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NoC Cost Evaluation is Critical 

Every 

choice has 

a cost! 

9/21/2012 2 



Potential for Photonics 

• Many recent works utilize photonics 

Photonics to DRAM [Beamer ‘10, Udipi ‘11] Photonics on-chip [Vantrease ’08, Kurian ‘10] 

9/21/2012 3 



Potential for Photonics 

• Many recent works utilize photonics 

Photonics to DRAM [Beamer ‘10, Udipi ‘11] 

• Tradeoffs of photonics not well explored 

 

 

Photonics on-chip [Vantrease ’08, Kurian ‘10] 

9/21/2012 4 



Potential for Photonics 

• Many recent works utilize photonics 

Photonics to DRAM [Beamer ‘10, Udipi ‘11] 

• Tradeoffs of photonics not well explored 

• At risk of being too optimistic 

 

Photonics on-chip [Vantrease ’08, Kurian ‘10] 

9/21/2012 5 



Potential for Photonics 

• Many recent works utilize photonics 

Photonics to DRAM [Beamer ‘10, Udipi ‘11] 

• Tradeoffs of photonics not well explored 

• At risk of being too optimistic 

• Device/circuit designers need feedback 

 

 

Photonics on-chip [Vantrease ’08, Kurian ‘10] 
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What does a NoC Cost? 
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Network 

What does an NoC Cost? 

• Routers responsible for 

directing data 

– Digital logic 

– Consumes power 
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What does a NoC Cost? 

• Links also consume power 

• Electrical links 

– Wire capacitance switching 

– Repeaters 

Network 
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• Photonic links 

– Receivers, Modulators 

– Laser 

– Ring thermal tuning 

– Serialize/Deserialize 
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All these costs need to be visible to the network architect! 



Existing Architectural Tools 
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[Joshi, NOCS 2009] 

[Pan, HPCA 2010] 



Existing Architectural Tools 

Nothing currently models the interface 

between electronics and photonics 
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[Joshi, NOCS 2009] 

[Pan, HPCA 2010] 
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Why Not Just Photonics? 

• Original plan for DSENT, but… 

• Photonics is dependent on electronics 

– Modulator drivers, Receivers 

– Serialize/Deserialize from core to link 

– Thermal ring resonance tuning 

• Need to compare electronics fairly with 

photonics… 
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Orion 2.0 Issues 
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Incomplete architectural models and timing for the router 

Scaling factors no longer valid for advanced processes 

Very low accuracies for modern technologies 

• 3X power overestimate for 65 nm, 400 MHz [Jeong, Kahng, et al. 2010] 

• 7X power, 2X area overestimate for 45 nm, 1 GHz 

• 5X+ power overestimate for links 

• Skewed breakdowns 

Very difficult to add technology or extend existing models 

A 10-year-old model that worked well, but insufficient now 

All links are optimized for min-delay 



DSENT 
Design Space Exploration of Networks Tool 
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DSENT 

• Overview 

• Methodology  

– Improvements to electrical modeling 

frameworks 

– Incorporate photonics models 

• Example cross-hierarchical network 

evaluation 

• Conclusion 

Design Space Exploration of Networks Tool 
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Structure of DSENT 

• Written in C++ (Object-Oriented) 

• Fast Evaluations, few seconds 

• ASIC-driven approach 

• Made flexible, extensible 
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Two Ways to Use DSENT 
• Stand-alone for design space exploration 
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Two Ways to Use DSENT 
• Stand-alone for design space exploration 

– Takes network parameters, queries, technology, give back area, power 
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• Stand-alone for design space exploration 

– Takes network parameters, queries, technology, give back area, power 
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Technology File Network Parameter File 

Run DSENT 

Results 



Two Ways to Use DSENT 
• Use with architectural simulator for app-driven power 

traces 

• Uses event counts [Kurian, IPDPS 2012] 
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DSENT 

• Overview 

• Methodology  

– Improvements to electrical modeling 

frameworks 

– Incorporate photonics models 

• Example cross-hierarchical network 

evaluation 

• Conclusion 

Design Space Exploration of Networks Tool 
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Electrical Model 
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Delay model, timing-constrained cell sizing, electrical links 

ASIC-like flow, standard cell based 

Keep relevant tech parameters, simplify technology entry 

Able to model more generic digital, beyond just routers 

Power/Area estimates accurate to ~20% of SPICE simulation 

Methodology targeted for 45 nm and below 

Model Reference Point DSENT 

R
o

u
te

r 
(6

x6
) 

Buffer (mW) SPICE – 6.93 7.55 (+9%) 

Xbar (mW) SPICE – 2.14 2.06 (+4%) 

Control (mW) SPICE – 0.75 0.83 (+11%) 

Clock (mW) SPICE – 0.74 0.63 (-15%) 

Total (mW) SPICE – 10.6 11.2 (+6%) 

Area (mm2) Encounter – 0.070 0.062 (-11%) 

• 45 nm SOI 

• 6 Input ports, 6 output ports 

• 64-bit flit width 

• 8 VCs/Port, 16 Buffer FIFO 

• 1 GHz clock  

• 0.16 flit injection rate 



Photonics Model 

• Four different sources of power consumption 
– Modulator, receivers 

– Laser power 

– Thermal tuning 

– Serialize, deserialize backends 
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Photonics Model 
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• Modulator becomes more expensive with: 

– High data-rate 

– Higher modulation depth (extinction ratio) 

– Lower insertion loss 



Photonics Model 
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• Receiver becomes more 
expensive with: 
– High data-rate 

• Receiver sensitivity degrades with: 
– High data-rate 

– Lower modulation depth 

– Higher bit error rate requirement 



Photonics Model 

9/21/2012 48 

• Laser power requirement gets worse with: 

– Higher receiver sensitivity requirement 

– Higher channel losses, e.g. higher modulator insertion loss 



Photonics Model 
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• Ring resonator devices are sensitive to process, 

temperature, active tuning is needed 
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• Ring resonator devices are sensitive to process, 

temperature, active tuning is needed 

• Not necessarily a fixed cost per ring! 
– [Georgas CICC 2011, Nitta HPCA 2011] 

 

 Serializer/Deserializers are taken care of by electrical framework 

DSENT models schemes for tuning, impact of process sigmas 



DSENT 

• Overview 

• Methodology  

– Improvements to electrical modeling 

frameworks 

– Incorporate photonics models 

• Example cross-hierarchical network 

evaluation 

• Conclusion 

Design Space Exploration of Networks Tool 
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Example Study 

• 256-core clos network, energy per bit as metric 

– Pclos, EClos normalized to same throughput/latency 

 
• 128-bit Flit Width 

• 16 ingress, middle, egress 

routers, k, n, r = 16, 16, 16 

• 2 GHz 

• 1 dB/cm waveguide loss 

 

Compare at 

• 45nm (present) 

• 11nm (future) 

9/21/2012 54 

[Joshi, NOCS 2009] 



Two Types of Power 

 

 

Data-Dependent Non-Data-Dependent 

Router data-path/control Leakage 

Electrical links Un-gated clocks 

Gated clocks Laser 

Receiver/Modulator Thermal tuning, ring heating 

SerDes 
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• Data-dependent vs. non-data-dependent power 

• Optical components (laser, thermal tuning) are 

non-data-dependent 

 

 

 

 



Effect of Utilization 

Data-Dependent 

energy dominant 

Non-data-dependent 

energy dominant 

9/21/2012 56 



Effect of Utilization 

Data-Dependent 

energy dominant 
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energy dominant 
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crossover 

points 



Effect of Utilization 

Data-Dependent 

energy dominant 

Non-data-dependent 

energy dominant 
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Max 

Throughput 

Low 

Throughput 



Energy Breakdown at Max 

Network Throughput (33 Tb/s) 

Electrical 

45nm 

Photonic 

11nm 

Photonic 

45nm 

Electrical 

11nm 

Energy per Bit Breakdown 
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Energy Breakdown at Max 

Network Throughput (33 Tb/s) 

Electrical 

45nm 

Photonic 

11nm 

Photonic 

45nm 

Electrical 

11nm 

Energy Breakdown at Low 

Network Throughput (4.5 Tb/s) 

Electrical 

45nm 

Photonic 

45nm 

Photonic 

11nm 

Electrical 

11nm 

Significant 

non-data-

dependent 

laser, tuning 

Energy per Bit Breakdown 
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Energy Breakdown at Low 

Network Throughput (4.5 Tb/s) 

Electrical 

45nm 

Photonic 

45nm 

Photonic 

11nm 

Electrical 

11nm 

Energy per Bit Breakdown 
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“Wow non-data-dependent 

laser really hurts, can I 

make it better?” 



Energy Breakdown at Low 

Network Throughput (4.5 Tb/s) 

Electrical 

45nm 

Photonic 
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Energy per Bit Breakdown 
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Optimistic device guy: 

“No problem, I go make my 
devices better!” 

“Wow non-data-dependent 

laser really hurts, can I 

make it better?” 



Tech Parameter Study 
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Evaluate the effect of waveguide losses 

“How much better does he need to 
do in order to beat the competing 

11nm electrical?” 
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Evaluate the effect of waveguide losses 
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Very costly 

above 1.0 dB/cm 

Evaluate the effect of waveguide losses 
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Very costly 
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Some gains going below 1.0 dB/cm, still can’t win at lower utilizations 
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Very costly 

above 1.0 dB/cm 

Some gains going below 1.0 dB/cm, still can’t win at lower utilizations 

Evaluate the effect of waveguide losses 

“Probably need to more than 
just cut losses on my devices…” 



Tech Parameter Study 

• Story doesn’t end here… 
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– Thermal tuning strategies 
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Tech Parameter Study 

• Story doesn’t end here… 

– Thermal tuning strategies 

– Data-rates, change number of optical devices 

– Modulator, laser balance 
– Modulator is DD, laser is NDD 
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Tech Parameter Study 

• Story doesn’t end here… 

– Thermal tuning strategies 

– Data-rates, change number of optical devices 

– Modulator, laser balance 
– Modulator is DD, laser is NDD 

 

• These are examples of DSENT models 
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Conclusion 
• Design decisions in NoCs require evaluation 
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– Includes power/area models for several networks 
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Conclusion 
• Design decisions in NoCs require evaluation 

• We created DSENT to bridge photonics and electronics 

– Generalized methodology for digital components 

– Moves beyond fixed number evaluations for photonics 

– Includes power/area models for several networks 

• We showed how DSENT can be used to capture the 

tradeoffs for an example photonic clos network 

– Utilization-dependent energy plots 

– Data-dependent and non-data-dependent power 

– Investigate network sensitivity to optical parameters 

• Continuing and future work 

– Ease user model specification to aid microarchitecture studies 

– Automatically form estimates for local interconnect 
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Thank You 

For more info, visit 

https://sites.google.com/site/mitdsent/ 
(we will make it downloadable following the conference) 
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Backups 
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Evaluation Configuration 
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Evaluation Parameters 
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Orion Specifics 
• Missing decoder and mux for register-type buffer 

• Flops based on cross-coupled NOR gates 

– Uses old Cacti decoder sizing 

• Missing pipeline flops energy on the data-path 

– Though clock power of those is added 

• Clock H-tree optimized by data link model 

– Optimal delay H-tree 
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DSENT Modeling Methodology 

DSENT

User-Defined Models

Support Models Tools
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Technology Characterization
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Technology Characterization 
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Optical Models 

• Models for major optical components 

–Waveguide, ring, coupler, modulator, 

photodetecter … 

• Models for peripheral circuitry 

– Modulator driver, receiver, SerDes, thermal 

tuning 

External

Laser

Source

Chip

Sender A

λ1 λ2λ1λ2

Sender B Receiver A Receiver B

Ring Modulator 

with λ1 resonance

Ring Modulator 

with λ2 resonance

Single Mode 

Fiber

Coupler

Ring Filter with λ1 

resonance

Ring Filter with λ2 

resonance
On-chip

Waveguide

Modulator

Driver

Receiver

CircuitPhotodetector

λ1 + λ2
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Timing Optimization 

• A greedy algorithm to select the standard 

cell sizes 

– Make circuit meet the timing constraint 

...

Delay Delay Delay

Delay

...
Delay

...

A-Y

...

A-Y

B-Y
B-Y

A-Y

Ron-INV Ron-NAND2 Ron-NAND2

Cin-INV Cin-NAND2 Cin-NAND2

INV NAND2
NAND2

Equivalent 

Circuit

Equivalent 

Circuit
Equivalent 

Circuit

X

Z

ZX

Timing Optimization Iteration 1

50

Big Cap

10 25

20

0

0

10 200
50

Timing 

not 

met!

Size up!

1

11

35

Timing Optimization Iteration 3

50

Big Cap

10 50

30

0

0

20 40
50

Timing 

not 

met!
Size up!

1

6

55

1

1

Timing Optimization Iteration 4

50

Big Cap

20 35

30

0

0

20 40
50

3

63

45
1

Timing 

met!

Timing Optimization Iteration 2

50

Big Cap

10 50

45

0

0

10 60
50

Size up!

1

61

60
1

Timing 

not 

met!

Timing 

not 

met!

3
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Expected Transitions 

• A simplified expected transition 

probability model 

NAND2_X1 Standard Cell

Equivalent Circuit

A

B

Y

INV_X1

NAND2_X1

Net: B

P00 = 0.00

P01 = 0.50

P10 = 0.50

P11 = 0.00

Net: A

P00 = 0.30

P01 = 0.20

P10 = 0.20

P11 = 0.30

INV_X1 Standard Cell

Net: Y

P00 = 0.00

P01 = 0.25

P10 = 0.25

P11 = 0.50

Net: M

P00 = 0.30

P01 = 0.20

P10 = 0.20

P11 = 0.30

Leakage

Input Gate Cap A

Output Drain Cap

Calculate Output 
Transition

LeakageEquivalent Circuit
Leak(A=0, B=0)

Leak(A=0, B=1)

Leak(A=1, B=0)

Leak(A=1, B=1)

Input Gate Cap A

Input Gate Cap B

Output Drain Cap

Calculate Output 
TransitionLeak(A=0)

Leak(A=1)
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Power Breakdown (Half) 
Energy Break-Down at Half 

Network Throughput (16 Tb/s) 

• Photonics (P45, P11) are 

roughly even with 

electronics 

Electrical 

45nm 

Photonic 

45nm 

Photonic 

11nm 

Electrical 

11nm 
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Network Case Study 
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Photonic Technology Scaling 

• Waveguide loss 
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• Ring heating efficiency 



Tool Validation (45nm SOI) 
Model Reference Point DSENT Orion2.0 + Orion2.0 Mod* 

Ring Modulator Driver (fJ/b) 50 (11 Gb/s) 60.87 N/A N/A 

Receiver (fJ/b) 52 (3.5 Gb/s 45nm) 43.02 N/A N/A 

R
o

u
te

r 
(6

x6
) 

Buffer (mW) SPICE – 6.93 7.55 34.4 3.57 

Xbar (mW) SPICE – 2.14 2.06 14.5 1.26 

Control (mW) SPICE – 0.75 0.83 1.39 0.31 

Clock (mW) SPICE – 0.74 0.63 28.8 0.36 

Total (mW) SPICE – 10.6 11.2 91.3 5.56 

Area (mm2) Encounter – 0.070 0.062 0.129 0.067 

+ Default Orion 2.0 technology parameters for 45nm 

*Correctly specified 45nm tech params  

Router 

(6x6) 

• 6 Input ports, 6 output ports 

• 64-bit flit width 

• 8 VCs/Port, 16 Buffer FIFO 

• 1 GHz clock  

• 0.16 flit injection rate 
9/21/2012 92 



DSENT Framework 

Technology Value 

Supply Voltage 1.0 V 

Gate Capacitance / width 1.0 fF/um 

Effective on current / width 650 uA/um 

Off-current / width 100 nA/um 

DIBL 150 mV/V 

Sub-threshold Swing 100 mV/dec 

Photodetector Responsivity 1.0 mA/mW 

… … 

Primitive Cells 

NAND2 

INVERTER 

BUFFER 

… 

Receiver 

Modulator 

… 

• Use only basic 

technology parameters 

• Build a usable set of 

primitives for modeling 

• Required technology input mostly limited to what is attainable 

through ITRS projections and other roadmaps 
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DSENT Framework 

• Models are defined in 

terms other models 

and primitives 

Example Models 

Mesh Network 

Clos Network 

Routers 

Optical links (SWSR, SWMR) 

Serializer/Deserializer 
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DSENT Framework 

• After initial modeling of 

implementation, design can 

be optimized and evaluated 

[Georgas, CICC 2011] 9/21/2012 95 



Misc 
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Error in Cacti 6.5 

[S. Li, ICCAD 2011] 


