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Abstract
In this paper, we propose a Distance-based Sequence In-

dexing Method (DSIM) for indexing and searching genome
databases. Borrowing the idea of video compression, we
compress the genomic sequence database around a set of
automatically selected reference words, formed from high-
frequency data substrings and substrings in past queries.
The compression captures the distance of each non-reference
word in the database to some reference word. At runtime, a
query is processed by comparing its substrings with the com-
pressed data strings, through their distances to the reference
words. We also propose an efficient scheme to incremen-
tally update the reference words and the compressed data se-
quences as more data sequences are added and new queries
come along. Extensive experiments on a human genome
database with 2.62GB of DNA sequence letters show that
the new algorithm achieves significantly faster response time
than BLAST, while maintaining comparable accuracy.

1 Introduction
Molecular biologists frequently query genomic databases

to identify sequence homology. Such an operation involves
matching a query sequence against each of the database se-
quences where the similarity comparison between two se-
quences typically has a complexity that is either linear or
quadratic to the length of the sequences.

BLAST [4] is one such tool that is being used widely.
For every pair of sequences to be matched, it looks for short
fixed-length word pairs, or seeds, that are shared by both
sequences and then extends the seeds to higher-scoring re-
gions. While the approach works well with small databases,
its performance deteriorates quickly as the size of genome
database grows. Thus BLAST is not a satisfactory solution
because not only are genomic databases exploding in size,
the number of queries directed at them also has surpassed
40,000 queries per day [16] and is still rising. After “dissect-
ing” the tool to analyze its behavior, we discovered that the
seed searching step dominates(on average constituting more
than 80% of) the response time for large databases. This
prompted us to look for an efficient alternative to eliminate
the bottleneck.

In this paper, we propose a new search algorithm for

searching genome databases that shortlists potential matches
for a given query sequence by evaluating it against a pre-
generated index of the sequence database. The main contri-
butions of our work are as following;

1. We incorporate the information from data sequences
and past queries for index construction. Information
extracted from data sequences facilitates our index to
capture accurately the part of the database which repre-
sents the database most. Information from past queries
allows the index to capture those subsequences that are
representative in the past queries but not in the database.

2. We propose the Distance-based Sequence Indexing
Method (DSIM), where data subsequences are rep-
resented as edit distances with respect to some pre-
selected reference words appearing in the sequence.
This scheme saves a significant amount of string match-
ing cost during query processing. We also propose in-
cremental index update algorithms to efficiently update
the index when new data are inserted and new queries
come along.

3. We have implemented the algorithms as a standalone
program and as well as a part of BLAST, and con-
ducted extensive experiments on a 2.62GB genome
database. The results show that our algorithm outper-
forms BLAST by over 200 times in speed for long
queries and achieves the same performance for short
queries, without sacrificing the quality of the results.

The remainder of this paper is organized as follows. The
next section gives a background on genome searching and re-
lated work. Our framework and associated algorithm are in-
troduced in Section 3. Section 4 gives the cost model to study
the effectiveness and efficiency of DSIM. Following that, ex-
perimental results are presented in Section 5, and Section 6
concludes the paper.

2 Background
Most of the operations on genomic databases involve

searching for database sequences that are similar to a given
query sequence. This section first examines BLAST – the
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Figure 1. Breakdown of BLAST’s search time

standard tool that is being used by biologists – before dis-
cussing other related work.

2.1 BLAST – The Standard Tool
BLAST [4, 5] is the standard tool that molecular bi-

ologists use to search for sequence similarity in genomic
databases, and is known to be one of the more efficient tools
available.

The operation of matching a query sequence against a li-
brary of data sequences is carried out in three steps. First,
BLAST generates a list of query sliding windows of length
k (k-tuples), where k is a tunable parameter. In the second
step, BLAST scans through every database sequence to see
if it contains a k-tuple that can match with one of the query
k-tuples to produce a seed with a score greater than or equal
to a predetermined threshold T . Finally, the seeds are ex-
tended on the both sides to locate longer similar segment
pairs. BLAST permits a tradeoff between speed and sen-
sitivity, by adjusting the settings for the threshold T and the
length of k-tuple. For DNA queries, the default settings are
T = 0 and k = 11.

To understand the cost breakdown, we recompiled the
source codes of BLAST (downloaded from [1]) with the pro-
filing option and ran the program with a profiler, gprof [3] to
generate statistics on the time spent on each function. These
statistics are grouped to produce the time spent on database
retrieval, k-tuple matching, and seed extension.

We ran BLAST on a DNA database of 487 KB sequences
with 1.7 GB letters to study the effect of query length on
BLAST. For each query length, we generated 100 random
queries and obtained the average running time. The results,
plotted in Figure 1, show that the seed searching time domi-
nates the total response time for BLAST. Database read time
and seed extension time are just a small portion of the total
response time.

2.2 Related Work
As described earlier, BLAST is an exhaustive search tool

that checks all the entries in the database to formulate an
answer set to a query; other similar tools include SSearch
[15] and FastA [14]. The alternative to exhaustive search is
to use index-based approaches [9, 6, 10, 16, 7, 8, 13]. We
review several such schemes below.

RAMdb [9] is a system for finding short patterns called
motifs in genome databases. It requires a large index that

Notation Meaning
n total size of data sequences
m size of a query sequence
k substring length
RefWordSet reference word set
ε edit distance threshold of a seed match
edit dist edit distance function on two strings

Table 1. Algorithm parameters

is twice the size of the original flat-file database including
the textual descriptions and suffers from a lack of special-
purpose ranking schemes for identifying initial match re-
gions. In addition, the non-overlapping interval of query mo-
tifs can lead to false dismissals.

The FLASH search tool [6] redundantly indexes genome
data based on a probabilistic scheme . FLASH was fast, but
the hash-table index used is uncompressed and impractically
large – For a nucleotide collection of around 100 MB, the
index requires 18 Gb on disk, around 180 times the collection
size.

SST [10] uses the tree structured vector quantization tech-
nique for sequence searching. SST is only effective for find-
ing data sequences that are very similar to a query sequence.

In [11], DNA sequences are transformed into numerical
vector spaces to allow the use of multi-dimensional index-
ing approaches for sequence similarity search. Though the
method avoids false dismissals and offers very fast filtering,
their drawback is that the approximation of edit distance is
not sufficiently tight, which increases the cost of refining re-
sults for final output.

CAFE [16] is based on a partitioned search approach,
where a coarse search using an inverted index is used to rank
sequences by similarity to a query sequence, and a subse-
quent fine search is used to locally align only a subset of
database sequences with the query. CAFE bears the addi-
tional overhead of uncompressing the index at runtime for a
query, which we do not have. Although it is computationally
efficient than the exhaustive methods, “exhaustive systems
generally have better retrieval effectiveness”.

Compared to our previous work [7, 8] in DNA sequence
indexing and searching, DSIM is much more efficient with
the slight cost of some searching accuracy.

3 The Proposed Method
In this section, we describe our algorithm design, includ-

ing the proposed framework, index construction, incremen-
tal index update and query processing. The notations, which
will be explained as they are used, are summarized in Ta-
ble 1.

3.1 Basic Framework of DSIM
The basic idea of DSIM is to compress a data sequence

by representing the consecutive overlapping sequence sub-
strings with their respective edit distances to some instance
in a reference word set. The task of searching similar data se-
quences to a query sequence is decomposed into two steps:
First, we examine the compressed data sequences to find the
matches between the query substrings and reference words;
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the pre-computed edit distance permits this step to be per-
formed quickly. Next, sequences with significant matches
are post-processed for actual sequence match and alignment
using some approaches such as BLAST.

Figure 2. A structure of DSIM

We borrow the idea from the MPEG-based video com-
pression [2] which divides video data into three types of
frames: I-frame(Intra Frame), P-frame(Predicted Frame) and
B-frame(Bidirectional Frame). An I-frame contains the full
image representation; a P-frame is the difference to the previ-
ous I-frame; B-frames are coded as differences from the last
or next I-frame or P-frame. This compression technique sig-
nificantly reduces data storage size, and speeds up process-
ing time while maintaining satisfactory accuracy. In genome
sequence database, we select some reference genome sub-
sequences, called reference words which are similar to I-
frames in video sequence and for the genome subsequences
following the reference word, only the edit distance from
the reference word is stored. Figure 2 illustrates an exam-
ple of the DSIM transformation and search structure. In
this figure, we describe how the data sequence Si is trans-
formed to the compressed sequence based on the reference
word set when the size of the sliding window is set to 3.
Since the first sliding window of data sequence Si, AAT
is a reference word(rwid=4), the following sliding windows
ATA, TAT , ATA, TAC and ACC are denoted as the edit
distance from the reference word AAT until next reference
word CCG(rwid=5) occurs. The same principle can be ap-
plied to the remaining sliding windows of the sequence Si

and other data sequences.
In our problem domain, we aim to reduce the substring

matching time by sequence compression. Brute force sub-
string matching algorithms build a lookup table on the query
substrings and find matches for each data substring, resulting
in an average cost of O(mn). BLAST employs an optimized
algorithm using bit encoding and parallel lookup but it still
grows sublinearly to O(mn). In contrast, at the price of a
little memory overhead, we build a search structure on the
reference word set so that we only need to look up a frac-
tion of substrings within the data sequence where the target
reference word occurs. As shown in Section 4, the resulting

processing time grows only sublinearly to O(n).
The effectiveness of DSIM relies on the proper choice of

the reference word set. We propose two heuristics-based
strategies. The first strategy is to choose the frequently-
occurring data substrings within the data sequences. The
heuristic is that a long significant segment match between
two sequences is likely to consist of multiple consecutive
short substring matches. Thus a higher number of matches
with the frequently-occurring data substrings indicates a
greater similarity. This heuristic favors queries that are sim-
ilar to the high-frequency data subsequences. However,
it may fail for queries that contain few or no frequently-
occurring data substrings. Our second heuristic is based on
the observation that some parts of past queries are likely to
re-appear in future queries. Thus we add substrings in the
past queries to the reference word set. This heuristic is differ-
ent from the strategy of caching search results for the future
use, which needs to compare future queries with past queries
for local similarity match and again introduces overheads.
We employ a combination of the two heuristics to maintain
a reference word set that is updated dynamically for new in-
coming data and queries. Note that our framework can also
accommodate other heuristics for determining the reference
word set. Figure 3 illustrates the high-level framework de-
scribed above.

Sequence File Past Queries

Reference Word Generator

ReferenceWordFile

Index Constructor

Index File

SearchNew Queries

Incremental
Update

Approximate Answers

PostProcess

Final Answers

Figure 3. Flow chart of DSIM

3.2 Index Construction
DSIM consists of two components: a reference word

set and a compressed data file. The initial index construc-
tion encodes the data sequences, extracts the high-frequency
data substrings, and creates the reference word set and com-
pressed sequences. In Section 3.1, we have discussed how
to construct the reference word set. In this section, We will
mainly discuss how to generate the compressed data file by
using the following two steps, sequence encoding and se-
quence compression.

3.2.1 Sequence Encoding
Genome data sequences are usually stored as strings in
FASTA format. Encoding data sequences into integers al-
lows us to perform substring matching efficiently and to
speed up incremental index updates. To encode k-length
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substring, the transformation function str2Int first trans-
lates the substring into a bit sequence by mapping every char-
acter into a unique bit pattern. The bit sequence is then con-
verted into a non-negative integer using a bit-OR operation
with an integer mask of 22k − 1. We assume that the DNA
alphabet is {A, C, G, T} and substrings containing ‘N’ let-
ters which represents unknown values are encoded with an
indicator -127. We assign the bit pattern as follows: 00 for
‘A’, 01 for ‘C’, 10 for ‘G’, and 11 for ‘T’. For example, given
a DNA substring “ACGTT”, the bit sequence is 0001101111
and the integer mask is 1023, and thus str2Int(“ACGTT”)
= 111.

We also define the function ed to be the edit distance
[12] between two strings represented in their encoded val-
ues. That is, for two strings s1 and s2,
edit dist(s1, s2)=ed(str2Int(s1), str2Int(s2)).

The transformation function str2Int is lossless for
strings of length up to 15 in a 32-bit system architecture
since one bit is used as sign bit. This length limit does
not constrain the usability of our algorithm, as the default
substring length used in BLAST is 11 and consecutive sub-
string matches longer than 15 can be handled through multi-
ple overlapping substring matches of length 15 or shorter.

3.2.2 Sequence Compression

Sequence compression is performed with the reference word
set and the encoded data sequences. Assuming that the set
of past queries is empty initially, the initial reference word
set is the set of frequently-occurring substrings in the data
sequences. We employed a simple double-scanning-based
algorithm to find those data substrings.

Algorithm 1 Compress
Input: RefWordSet, EncodedFile
Output: CompressedFile
Method:

1: Create the search structure RefWord B+ on RefWordSet;
2: for each sequence S with (SeqId,seqLen) do
3: output(CompressedFile, seqId);
4: output(CompressedFile, seqLen);
5: for each vi at position i of sequence S in EncodedFile do
6: if vi==-127 then
7: /*indicating the substring contains ’N’ letters*/
8: output(CompressedFile,-127);
9: else

10: if vi==lastRef or Search(RefWord B+, vi) then
11: output(CompressedFile,vi);
12: lastRef = vi;
13: else
14: output(CompressedFile,-ed(vi,lastRef ));
15: end if
16: end if
17: end for

18: end for

Prior to sequence compression, we first read in the refer-
ence words, encode them and then build an in-memory B+-
tree, RefWord B+ on the encoded values. If the size of the
reference word set is too large for the B+-tree to fit entirely
in memory, we split the reference words into batches and
process them in turn: For the first batch, we run Algorithm 1
to create the compressed sequences. From the second batch

onwards, we update the compressed sequences by executing
the index update algorithm.

As we scan the encoded data sequences, we
check whether the encoded value v at each posi-
tion occurs in the reference word set by the function
Search(RefWord B+, v). If so, the encoded value is
replaced by the identity of the matched reference word;
otherwise the function ed is used to compute the edit dis-
tance between the encoded value and the previous reference
word, and the distance replaces the encoded value as the
compressed value. If no reference word has been found
previously, the nearest next instance of some reference word
is used. To distinguish between the two types of compressed
values, we store edit distances as negative values since
substring encoding only returns non-negative values.

Compressed values are sequentially stored in the com-
pressed sequence file. Each sequence in the compressed
file starts with a two-field header containing the sequence’s
starting ID, seqId, and length, seqLen, in the original data
file. Due to the one-to-one correspondence, the compressed
file has the advantage that matching query patterns identi-
fied in a compressed sequence implicitly tell the position of
the matches in the original data sequence. Note that this
file organization is the same for the encoded sequence file.
Figure 4 gives the corresponding compressed format for the
DNA sequence.

Figure 4. Index building example

The algorithm for initial sequence compression is given
in Algorithm 1. For efficiency, the edit distances are always
computed from the previous occurrence of a reference word.
Comparing with next occurrence of a reference word can be
easily done by buffering current values until the next refer-
ence word is encountered, and then compute the distance for
every buffered value.

In addition, based on the property of edit distance say-
ing that for two strings s1 and s2, edit dist(s1, s2) ≤
max(length(s1), length(s2)), the maximum word distance
is 15 since an encoded substring is restricted to be no longer
than 15 in our algorithm. Therefore we use one byte to store
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the distance value, instead of one integer, which reduces the
index size.
3.3 Incremental Index Update

As the sequence database is updated and new queries
come along, the reference word set and the compressed file
need to be updated accordingly. There are four cases of in-
dex updates:
Case I: Collection of new queries
For each query newly inserted into the past query col-
lection, we search for every unique query substring in
RefWord B+. If the query substring is not found, we add
it to the reference word set and its RefWord B+.

The compressed file has to be updated according to the
new reference words. The update affects only the substrings
that are not in reference word set. The encoded values of
those substrings are retrieved from the sequence encoding
file, and matched against the new reference words. If there
is a match, then the compressed value for the correspond-
ing substring is changed from an edit distance to an encoded
value. The algorithm for updating the reference words set
and the compressed file according to the new queries col-
lection are similar to the one for building them, we will not
depict them for brevity.
Case II: Insertion of new sequences
After inserting the new query sequences, we first append
the new encoded data sequences to the encoded sequence
file. Next we extract the frequently-occurring substrings, i.e.
new reference words from each sequence. Finally, the com-
pressed sequence file and the reference word set are updated
based on the new reference words in the similar way of Case
I.
Case III: Modification of existing sequences
First, the old encoding within the encoded sequence is over-
written with the encoding of the modified sequences. Fol-
lowing that, we treat the modified data sequences as new data
sequences and apply the same steps in Case II.
Case IV: Deletion of existing sequences
We delete the deleted sequences from the encoded file. If
the deleted sequences include the reference words, the refer-
ence word set and compressed file will be updated accord-
ingly. Note that after an incremental update, there may exist
some “dangling” reference words that no longer appear in
the database sequences. These dangling references can be
removed by periodically scanning the database to count their
occurrences. This process does not affect the compressed
sequence file.
3.4 Query Processing

In this section, we will describe how DNA homol-
ogy search is performed using the proposed index struc-
ture, DSIM. Given a query sequence, the unique query
substrings, QWs, are extracted and attached to the simi-
lar reference words within edit distance ε using the func-
tion AttachQW (RefWord B+, QW, ε). For each data
value vi, in the compressed file, if it is an occurrence of
some reference word, the attached list of similar query
substrings qwlist will be returned using the function
SearchRefWord(RefWord B+, vi, qwlist), where each

query substring is called a “seed match” to current data
value. After finishing scanning each data value in com-
pressed file, we compute the overall score for the match pair
of data value and query sequence in MatchPair using scor-
ing function. The query results are those sequences with top
K scores. Post-processing is a desirable or necessary step
to align the search results to the query sequence using an
algorithm such as BLAST. Note that if no query substring
can be attached to the RefWord B+, we directly run nor-
mal BLAST search to get the final alignment results. The
detailed search algorithm is given in Algorithm 2.

Algorithm 2 SeqSearch
Input: querySeq, ε, RefWordSet, CompressedFile
Output: topK
Method:

1: Create search structure RefWord B+ on RefWordSet;
2: Extract unique query substrings, QWs with their positions from querySeq;
3: for each unique query substring QWi ∈ QWs do
4: AttachQW (RefWord B+, QWi, ε);
5: end for
6: if none of QWs is attached to RefWord B+ then
7: run normal BLAST and exit the algorithm.
8: end if
9: for each sequence S with (seqId, seqLen) do

10: MatchPair = null;
11: for each value vi at position i of sequence S in CompressedFile do
12: if vi ≥ 0 then
13: curRefWord = vi;
14: if SearchRefWord(RefWord B+, vi, qwlist) and

qwlist! = null then
15: MatchPair+ = (qwlist, seqId, i);
16: lastRefWord = vi;
17: lastqwlist = qwlist;
18: end if
19: else if −vi ≤ ε && curRefWord == lastRefWord then
20: MatchPair+ = (lastqwlist, seqId, i);
21: end if
22: end for
23: Compute the score for sequence S with (seqId, seqLen) and query substrings

in MatchPair using scoring function;
24: end for

25: Return topK, top K sequences aligned with querySeq.

“Seed match” without errors: “Seed match” includes
two kinds of exact matches between query substrings and
reference words, and between the data substrings and refer-
ence words. This scheme is fast in searching in reference
word set as it can be implemented as searching in a B+-
tree, RefWord B+. We can also ignore all compressed
data substrings that are not reference words. The disadvan-
tage of this scheme is the miss of substring matches that are
not reference words. In practice, our experiments show that
this method is effective for queries whose substrings are well
captured in the reference word set.

“Seed match” with errors: If a query substring and a
data substring match respectively to the same reference word
within edit distance ε, we consider this as a “seed match”
with errors. This guarantees no miss of substring matches
that are different from reference words with at most edit dis-
tance ε. Thanks to the pre-computed edit distances in the
compressed sequences for data substrings not belonging to
reference word set, we simply compare them with ε to iden-
tify matches. Note that we are interested in the positions of a
seed match rather than the contents of the match. Therefore,
once an ε distance match is found at position i in a com-
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Notation Meaning
t # of bytes in an integer. Default to 4.
CI/O Avg. I/O time for fetching a data element
Crefword Avg. search time in reference words
Cedit time for edit distance computation

for k-long strings
muniq # of unique query substrings of length k
p % of data substrings that are reference words
Sindex Size of our index
Tindex Index build time
R Response time of our search algorithm

Table 2. Cost parameters

pressed sequence, we do not have to find in the encoded se-
quence to know the data substring at position i. We combine
the use of both approaches in our DNA homology search
method. If ε is set 0, the first approach is used otherwise the
second.

Scoring functions: Scoring sequences based on the seed
matches allows us to filter out data sequences with low sim-
ilarity and perform post-processing only on the highly simi-
lar sequences. CAFE [16] has proposed a few useful scor-
ing functions and shown their effectiveness. For a set of
seed matches with the same relative position offset between
a data sequence and query sequence, CAFE’s various scor-
ing functions consider these different factors: the number
of matches, the number of non-overlapping matches and the
span of matches in the data sequence. In our implementation,
the number of matches is used as the scoring function. Nev-
ertheless, our algorithm can also incorporate other scoring
functions mentioned above because we capture the positions
of the seed matches.

4 Cost Analysis
To study the effectiveness and efficiency of DSIM, we

present a cost model in this section. The main concern is
the search time, while index size and index build time tend
to be secondary due to the nature of applications. The cost
parameters are shown in Table 2.

Index size: The compression file consists of two types of
elements: the occurrences of reference words, stored as an
integer, and distances of data substrings not belonging to the
reference word set, stored as a byte. Therefore, the size of
compression sequence is,

Sindex = (t × n × p) + (1 − p) × n = (1 + 3p) × n (1)

Index build time: The index build time is composed of
the I/O time in reading in sequences and outputting sequence
compression, and the lookup time taken for searching every
data substring in the B+-tree of reference words. Hence, the
index building time is:

Tindex = n × CI/O + (n − k + 1) × Crefword+
(1 + 3p) × n × CI/O

(2)

Search time: DSIM’s query processing consists of two
steps: (1) matching and attaching query substrings to ref-
erence words, and (2) scanning the sequence compression
to find occurrences of reference words. For step (1), if ε
is set to 0, there is a single lookup in the B+-tree built on
RefWordSet for each unique query substring. The cost
is muniq ∗ Crefword. To study the worst case scenario, as-
sume there is only a single cluster of reference words. Then
we have to compute the edit distance for every pair of query

substrings and reference word. The cost taken is therefore
muniq ∗ |RefWordSet| ∗ Cedit.

Rattach =

{
muniq × Crefword if ε = 0
muniq × |RefWordSet| × Cedit if ε > 0

(3)

Scanning of sequence compression and look up, incurs
both the I/O cost and B+-tree lookup cost. There are exactly
|RefWordSet| number of lookups for the exhaustive scan-
ning of all the data. The cost taken for step (2) is, therefore,

Rscan = (1 + 3p) × n × CI/O+
|RefWordSet| × Crefword

(4)

and the response time of our search algorithm is
R = Rattach + Rscan (5)

From Equations (3), (4) and (5), it can be derived that the
search cost of DSIM is bounded by O(m×|RefWordSet|+
(1 + 3p) × n).

5 Performance Study
Having introduced our sequence matching algorithms, we

will present the experimental results to profile its perfor-
mance characteristics. The experiment environment is de-
scribed in Section 5.1. The genome sequence search effi-
ciency and search accuracy of our proposed method are stud-
ied in Section 5.2 and Section 5.3, respectively. For compar-
ison purposes, we also include the BLAST tool in our per-
formance study.

5.1 Experiment Setup
The experiments were implemented on a Sunfire 4800

machine with 12 Ultrasparc3 CPU of 750MHz, 16GB free
memory and 70GB free hard disk. The data are human
genome sequences downloaded from NCBI. We used 6 data
sets described in Table 3 to conduct various experiments.
Unless explicitly stated, the dataset number 6, the largest in
size (2.62GB), is always used for the following experiments.
The query sequences are segments randomly extracted from
the genome sequences, and the reported performance results
are the average over 10 queries.

Data Set
No.

Data collections No. of se-
quences

Total Size

1 Genome 2 130 230MB
2 Genome 1-2 267 444MB
3 Genome 1-4 670 812MB
4 Genome 1-10 1196 1684MB
5 Genome 1-15 1530 2136MB
6 Genome 1-22,X,Y 2007 2621MB

Table 3. Description of data set

A list of experimental parameters, together with their de-
fault values, are summarized in Table 4.

5.2 Search Efficiency
In this section, we will study the genome sequence ho-

mology search efficiency of our method when varying the

Notation Meaning Range Default
k substring length 7-15 11
qLen query length 32-16384 1024
qNo number of queries 10-50 10
ε seed match 0-5 0

error threshold
refWordNo no. of reference words 200-16000 8000

Table 4. Experimental parameters
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parameters, such as the query length and edit distance thresh-
old for seed matches. Moreover, the comparison of search
efficiency between BLAST and our method is also studied.

Varying query length: we set k=11, qNo=10,
refWordNo=8000, and ε=0. The average response time
of running 10 queries is shown in Figure 5(a). It confirms
the earlier cost analysis that our search algorithm is almost
invariant to the query length because the query substrings
are directly compared with reference words for similarity
match. Unlike BLAST, the data sequences in database are
not compared to query substrings. Instead, only those data
substrings which are the reference words, are searched in the
reference word set to get the attached similar query substring
lists. Hence, our algorithm obviously outperforms BLAST
much more with the query length increasing.

Varying edit distance threshold for seed matches: We
set k=11, qLen=1024, qNo=10 and refWordNo=8000.
Since BLAST does not directly support seed match with er-
rors, we therefore use the “effective seed length” for BLAST
search, where effective seed length=k − ε. This is reason-
able since the set of exact seed matches of length k − ε is
a subset of the set of seed matches of length k with error
threshold ε. Figure 5(b) shows the search performance of
our method and BLAST with respect to varying edit dis-
tance threshold for seed matches. We observe that DSIM
outperforms BLAST by up to a speedup factor 4 and also
remains consistent search time with respect to the edit dis-
tance threshold because increasing the threshold only affects
the first step of DSIM search and causes more query sub-
strings to be attached to reference words. But the second
step, scanning of compressed files, is not affected much be-
cause edit distance threshold does not cause more lookup of
data substrings in the reference words. Actually, the number
of lookups is only controlled by the number of occurrences
of reference words in the query sequence.

Varying database size: We set k=11, qLen=64,
qNo=10, refWordNo=8000 and ε=0. Figure 5(c) shows
the effect of data size on the search performance of both
methods. The result shows that the search time of DSIM
grows moderately super-linear to the database size. The
reason is that the amount of reference word occurrences in
the database grows faster with the increasing database size
since the reference word set contains the frequent-occurring
data substrings. Consequently, this incurs fast growth of the
cost of lookups in the reference word set during DSIM’s
search. As shown in Figure 5(c), the increase in query time
for BLAST is much more significant than DSIM method
as BLAST suffers from higher I/O cost in large sequence
databases. It again confirms the cost analysis.

5.3 Search Accuracy
Many existing methods have achieved good query per-

formance by relaxing the requirement of accuracy. How-
ever, due to the nature of genomic applications, compro-
mise on the accuracy could be a big risk to take. Since
BLAST is well studied and widely used by biologists, we
will evaluate the search accuracy of our method by compar-
ing with BLAST. The search accuracy metrics, Precision

and Recall are studied for our methods. And we also give
the analysis about how the edit distance between the queries
and reference words affects the accuracy of DSIM.

Precision: In our experiments, we evaluate the search
precision of DSIM by checking how big the intersection of
the hits returned by BLAST and DSIM is when the top K
hits of both methods are considered. The ratio of the inter-
section hits of BLAST and DSIM (Intersection Ratio) in
top K hits will be used as precision to measure the genome
homology search accuracy of DSIM. We also evaluate how
Intersection Ratio changes by varying the edit distance.

Intersection Ratio = number of hits in intersection
K

We set k = 11, qLen = 64, refWordNo = 8000,
qNo = 10 and ε = 0. Figure 6(a) plots the average
Intersection Ratio between BLAST and DSIM with the
different “edit distance” for query sequences with length
64, in which “edit distance” means the edit distance be-
tween query and reference word. With “edit distance” equal
to 1, 2 or 3, Intersection Ratio is above 60% when K
is greater than 30. The experiment result also shows that
Intersection Ratio will decrease when increasing the edit
distance between query sequence and reference word. It
means that the portion of common hits between BLAST and
DSIM will decrease when the query sequence is very differ-
ent from the reference words set.

Recall: The recall of DSIM is also studied in our ex-
periment. We set k=11, qLen=64, qNo=10, ε=1 and
refWordNo=8000.

Recall = Number of matching sequences returned
Total number of matching sequences

Figure 6(b) shows the recall of selecting the top 20 search
results of BLAST, for the various number of hits retrieved by
our algorithm. It can be seen that DSIM quickly achieves a
recall of 90% in the output of 60 hits, and is able to return
the hits as accurate as those of BLAST eventually.

Varying edit distance of the query to reference word
set: As we discussed earlier, the search performance of
DSIM is dependent on how close the query is to the refer-
ence words. If none of query substrings matches with any
reference word, DSIM does not process the query, and in-
stead run the normal BLAST search. In this experiment,
we studied how different a query can be from the refer-
ence word set, while keeping DSIM effective. The dis-
tance of a query to a reference word set, is measured as
the minimum of the query’s edit distance to the reference
word set. We choose k=11, qLen=64, qNo=10, ε=1 and
refWordNo=8000. The number of answers returned by
DSIM is set as 60. Figure 6(c) shows that DSIM achieves
a recall of 60% for the edit distance of 15. In other words,
a query can be up to 23% (derived by 15

64 ) different from the
reference word set, to keep DSIM being effective at a recall
of 60%. To make DSIM effective, the index file is required
to be updated after adding the past queries into the reference
word set when the recall falls below the acceptable level.

6 Conclusion
In this paper, we have presented a novel method called

DSIM for identifying sequence homology in large genomic
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databases. The method is designed to speed up query pro-
cessing, by maintaining in memory only a selected set of
high-frequency data segments, and by reducing the remain-
ing data segments to “deltas” from the selected segments in
such a way that all data sequences that match a given query
sequence can be shortlisted from this compact index. Exper-
imental results on real data sets confirmed that the proposed
algorithm outperforms existing tools such as the latest ver-
sion of BLAST, significantly lowering processing time with-
out compromising the quality of the results.
Acknowledgement: We thank Hao Wang for his contribu-
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colleagues in Genome Institute of Singapore for useful dis-
cussion.
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