
DSFD: Dual Shot Face Detector

Jian Li† Yabiao Wang‡ Changan Wang‡ Ying Tai‡

Jianjun Qian†∗ Jian Yang†∗ Chengjie Wang‡ Jilin Li‡ Feiyue Huang‡

†PCA Lab, Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education
†Jiangsu Key Lab of Image and Video Understanding for Social Security

†School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
‡Youtu Lab, Tencent

†lijiannuist@gmail.com, {csjqian, csjyang}@njust.edu.cn
‡{casewang, changanwang, yingtai, jasoncjwang, jerolinli, garyhuang}@tencent.com

Pose & Occlusion Reflection

BlurryScale Illumination

Makeup

Figure 1: Visual results. Our method is robust to various variations on scale, blurry, illumination, pose, occlusion, reflection and makeup.

Abstract

In this paper, we propose a novel face detection network

with three novel contributions that address three key aspects

of face detection, including better feature learning, progres-

sive loss design and anchor assign based data augmenta-

tion, respectively. First, we propose a Feature Enhance

Module (FEM) for enhancing the original feature maps to

extend the single shot detector to dual shot detector. Sec-

ond, we adopt Progressive Anchor Loss (PAL) computed by

two different sets of anchors to effectively facilitate the fea-

tures. Third, we use an Improved Anchor Matching (IAM)

by integrating novel anchor assign strategy into data aug-
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mentation to provide better initialization for the regressor.

Since these techniques are all related to the two-stream de-

sign, we name the proposed network as Dual Shot Face De-

tector (DSFD). Extensive experiments on popular bench-

marks, WIDER FACE and FDDB, demonstrate the superi-

ority of DSFD over the state-of-the-art face detectors.

1. Introduction

Face detection is a fundamental step for various facial

applications, like face alignment [26], parsing [3], recog-

nition [34], and verification [6]. As the pioneering work

for face detection, Viola-Jones [29] adopts AdaBoost algo-

rithm with hand-crafted features, which are now replaced by

deeply learned features from the convolutional neural net-

work (CNN) [10] that achieves great progress. Although
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the CNN based face detectors have being extensively stud-

ied, detecting faces with high degree of variability in scale,

pose, occlusion, expression, appearance and illumination in

real-world scenarios remains a challenge.

Previous state-of-the-art face detectors can be roughly

divided into two categories. The first one is mainly based

on the Region Proposal Network (RPN) adopted in Faster

RCNN [24] and employs two stage detection schemes [30,

33, 36]. RPN is trained end-to-end and generates high-

quality region proposals which are further refined by Fast

R-CNN detector. The other one is Single Shot Detec-

tor (SSD) [20] based one-stage methods, which get rid of

RPN, and directly predict the bounding boxes and confi-

dence [4, 27, 39]. Recently, one-stage face detection frame-

work has attracted more attention due to its higher inference

efficiency and straightforward system deployment.

Despite the progress achieved by the above methods,

there are still some problems existed in three aspects:

Feature learning Feature extraction part is essential for

a face detector. Currently, Feature Pyramid Network

(FPN) [17] is widely used in state-of-the-art face detectors

for rich features. However, FPN just aggregates hierarchi-

cal feature maps between high and low-level output layers,

which does not consider the current layer’s information, and

the context relationship between anchors is ignored.

Loss design The conventional loss functions used in object

detection include a regression loss for the face region and

a classification loss for identifying if a face is detected or

not. To further address the class imbalance problem, Lin et

al. [18] propose Focal Loss to focus training on a sparse set

of hard examples. To use all original and enhanced features,

Zhang et al. propose Hierarchical Loss to effectively learn

the network [37]. However, the above loss functions do not

consider progressive learning ability of feature maps in both

of different levels and shots.

Anchor matching Basically, pre-set anchors for each fea-

ture map are generated by regularly tiling a collection of

boxes with different scales and aspect ratios on the image.

Some works [27, 39] analyze a series of reasonable anchor

scales and anchor compensation strategy to increase posi-

tive anchors. However, such strategy ignores random sam-

pling in data augmentation, which still causes imbalance be-

tween positive and negative anchors.

In this paper, we propose three novel techniques to ad-

dress the above three issues, respectively. First, we intro-

duce a Feature Enhance Module (FEM) to enhance the dis-

criminability and robustness of the features, which com-

bines the advantages of the FPN in PyramidBox and Re-

ceptive Field Block (RFB) in RFBNet [19]. Second, moti-

vated by the hierarchical loss [37] and pyramid anchor [27]

in PyramidBox, we design Progressive Anchor Loss (PAL)

that uses progressive anchor sizes for not only different lev-

els, but also different shots. Specifically, we assign smaller

anchor sizes in the first shot, and use larger sizes in the

second shot. Third, we propose Improved Anchor Match-

ing (IAM), which integrates anchor partition strategy and

anchor-based data augmentation to better match anchors

and ground truth faces, and thus provides better initializa-

tion for the regressor. The three aspects are complementary

so that these techniques can work together to further im-

prove the performance. Besides, since these techniques are

all related to two-stream design, we name the proposed net-

work as Dual Shot Face Detector (DSFD). Fig. 1 shows the

effectiveness of DSFD on various variations, especially on

extreme small faces or heavily occluded faces.

In summary, the main contributions of this paper include:

• A novel Feature Enhance Module to utilize different

level information and thus obtain more discriminability and

robustness features.

• Auxiliary supervisions introduced in early layers via a

set of smaller anchors to effectively facilitate the features.

• An improved anchor matching strategy to match an-

chors and ground truth faces as far as possible to provide

better initialization for the regressor.

• Comprehensive experiments conducted on popular

benchmarks FDDB and WIDER FACE to demonstrate the

superiority of our proposed DSFD network compared with

the state-of-the-art methods.

2. Related work

We review the prior works from three perspectives.

Feature Learning Early works on face detection mainly

rely on hand-crafted features, such as Harr-like fea-

tures [29], control point set [1], edge orientation his-

tograms [13]. However, hand-crafted features design is lack

of guidance. With the great progress of deep learning, hand-

crafted features have been replaced by Convolutional Neu-

ral Networks (CNN). For example, Overfeat [25], Cascade-

CNN [14], MTCNN [38] adopt CNN as a sliding window

detector on image pyramid to build feature pyramid. How-

ever, using an image pyramid is slow and memory ineffi-

cient. As the result, most two stage detectors extract fea-

tures on single scale. R-CNN [7, 8] obtains region propos-

als by selective search [28], and then forwards each nor-

malized image region through a CNN to classify. Faster

R-CNN [24], R-FCN [5] employ Region Proposal Network

(RPN) to generate initial region proposals. Besides, ROI-

pooling [24] and position-sensitive RoI pooling [5] are ap-

plied to extract features from each region.

More recently, some research indicates that multi-scale

features perform better for tiny objects. Specifically,

SSD [20], MS-CNN [2], SSH [23], S3FD [39] predict

boxes on multiple layers of feature hierarchy. FCN [22],

Hypercolumns [9], Parsenet [21] fuse multiple layer fea-

tures in segmentation. FPN [15, 17], a top-down architec-

ture, integrate high-level semantic information to all scales.
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(b) Feature Enhance Module

(a) Original Feature Shot

(c) Enhanced Feature Shot
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Figure 2: Our DSFD framework uses a Feature Enhance Module (b) on top of a feedforward VGG/ResNet architecture to generate the

enhanced features (c) from the original features (a), along with two loss layers named first shot PAL for the original features and second

shot PAL for the enchanted features.

FPN-based methods, such as FAN [31], PyramidBox [27]

achieve significant improvement on detection. However,

these methods do not consider the current layers informa-

tion. Different from the above methods that ignore the con-

text relationship between anchors, we propose a feature en-

hance module that incorporates multi-level dilated convolu-

tional layers to enhance the semantic of the features.

Loss Design Generally, the objective loss in detection is a

weighted sum of classification loss (e.g. softmax loss) and

box regression loss (e.g. L2 loss). Girshick et al. [7] pro-

pose smooth L1 loss to prevent exploding gradients. Lin

et al. [18] discover that the class imbalance is one obsta-

cle for better performance in one stage detector, hence they

propose focal loss, a dynamically scaled cross entropy loss.

Besides, Wang et al. [32] design RepLoss for pedestrian de-

tection, which improves performance in occlusion scenar-

ios. FANet [37] create a hierarchical feature pyramid and

presents hierarchical loss for their architecture. However,

the anchors used in FANet are kept the same size in dif-

ferent stages. In this work, we adaptively choose different

anchor sizes in different stages to facilitate the features.

Anchor Matching To make the model more robust, most

detection methods [20,35,39] do data augmentation, such as

color distortion, horizontal flipping, random crop and multi-

scale training. Zhang et al. [39] propose an anchor compen-

sation strategy to make tiny faces to match enough anchors

during training. Wang et al. [35] propose random crop to

generate large number of occluded faces for training. How-

ever, these methods ignore random sampling in data aug-

mentation, while ours combines anchor assign to provide

better data initialization for anchor matching.
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Figure 3: Illustration on Feature Enhance Module, in which

the current feature map cell interactives with neighbors in current

feature maps and up feature maps.

3. Dual Shot Face Detector

We firstly introduce the pipeline of our proposed frame-

work DSFD, and then detailly describe our feature enhance

module in Sec. 3.2, progressive anchor loss in Sec. 3.3 and

improved anchor matching in Sec. 3.4, respectively.

3.1. Pipeline of DSFD

The framework of DSFD is illustrated in Fig. 2. Our

architecture uses the same extended VGG16 backbone as

PyramidBox [27] and S3FD [39], which is truncated be-

fore the classification layers and added with some aux-

iliary structures. We select conv3 3, conv4 3, conv5 3,

conv fc7, conv6 2 and conv7 2 as the first shot detec-

tion layers to generate six original feature maps named

of1, of2, of3, of4, of5, of6. Then, our proposed FEM trans-

fers these original feature maps into six enhanced feature

maps named ef1, ef2, ef3, ef4, ef5, ef6, which have the

same sizes as the original ones and are fed into SSD-style

head to construct the second shot detection layers. Note that
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the input size of the training image is 640, which means the

feature map size of the lowest-level layer to highest-level

layer is from 160 to 5. Different from S3FD and Pyramid-

Box, after we utilize the receptive field enlargement in FEM

and the new anchor design strategy, its unnecessary for the

three sizes of stride, anchor and receptive field to satisfy

equal-proportion interval principle. Therefore, our DSFD is

more flexible and robustness. Besides, the original and en-

hanced shots have two different losses, respectively named

First Shot progressive anchor Loss (FSL) and Second Shot

progressive anchor Loss (SSL).

3.2. Feature Enhance Module

Feature Enhance Module is able to enhance original fea-

tures to make them more discriminable and robust, which

is called FEM for short. For enhancing original neuron cell

oc(i,j,l), FEM utilizes different dimension information in-

cluding upper layer original neuron cell oc(i,j,l) and current

layer non-local neuron cells: nc(i−ε,j−ε,l), nc(i−ε,j,l), ...,

nc(i,j+ε,l), nc(i+ε,j+ε,l). Specially, the enhanced neuron

cell ec(i,j,l) can be mathematically defined as follow:

ec(i,j,l) = fconcat(fdilation(nc(i,j,l)))

nci,j,l = fprod(oc(i,j,l), fup(oc(i,j,l+1)))
(1)

where ci,j,l is a cell located in (i, j) coordinate of the feature

maps in the l-th layer, f denotes a set of basic dilation con-

volution, elem-wise production, up-sampling or concatena-

tion operations. Fig. 3 illustrates the idea of FEM, which is

inspired by FPN [17] and RFB [19]. Here, we first use 1×1
convolutional kernel to normalize the feature maps. Then,

we up-sample upper feature maps to do element-wise prod-

uct with the current ones. Finally, we split the feature maps

to three parts, followed by three sub-networks containing

different numbers of dilation convolutional layers.

3.3. Progressive Anchor Loss

Different from the traditional detection loss, we design

progressive anchor sizes for not only different levels, but

also different shots in our framework. Motivated by the

statement in [24] that low-level features are more suitable

for small faces, we assign smaller anchor sizes in the first

shot, and use larger sizes in the second shot. First, our Sec-

ond Shot anchor-based multi-task Loss function is defined

as:

LSSL(pi, p
∗
i , ti, gi, ai) =

1

Nconf

(ΣiLconf (pi, p
∗
i )

+
β

Nloc

Σip
∗
iLloc(ti, gi, ai)),

(2)

where Nconf and Nloc indicate the number of positive and

negative anchors, and the number of positive anchors re-

spectively, Lconf is the softmax loss over two classes (face

Table 1: The stride size, feature map size, anchor scale, ratio, and

number of six original/enhanced features for two shots.
Feature Stride Size Scale Ratio Number

ef 1 (of 1) 4 160× 160 16 (8) 1.5 : 1 25600

ef 2 (of 2) 8 80× 80 32 (16) 1.5 : 1 6400

ef 3 (of 3) 16 40× 40 64 (32) 1.5 : 1 1600

ef 4 (of 4) 32 20× 20 128 (64) 1.5 : 1 400

ef 5 (of 5) 64 10× 10 256 (128) 1.5 : 1 100

ef 6 (of 6) 128 5× 5 512 (256) 1.5 : 1 25

vs. background), and Lloc is the smooth L1 loss between the

parameterizations of the predicted box ti and ground-truth

box gi using the anchor ai. When p∗i = 1 (p∗i = {0, 1}),

the anchor ai is positive and the localization loss is acti-

vated. β is a weight to balance the effects of the two terms.

Compared to the enhanced feature maps in the same level,

the original feature maps have less semantic information for

classification but more high resolution location information

for detection. Therefore, we believe that the original feature

maps can detect and classify smaller faces. As the result, we

propose the First Shot multi-task Loss with a set of smaller

anchors as follows:

LFSL(pi, p
∗
i , ti, gi, sai) =

1

Nconf

ΣiLconf (pi, p
∗
i )

+
β

Nloc

Σip
∗
iLloc(ti, gi, sai),

(3)

where sa indicates the smaller anchors in the first shot lay-

ers, and the two shots losses can be weighted summed into

a whole Progressive Anchor Loss as follows:

LPAL = LFSL(sa) + λLSSL(a). (4)

Note that anchor size in the first shot is half of ones in the

second shot, and λ is weight factor. Detailed assignment

on the anchor size is described in Sec. 3.4. In prediction

process, we only use the output of the second shot, which

means no additional computational cost is introduced.

3.4. Improved Anchor Matching

Current anchor matching method is bidirectional be-

tween the anchor and ground-truth face. Therefore, an-

chor design and face sampling during augmentation are col-

laborative to match the anchors and faces as far as pos-

sible for better initialization of the regressor. Our IAM

targets on addressing the contradiction between the dis-

crete anchor scales and continuous face scales, in which

the faces are augmented by Sinput ∗ Sface/Sanchor (S in-

dicates the spatial size) with the probability of 40% so as

to increase the positive anchors, stabilize the training and

thus improve the results. Table 1 shows details of our an-

chor design on how each feature map cell is associated to

the fixed shape anchor. We set anchor ratio 1.5:1 based

on face scale statistics. Anchor size for the original fea-

ture is one half of the enhanced feature. Additionally, with
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Table 2: Effectiveness of Feature Enhance Module on the AP

performance.
Component Easy Medium Hard

FSSD+VGG16 92.6% 90.2% 79.1%

FSSD+VGG16+FEM 93.0% 91.4% 84.6%

Table 3: Effectiveness of Progressive Anchor Loss on the AP

performance.
Component Easy Medium Hard

FSSD+RES50 93.7% 92.2% 81.8%

FSSD+RES50+FEM 95.0% 94.1% 88.0%

FSSD+RES50+FEM+PAL 95.3% 94.4% 88.6%

Figure 4: The number distribution of different scales of faces

compared between traditional anchor matching (Left) and our im-

proved anchor matching (Right).

probability of 2/5, we utilize anchor-based sampling like

data-anchor-sampling in PyramidBox, which randomly se-

lects a face in an image, crops sub-image containing the

face, and sets the size ratio between sub-image and selected

face to 640/rand (16, 32, 64, 128, 256, 512). For the remain-

ing 3/5 probability, we adopt data augmentation similar to

SSD [20]. In order to improve the recall rate of faces and

ensure anchor classification ability simultaneously, we set

Intersection-over-Union (IoU) threshold 0.4 to assign an-

chor to its ground-truth faces.

4. Experiments

4.1. Implementation Details

First, we present the details in implementing our net-

work. The backbone networks are initialized by the pre-

trained VGG/ResNet on ImageNet. All newly added con-

volution layers’ parameters are initialized by the ‘xavier’

method. We use SGD with 0.9 momentum, 0.0005 weight

decay to fine-tune our DSFD model. The batch size is set to

16. The learning rate is set to 10−3 for the first 40k steps,

and we decay it to 10−4 and 10−5 for two 10k steps.

During inference, the first shot’s outputs are ignored

and the second shot predicts top 5k high confident detec-

tions. Non-maximum suppression is applied with jaccard

overlap of 0.3 to produce top 750 high confident bound-

ing boxes per image. For 4 bounding box coordinates, we

round down top left coordinates and round up width and

height to expand the detection bounding box. The offi-

cial code has been released at: https://github.com/

TencentYoutuResearch/FaceDetection-DSFD.

Figure 5: Comparisons on number distribution of matched

anchor for ground truth faces between traditional anchor match-

ing (blue line) and our improved anchor matching (red line). we

actually set the IoU threshold to 0.35 for the traditional version.

That means even with a higher threshold (i.e., 0.4), using our IAM,

we can still achieve more matched anchors. Here, we choose a

slightly higher threshold in IAM so that to better balance the num-

ber and quality of the matched faces.

4.2. Analysis on DSFD

In this subsection, we conduct extensive experiments and

ablation studies on the WIDER FACE dataset to evaluate

the effectiveness of several contributions of our proposed

framework, including feature enhance module, progressive

anchor loss, and improved anchor matching. For fair com-

parisons, we use the same parameter settings for all the ex-

periments, except for the specified changes to the compo-

nents. All models are trained on the WIDER FACE training

set and evaluated on validation set. To better understand

DSFD, we select different baselines to ablate each compo-

nent on how this part affects the final performance.

Feature Enhance Module First, We adopt anchor designed

in S3FD [39], PyramidBox [27] and six original feature

maps generated by VGG16 to perform classification and re-

gression, which is named Face SSD (FSSD) as the baseline.

We then use VGG16-based FSSD as the baseline to add

feature enchance module for comparison. Table 2 shows

that our feature enhance module can improve VGG16-based

FSSD from 92.6%, 90.2%, 79.1% to 93.0%, 91.4%, 84.6%.

Progressive Anchor Loss Second, we use Res50-based

FSSD as the baseline to add progressive anchor loss for

comparison. We use four residual blocks’ ouputs in

ResNet to replace the outputs of conv3 3, conv4 3, conv5 3,

conv fc7 in VGG. Except for VGG16, we do not perform

layer normalization. Table 3 shows our progressive an-

chor loss can improve Res50-based FSSD using FEM from

95.0%, 94.1%, 88.0% to 95.3%, 94.4%, 88.6%.

Improved Anchor Matching To evaluate our improved

anchor matching strategy, we use Res101-based FSSD

without anchor compensation as the baseline. Table 4 shows

that our improved anchor matching can improve Res101-

based FSSD using FEM from 95.8%, 95.1%, 89.7% to

96.1%, 95.2%, 90.0%. Finally, we can improve our DSFD

to 96.6%, 95.7%, 90.4% with ResNet152 as the backbone.
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Figure 6: Precision-recall curves on WIDER FACE validation and testing subset.

Table 4: Effectiveness of Improved Anchor Matching on the AP performance.
Component Easy Medium Hard

FSSD+RES101 95.1% 93.6% 83.7%
FSSD+RES101+FEM 95.8% 95.1% 89.7%

FSSD+RES101+FEM+IAM 96.1% 95.2% 90.0%
FSSD+RES101+FEM+IAM+PAL 96.3% 95.4% 90.1%
FSSD+RES152+FEM+IAM+PAL 96.6% 95.7% 90.4%

FSSD+RES152+FEM+IAM+PAL+LargeBS 96.4% 95.7% 91.2%

Table 5: Effectiveness of different backbones.
Component Params ACC@Top-1 Easy Medium Hard

FSSD+RES101+FEM+IAM+PAL 399M 77.44% 96.3% 95.4% 90.1%
FSSD+RES152+FEM+IAM+PAL 459M 78.42% 96.6% 95.7% 90.4%

FSSD+SE-RES101+FEM+IAM+PAL 418M 78.39% 95.7% 94.7% 88.6%
FSSD+DPN98+FEM+IAM+PAL 515M 79.22% 96.3% 95.5% 90.4%

FSSD+SE-RESNeXt101 32×4d+FEML+IAM+PA 416M 80.19% 95.7% 94.8% 88.9%

Table 6: FEM vs. RFB on WIDER FACE.
Backbone - ResNet101 (%) Easy Medium Hard

DSFD (RFB) 96.0 94.5 87.2

DSFD (FPN) / (FPN+RFB) 96.2 / 96.2 95.1 / 95.3 89.7 / 89.9

DSFD (FEM) 96.3 95.4 90.1

Besides, Fig. 4 shows that our improved anchor match-

ing strategy greatly increases the number of ground truth

faces that are closed to the anchor, which can reduce the

contradiction between the discrete anchor scales and con-

tinuous face scales. Moreover, Fig. 5 shows the number dis-

tribution of matched anchor number for ground truth faces,

which indicates our improved anchor matching can signif-

icantly increase the matched anchor number, and the aver-

aged number of matched anchor for different scales of faces

can be improved from 6.4 to about 6.9.

Comparison with RFB Our FEM differs from RFB in two

aspects. First, our FEM is based on FPN to make full use of

feature information from different spatial levels, while RFB

ignores. Second, our FEM adopts stacked dilation convolu-

tions in a multi-branch structure, which efficiently leads to

larger Receptive Fields (RF) than RFB that only uses one

dilation layer in each branch, e.g., R3 in FEM compared to

R in RFB where indicates the RF of one dilation convolu-

tion. Tab. 6 clearly demonstrates the superiority of our FEM

over RFB, even when RFB is equipped with FPN.

From the above analysis and results, some promising

conclusions can be drawn: 1) Feature enhance is crucial.

We use a more robust and discriminative feature enhance

module to improve the feature presentation ability, espe-

cially for hard face. 2) Auxiliary loss based on progressive
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Figure 7: Comparisons with popular state-of-the-art methods on the FDDB dataset. The first row shows the ROC results without

additional annotations, and the second row shows the ROC results with additional annotations.

anchor is used to train all 12 different scale detection feature

maps, and it improves the performance on easy, medium

and hard faces simultaneously. 3) Our improved anchor

matching provides better initial anchors and ground-truth

faces to regress anchor from faces, which achieves the im-

provements of 0.3%, 0.1%, 0.3% on three settings, respec-

tively. Additionally, when we enlarge the training batch size

(i.e., LargeBS), the result in hard setting can get 91.2% AP.

Effects of Different Backbones To better understand

our DSFD, we further conducted experiments to examine

how different backbones affect classification and detection

performance. Specifically, we use the same setting ex-

cept for the feature extraction network, we implement SE-

ResNet101, DPN−98, SE-ResNeXt101 32×4d following

the ResNet101 setting in our DSFD. From Table 5, DSFD

with SE-ResNeXt101 32×4d got 95.7%, 94.8%, 88.9%, on

easy, medium and hard settings respectively, which indi-

cates that more complexity model and higher Top-1 Ima-

geNet classification accuracy may not benefit face detection

AP. Therefore, in our DSFD framework, better performance

on classification are not necessary for better performance

on detection, which is consistent to the conclusion claimed

in [11, 16]. Our DSFD enjoys high inference speed bene-

fited from simply using the second shot detection results.

For VGA resolution inputs to Res50-based DSFD, it runs

22 FPS on NVIDA GPU P40 during inference.

4.3. Comparisons with State­of­the­Art Methods

We evaluate the proposed DSFD on two popular face

detection benchmarks, including WIDER FACE [35] and

Face Detection Data Set and Benchmark (FDDB) [12]. Our

model is trained only using the training set of WIDER

FACE, and then evaluated on both benchmarks without any

further fine-tuning. We also follow the similar way used

in [31] to build the image pyramid for multi-scale testing

and use more powerful backbone similar as [4].

WIDER FACE Dataset It contains 393, 703 annotated

faces with large variations in scale, pose and occlusion in

total 32, 203 images. For each of the 60 event classes, 40%,

10%, 50% images of the database are randomly selected

as training, validation and testing sets. Besides, each sub-

set is further defined into three levels of difficulty: ’Easy’,

’Medium’, ’Hard’ based on the detection rate of a baseline

detector. As shown in Fig. 6, our DSFD achieves the best

performance among all of the state-of-the-art face detectors

based on the average precision (AP) across the three sub-

sets, i.e., 96.6% (Easy), 95.7% (Medium) and 90.4% (Hard)

on validation set, and 96.0% (Easy), 95.3% (Medium) and

5066



Scale Pose Occlusion Blurry

Makeup Illumination Modality Reflection

Figure 8: Illustration of our DSFD to various large variations on scale, pose, occlusion, blurry, makeup, illumination, modality and

reflection. Blue bounding boxes indicate the detector confidence is above 0.8.

90.0% (Hard) on test set. Fig. 8 shows more examples to

demonstrate the effects of DSFD on handling faces with

various variations, in which the blue bounding boxes indi-

cate the detector confidence is above 0.8.

FDDB Dataset It contains 5, 171 faces in 2, 845 images

taken from the faces in the wild data set. Since WIDER

FACE has bounding box annotation while faces in FDDB

are represented by ellipses, we learn a post-hoc ellipses re-

gressor to transform the final prediction results. As shown

in Fig. 7, our DSFD achieves state-of-the-art performance

on both discontinuous and continuous ROC curves, i.e.

99.1% and 86.2% when the number of false positives equals

to 1, 000. After adding additional annotations to those un-

labeled faces [39], the false positives of our model can be

further reduced and outperform all other methods.

5. Conclusions

This paper introduces a novel face detector named Dual

Shot Face Detector (DSFD). In this work, we propose a

novel Feature Enhance Module that utilizes different level

information and thus obtains more discriminability and ro-

bustness features. Auxiliary supervisions introduced in

early layers by using smaller anchors are adopted to ef-

fectively facilitate the features. Moreover, an improved an-

chor matching method is introduced to match anchors and

ground truth faces as far as possible to provide better initial-

ization for the regressor. Comprehensive experiments are

conducted on popular face detection benchmarks, FDDB

and WIDER FACE, to demonstrate the superiority of our

proposed DSFD compared with the state-of-the-art face de-

tectors, e.g., SRN and PyramidBox.
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