was
tested on customized CNNs and customized layers. The results showed that the average
redundant computation rate can be alleviated by 30%.
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