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Abstract

Anchor-free detectors basically formulate object detection as dense classification

and regression. For popular anchor-free detectors, it is common to introduce an

individual prediction branch to estimate the quality of localization. The follow-

ing inconsistencies are observed when we delve into the practices of classification

and quality estimation. Firstly, for some adjacent samples which are assigned

completely different labels, the trained model would produce similar classifica-

tion scores. This violates the training objective and leads to performance degra-

dation. Secondly, it is found that detected bounding boxes with higher confi-

dences contrarily have smaller overlaps with the corresponding ground-truth.

Accurately localized bounding boxes would be suppressed by less accurate

ones in the Non-Maximum Suppression (NMS) procedure. To address the in-

consistency problems, the Dynamic Smooth Label Assignment (DSLA) method

is proposed. Based on the concept of centerness originally developed in FCOS, a

smooth assignment strategy is proposed. The label is smoothed to a continuous

value in [0, 1] to make a steady transition between positive and negative samples.

Intersection-of-Union (IoU) is predicted dynamically during training and is cou-

pled with the smoothed label. The dynamic smooth label is assigned to supervise
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the classification branch. Under such supervision, quality estimation branch is

naturally merged into the classification branch, which simplifies the architec-

ture of anchor-free detector. Comprehensive experiments are conducted on the

MS COCO benchmark. It is demonstrated that, DSLA can significantly boost

the detection accuracy by alleviating the above inconsistencies for anchor-free

detectors. Our codes are released at https://github.com/YonghaoHe/DSLA.

Keywords: Convolutional neural network, Object detection, Centerness score,

Intersection-of-Union.

1. Introduction

Convolutional neural networks (CNNs) have been widely adopted in com-

puter vision tasks, including category classification [1], object detection [2, 3],

semantic segmentation [4] and other related tasks such as entity connection in-

ference [5, 6] and cross-modality understanding [7]. Specially, object detection is

a fundamental problem in computer vision, which aims to predict the locations

of bounding boxes and corresponding category labels in an image. Since RCNN

[2], deep-learning-based object detection has attracted much attention along

with its wide applications in fields such as industrial detection [8], video analy-

sis [9], text recognition [10], and aerial image [11]. Existing deep-learning-based

detectors could be roughly divided into anchor-free and anchor-based categories.

As popularized by Faster R-CNN [12], mainstream detectors such as SSD [13],

RetinaNet [14] and YOLO v2, v3 [15] generally rely on a set of predefined anchor

boxes to enumerate possible locations, scales and aspect ratios for the objects.

Despite their promising performances, the detectors are limited to the design

of anchor boxes. Recently, anchor-free detectors have gradually led the trend

of object detection, which directly learn object possibility and the bounding

box coordinates without anchor reference. Compared with anchor-based coun-

terparts, anchor-free detectors get rid of the hyper-parameters and complicated

computations related to anchor boxes, making the training process considerably

simpler. YOLOv1 [16] is a popular anchor-free detector. Instead of using anchor
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boxes, YOLOv1 directly predicts bounding boxes at the points near the center

of objects. CornerNet [17] and CenterNet [18] adopt keypoint-based detection

pipeline, which detects a pair of corners of a bounding box and groups them to

form the final detected bonding box. FCOS [19], CenterNet [20] and FoveaBox

[21] formulate object detection in a per-pixel prediction fashion.

In order to train the detectors, defining positive and negative samples is a

necessary yet important procedure which directly influences the training effi-

ciency and thus the performance. The issue needs to be carefully considered

especially for anchor-free detectors while anchor-based detectors divides the an-

chors into positive and negative samples according to Intersection-over-Union

(IoU) values. Previous anchor-free detectors commonly adopt a single fixed di-

vision criterion. That is, positive and negative samples are divided according

to hand-crafted rules and several predefined thresholds. For example, YOLOv1

[16] divides the input image into a grid. If the center of an object falls into a grid

cell, then that grid cell is regarded as positive and is responsible for detecting

that object. CornerNet [17] only regards ground-truth (gt) corner locations as

positive and all other locations are negative. But the loss for negative locations

within a radius of the positive locations is down-weighted. FCOS [19] and Fove-

abox [21] treat the locations within the center region or the bounding box of

any gt object as positive candidates. However, such static strategies could not

adapt to various shapes and attitudes of objects to always provide the optimal

positive/negative division. Dynamic assignment strategies are proposed. ATSS

[22] proposes to set the division boundary for each gt based on the statistics

of IoU values. OTA [23] attempts to find the globally best division strategy

by solving optimal transport problem. Unfortunately, most of the methods are

anchor-based and cannot be directly applied to anchor-free detectors. Mean-

while, the inconsistency occurring in anchor-free detectors has not been paid

sufficient attention, which will be detailed in the following with FCOS as the

example.

FCOS makes a prediction for each location on multi-level feature maps. If

the center of the receptive field (RF) [24] of the location falls into a gt box,
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Cls label: 0.08
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Cls label: 0.12
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Cls label: 0.09
Cls score: 0.04

Cls label: 0.20
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Cls label: 0.18
Cls score: 0.26

Cls label: 0.60
Cls score: 0.62

FCOS FCOS-DSLA

(b)

(a)
Groundtruth

Figure 1: Visualization of positive and negative division and detection results. In (a), the

objects on the image are denoted by gt bounding boxes, which are predicted on different

feature maps due to their different scales. Middle and right images are the detection results of

FCOS and our method. In (b), the images on the top row illustrate the positive and negative

division of FCOS while the images on the bottom row illustrate the division of our method.

In the images, square and cross respectively stand for assigned positive and negative samples,

with the colour indicates predicted classification confidence belonging to positive samples. A

redder colour indicates a higher confidence and a blacker colour a lower confidence. The scores

of several adjacent samples are annotated, and the samples with the highest confidence scores

are shown as well.
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the distances from the center to the four sides of the box are computed. If the

maximum distance lies within the predefined range, then the location is set as

a positive sample and is required to regress the box. An example of the sample

division is illustrated in Figure 1(b). The input image is fed into a trained FCOS

model to obtain the classification score whose value is indicated by the colour.

We note that it is often the case that adjacent locations are assigned completely

different labels. We consider the classification scores of these locations in Figure

1(b). On the feature maps predicting “racket” and “ball”, the adjacent locations

have similar scores but are assigned with different labels. Clearly, this does not

match our expectations. We call this problem as classification inconsistency.

We also observe that on the feature map predicting “person”, the scores are

discrepant. This is due to the different strides of feature maps. We suggest that,

classification inconsistency is caused by adjacent samples which have similar RFs

but are assigned with totally different supervisions. The inconsistency would

prevent the detector from learning more effective object representations and

thus degrades the performance as shown in Figure 1(a). The introduction of

centerness score solves the problem caused by similar classification scores to

some extent. However, centerness score is only used in the ranking process of

NMS during inference and inconsistency still exists in the training.

In FCOS, centerness is used to estimate localization quality. The score is

predicted and combined with classification confidence as final ranking score

of NMS. Despite the improvements, centerness score would not be completely

appropriate for the estimation of localization quality. In Fig. 2, it is found

that the bounding box predicted by the location with higher centerness score

contrarily has smaller overlap with the gt. This is mainly because the location

with higher centerness score (yellow point) is on the background and thus it

cannot capture sufficient semantic information to predict an accurate bounding

box. For objects with varied appearances, fixed centerness score could not

always provide the reliable estimation of localization quality. We call the issue

quality estimation inconsistency. The introduction of centerness score may

lead to unexpected small ground-truth label, which makes a set of gt boxes
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Figure 2: Demonstrative case of the misalignment between centerness score and localization

accuracy. The red bounding boxes denote the ground-truth box, while the yellow and green

bounding boxes are both detection results yielded by locations with higher and lower center-

ness scores, respectively. The misalignment may lead to accurately localized bounding boxes

(in green color) being suppressed by less accurate one (in yellow color) in the NMS procedure.
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hard to be recalled. Researchers [25, 26, 27] suggest that IoU score would be

superior than centerness score. However, IoU score is constantly changing in

the entire training process and is extremely low in the early stage of training.

Such dynamic values would make the training process vibrate substantially.

To improve the performance of anchor-free detectors, this paper proposes the

Dynamic Smoothed Label Assignment (DSLA) method. In DSLA, the concept

of centerness originally developed in FCOS is utilized but with two improve-

ments, i.e., core zone and interval relaxation. Core zone is defined for each gt

box to maintain an sufficient confidence score, by which the problem of neglect-

ing a true object due to its small confidence score is resolved. Interval relaxation

is introduced to overcome drastic changes of assigned labels. On the basis, the

labels are smoothed to continuous values in [0, 1], with which a steady transition

between positive and negative samples is accomplished. IoU score is dynami-

cally calculated in the training process and is coupled with centerness score to

provide a reasonable estimation of localization quality. Consequently, dynamic

smooth labels are deduced to supervise the classification branch. Figure 1(b)

illustrates the division results of FCOS equipped with DSLA. Compared with

those of FCOS, the predicted classification scores are more consistent with the

assigned targets. The detection results are compared in Figure1(a). It can be

observed that, the bounding boxes predicted by DSLA are more precise thanks

to the settlement of inconsistency. And the confidence scores of the true objects

increase evidently. With DSLA, the classification branch predicts not only the

category label but also the localization quality, which could be directly used

as ranking scores of NMS. The quality branch that commonly used in anchor-

free detection is not needed any more. Consequently, the architecture of the

detector becomes more concise and the consistency of training and inference is

maintained.

The contributions of the paper are summarized as follows:

• The inconsistencies of classification and quality estimation are pointed out

and analyzed. Dynamic smooth label assignment is proposed to address
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the problems.

• Interval relaxation strategy is proposed and combined with the improved

centerness score. The assigned label is smoothed to a continuous value

in [0, 1], with which a steady transition between positive and negative

samples is accomplished.

• IoU score is dynamically calculated and coupled with the smooth label to

supervise the classification branch of the detector. Under the supervision

of DSLA, the inconsistency problems are greatly alleviated.

• The proposed method is applied to popular anchor-free detectors. Com-

prehensive experiments are carried out on MS COCO [28] to demonstrate

the effectiveness.

The remainder of this paper is organized as follows. Section 2 briefly reviews

prior work, and Section 3 describes our approach. Experimental results are

provided in Section 4. And the work is concluded in Section 5.

2. Related Works

2.1. Anchor-free detectors

The concept of anchor is initially proposed by Ren et al. [12] and is com-

monly utilized in one-stage [13, 14] and two-stage detectors [12, 29]. For anchor-

based detectors, some hyper-parameters are introduced to describe the number

and shapes of anchor boxes. Moreover, the parameters are specific to differ-

ent detection tasks, hindering further application of anchor-based detectors.

YOLOv1 [16] is a popular anchor-free detector, which directly predicts bound-

ing boxes at the points near the center of objects. However, YOLOv1 suffers

from low recall rate and the following work YOLOv2 [15] returns to anchor-

based fashion.

RepPoints [30] represents object as a set of sample points and utilizes de-

formable convolution [31] to learn appearance features of objects. In [32], the
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anchor-free module FSAF is proposed and applied to RetinaNet. FSAF predicts

the best feature level to train each instance. A number of anchor-free detectors

solve object detection in a per-pixel prediction fashion. FCOS [19], CenterNet

[20] and FoveaBox [21] formulate object detection in a per-pixel prediction fash-

ion. In these works, Feature Pyramid Network (FPN) [33] is utilized to fuse

multi-level feature maps on which the distances to the four sides of gt boxes

are predicted. In pedestrian detection, CSP [34] includes two branches to re-

spectively predict the center and the scale. Bounding boxes are automatically

generated with the predictions and an uniform aspect ratio.

Another family of anchor-free detectors adopt keypoint-based pipeline. Cor-

nerNet [17] detects a pair of corners of a bounding box and groups them to

form the final detected bonding box. Inheriting from CornerNet, CenterNet

[18] adds an extra branch to predict the center keypoint to identify the correct-

ness of each bounding box. ExtremeNet [35] detects four extreme points and

one center point of objects. The five keypoints are grouped into a bounding

box if they are geometrically aligned. The above detectors adopt the Hourglass

network as the backbone, which is computationally expensive. Besides, they

require much more complicated post-processing to group the keypoints belong-

ing to the same instance. Anchor-free detectors have led the recent trend of

object detection due to their simplicity and high performance. To improve the

performance of anchor-free detectors, an efficient dynamic smooth assignment

is proposed in the paper.

2.2. Label assignment strategy in object detection

Recent advances in object detection have shown great improvements with

innovative architecture designs [33, 36, 37], normalization methods [38, 39],

training objectives [14, 40, 41], additional supervisions [42] and more contex-

tual information [43]. How to define positive and negative samples is an im-

portant issue in the training of object detectors, which greatly affects learning

efficiency. As pointed by Zhang et al. [22], the essential difference between

anchor-based and anchor-free detection is actually how to define positive and
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negative training samples. FreeAnchor [44] constructs top-k anchor candidates

for each gt box and then learns to perform positive/negative division based on

the detection-customized likelihood. ATSS [22] selects a set of closest anchors

for each gt and divides positive and negatives anchors based on the statistics

of IoU values. In [26], IoU score is integrated into the classification branch to

maintain the consistency of training and inference. PAA [45] uses Gaussian Mix-

ture Model (GMM) to fit the joint distribution of anchor scores to estimate the

possibility of each anchor being a positive or a negative sample. OTA [23] for-

mulates the assigning procedure as an optimal transport problem and finds the

globally best assignment solution by solving the problem at minimal transporta-

tion costs. Autoassign [46] automatically determines positive/negative samples

in both spatial and scale dimensions. Notably, most of the approaches, such

as FreeAnchor, ATSS, PAA and OTA, are anchor-based, which encounter the

trouble of anchor setting. PAA and OTA also involve quite a few numerical iter-

ations to find the optimal assignment solution in each training stage, increasing

computational cost. OTA and Autoassign do not take smoothed labels into

consideration, hindering to obtain better assignment solutions. The inconsis-

tency problems commonly encountered by anchor-free detectors have not been

sufficently explored. This paper proposes an efficient label assignment strategy

which explores the usefulness of dynamic smooth labels.

3. Our method

3.1. Centerness based smooth label assignment

FCOS uses five levels of feature maps {P3, P4, P5, P6, P7} to detect objects

with different scales. For feature level i, if a feature point falls into a gt box

and the maximum distance lies within the predefined range, then it is defined

as positive and is required to regress the box. The positive/negative sample

10



division rule in FCOS can be summarized as:

headi =


1.0

mi−1 < max(l∗, t∗, r∗, b∗) ≤ mi, and

min(l∗, t∗, r∗, b∗) > 0,

0.0 otherwise

(1)

where headi is the assigned score of a certain point on the i−th level feature

map, i ∈ {1, 2, 3, 4, 5}. {mj}5j=0 are the hyper-parameters defining the ranges,

which are set as {0, 64, 128, 256, 512,∞}, respectively. l∗, r∗, t∗ and b∗ are the

distances from the location to the four sides of the bounding box. We denote

max(l∗, t∗, r∗, b∗) as max for short in the following.

The classification confidence predicted by the model is combined with cen-

terness score as the final ranking score of NMS. Centerness score 1 is calculated

as follows:

centerness =

√
min(l∗, r∗)

max(l∗, r∗)
× min(t∗, b∗)

max(t∗, b∗)
, (2)

As the name suggests, centerness measures the location how close to the box

center. If the location and the box center completely overlap, the location is

assigned the highest score 1.0. Then the score gradually decays to 0.0 as the

location deviates from the center. The introduction of centerness score is to

suppress low-quality predicted bounding boxes produced by locations far away

from the center of an object. Centerness is consistent with the concept of Ef-

fective Receptive Field (ERF) [47], based on which the researchers point out

that feature points would pay more attention to the center areas of the RFs.

The points that locate far away from the center of the box can not capture

sufficient semantic information to represent the object. In this sense, the spa-

cial distribution of centerness scores are rational. The utilization of centerness

greatly boosts the performance of FCOS. As discussed above, the division rule

would cause inconsistency. Then, a question arises naturally—whether center-

ness can be treated as the classification confidence supervision to deal with the

1Centerness mentioned in the paper is referred to the one proposed in FCOS, unless ex-

plicitly specified.
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C Score
Cls label

C Score -
Cls label

C Score
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C Score
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Figure 3: Demonstration of label smoothing with centerness. Two groups of adjacent locations

are taken as examples. Their centerness scores (abbreviated with C Score in the figure) and

the assigned labels smoothed by centerness scores (denoted as Cls Label in the figure) are

annotated. The centerness score of A is skipped since it is not in the gt box. Location B and

C are positive samples while A and D are negative.

inconsistency?

We report in Table 1 that only merging centerness branch to classification

branch (denoted as Impr 0) brings the improvement of 0.3% mAP. This supports

our analysis. However, when smoothing the label with centerness, the following

problems need to be considered. As Fig. 3 shows, measured by the centerness,

the positive sample B is assigned a relatively low target, thereby its transition

to the negative sample A is smooth. Nevertheless, the positive sample C is

assigned a much higher target. But for its adjacent sample D, the target is

sharply dropped to 0.0, potentially leading to inconsistency again. Besides,

centerness scores are hardly assigned with the largest value 1.0 due to the small

possibilities that the locations exactly hit the box centers. This would lead

to unexpected small confidence scores, which makes a possible set of gt boxes

extremely hard to be recalled.

To deal with the problems, the interval relaxation strategy is firstly proposed.
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For mj , j = 1, ..., 4, new lower and upper bounds are determined as:

ml
j = mj × (1− κ),

mu
j = mj × (1 + κ),

(3)

where ml
j and mu

j are lower and upper bounds related to mj , κ ∈ [0, 1) is

the adjustment factor. Note that we set ml
0 = m0 and mu

5 = m5 to avoid

meaningless bounds. Based on the bounds, interval relaxation is conducted, in

which the head scores are formulated as:

headi
s =



1.0, mi−1 < max ≤ mi

mi−1 −max

mi−1 −ml
i−1

, ml
i−1 < max ≤ mi−1

max−mi

mu
i −mi

, mi < max ≤ mu
i

0.0, otherwise

(4)

According to Eq. 3 and Eq. 4, the head scores lie between the new and old

bounds are smoothed linearly, and κ is a hyper-parameter which will be further

investigated in experiments.

Then, for each gt box, the core zone is defined. Given a gt box denoted as

(bl, bt, br, bb), where (bl, bt) and (br, bb) are the coordinates of the left-top and

right-bottom corners, respectively. For the feature map with stride s, the area

(zl, zt, zr, zb) is defined as:

zl = max( 0.5(bl + br)− s/2, bl ),

zr = min( 0.5(bl + br) + s/2, br ),

zt = max( 0.5(bt + bb)− s/2, bt ),

zb = min( 0.5(bt + bb) + s/2, bb ),

(5)

The area is called core zone, which is a square with the side length of the

stride. FCOS allows to predict the same gt box on different levels of feature

maps. A gt box may have multiple core zones with different sizes due to the

different strides of feature maps. For locations falling into core zones, the cen-

terness scores are directly set to 1.0 instead of being calculated by Eq. 2. Then,
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the centerness is reformulated as:

centernesss =


√

min(l∗, r∗)

max(l∗, r∗)
× min(t∗, b∗)

max(t∗, b∗)
, CP /∈ Z

1.0, CP ∈ Z

(6)

where CP denotes the location and Z is the core zone. Feature points are

regularly aligned with the interval of stride in both x− and y− directions. It

is worth noting that, for each core zone, there is at least one point falling into

it, to which the highest score 1.0 is assigned. Compared with Eq. 2, higher

confidence score could be achieved with the improved centerness.

With the computed head scores, the label for each location across the heads

is smoothed as

labels = centernesss × heads. (7)

Compared with directly using centerness to smooth the label, the proposed

method is more efficient to make a smooth transition between positive and

negative samples.

Note that a location may be assigned to more than one gt boxes. FCOS sim-

ply chooses the box with minimal area as its target, which is hand-crafted and

sub-optimal. The smooth label provides a natural way to solve the ambiguity

problem. The box which is assigned with the highest score would be chosen as

the prediction target.

3.2. IoU based dynamic label assignemnt

The regression branch and the classification branch are trained indepen-

dently. However, in inference, the output scores from the classification branch

are used as the confidence to rank the boxes predicted by the regression branch.

This leads to the misalignment between training and inference. Besides, it is

not completely appropriate for the classification branch to be fully supervised

by the labels smoothed with centerness score. Fixed centerness score could not

adapt to various shapes and attitudes of objects to always provide a reasonable

estimation of localization quality.
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In previous publications [25, 27], an individual branch is added for predicting

IoU scores that are used for NMS in inference. In our work, IoU scores are

dynamically calculated by comparing the predicted bbox and gt bboxes during

training and are coupled into the classification branch.

IoU score is coupled with centerness score by multiplication to supervise

the classification branch. Centerness score serves as the prior to stabilize the

training, especially in early stage while the dynamically updated IoU score can

rationally reshape the score distribution for better NMS ranking. Besides, the

strategy could make the two branches interactive to maintain the consistency of

training and inference. And the network architecture is more concise compared

with FCOS by removing the centerness branch.

Concretely, IoU-score coupling is activated only for positive points. In each

training iteration, the IoU scores between predicted boxes and gt boxes are

computed online, then are multiplied by centerness scores to obtain the final

scores. The final score is deduced by:

labeld = labels × IoUs, (8)

where IoUs denotes the IoU score. The cause of classification inconsistency and

how DSLA settles the inconsistencies are analyzed in Appendix.

3.3. Application of DSLA to anchor-free detectors

We adopt the similar network with FCOS except that the centerness branch

is omitted, as shown in Fig. 4. Our method only includes the classification

branch and the regression branch. As detailed in previous sections, the smoothed

labels in which both of improved centerness score and IoU score are involved

are used to supervise the classification branch. Similar to FCOS, in the regres-

sion branch, the distances to the four sides of the box are regressed. The loss

function is

L({px,y}, {tx,y}) =
λ1
Npos

∑
(x,y)

Lcls(px,y, c
∗
x,y)

+
λ2
Npos

∑
x,y

1{c∗x,y > 0}Lreg(tx,y, t∗x,y) (9)
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Classification branch

Regression branch

×4

×4

H×W×256

H×W×256

H×W×256

H×W×256

H×W×C

H×W×4

GFocal Loss

IOU Loss

target scores

target bboxes

Compute 
IOU scores

Figure 4: Head structure of our method. Only two branches, classification branch and regres-

sion branch, are reserved. The inner structures are the same as ones in FCOS. H and W are

height and width of feature maps, C is the number of classes. IoU scores are produced by

computing the IoU between the predicted boxes and the gt boxes.

where, Lcls is generalized focal loss as in [26] and Lreg is the IoU loss. Npos

denotes the number of positive samples and λ1 and λ2 are the hyper-parameters

to balance the weights between Lreg and Lcls. 1{c∗i > 0} is the indicator function

being 1 if C∗
i > 0 and 0 otherwise.

4. Experiments

Our experiments are conducted on the large-scale detection benchmark COCO

[28]. The dataset contains 115k, 5k and 20k images for train, validation and test,

respectively. We train detectors on train set and the results on the validation

set are reported. Mean Average Precision (MAP) is adopted as the evaluation

metric. We use the evaluation code provided by COCO official.

4.1. Implementation Details

In the experiments, we use ResNet50 with FPN as the default backbone and

neck. As in FCOS, five levels of feature maps {P3, P4, P5, P6, P7} are used to

detect different scales of objects. P3, P4 and P5 are produced by the backbone

feature maps C3, C4 and C5. P6 and P7 are produced by P5 and P6, respectively.

The same hyper-parameters with FCOS are used. In the training procedure, we
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utilize stochastic gradient descent (SGD) for optimization. The learning rate

is set to 0.01 at the beginning with the batch size of 16, and the learning rate

is degraded by multiplying 0.1 at epoch 8 and 11 under 1× scheduler. Weight

decay is set as 0.0001 and the momentum is 0.9. The backbone is pre-trained

on ImageNet and the weights of the layers in neck and head are initialized as

in FCOS. Following traditional routines, input image is resized to make their

shorter side being 800 pixels while keeping their longer side being less or equal

to 1333 pixels. Input image is randomly flipped horizontally with the probablity

of 0.5. In inference, we directly use output scores from classification branch for

NMS, which is different from FCOS. The post-processing is exactly the same

with FCOS. Our method is implemented using PyTorch and mmdetection [48].

4.2. Ablation study and analysis

To demonstrate the effectiveness, sample division results derived by FCOS

and the proposed method are visualized and compared in Figure 1. Several

adjacent samples and the samples with the highest confidence scores are anno-

tated in the figure. We note the cases in Figure 1(b) that adjacent locations

are assigned completely different labels, for which FCOS predicts similar scores.

The problem which is referred to as classification inconsistency is greatly allevi-

ated by DSLA. With DSLA, the predicted scores are more consistent with the

assigned targets, leading to more accurate bounding boxes as shown in Figure

1(a).

Ablation experiments are conducted where the original version of FCOS[19]

is used as the baseline. For a fair comparison, the improvements are not utilized,

such as DCN [31], GIoU loss [49], multi-scale train and test. The detectors in the

comparison are trained under 1× scheduler (i.e., 12 epochs) and the proposed

ablation variations have the same settings as the baseline besides the improved

parts. In our method, there exists only one hyper-parameter κ. We conduct

the following experiments by setting κ = 0.2. Subsequently, the effect of κ is

investigated independently.

Two branches vs. three branches: The centerness branch is directly
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Table 1: Performances of detectors with different configurations. Core-Zone, Inter-Relax and

IoU-Couple denote the improvements of centerness score, interval relaxation and IoU score

coupling, respectively. The method FCOS in the first row denotes the FCOS baseline which

has three branches. Impr 0 in the second row represents the detector in which the centerness

branch is directly merged into the classification branch and the GFL loss is used to supervise

the branch. Both of FCOS and Impr 0 do not make any use of the improvements.

Methods Core-Zone Inter-Relax IoU-Couple AP

FCOS $ $ $ 0.366

Impr 0 $ $ $ 0.369

Impr 1 " $ $ 0.372

Impr 2 $ " $ 0.371

Impr 3 $ $ " 0.373

Impr 4 " " $ 0.374

Impr 5 " $ " 0.379

Impr 6 $ " " 0.376

DSLA " " " 0.381

merged into the classification branch and the Generalized Focal Loss (GFL) [26]

is used to supervise the branch (Impr 0 in Table 1). Without other changes,

the improvement outperforms the baseline by 0.3% mAP (36.6% v.s. 36.9%).

This indicates that merging centerness branch to classification branch not only

simplifies network architecture but also improves the performance.

Three improvements: To analysis the importance of each component,

we gradually add core zone, interval relaxation and IoU score coupling on the

ResNet-50 FPN FCOS baseline. Different detectors are deduced by using dif-

ferent configurations. The experimental results are reported in Table 1. The

introduction of centerness core zone (Impr 1) boosts the performance from 36.9%

mAP to 37.2% mAP. Interval relaxation changes the distribution of centerness

score for the heads. Using interval relaxation brings the improvement of 0.2%

mAP (Impr 4). This proves the superiority of the proposed centerness repre-

sentation. With all of the three improvements, our method achieves the highest

38.1% mAP, outperforming the baseline by 1.5% mAP. It can be concluded

from Table 1 that, every single improvement can stably boost the performance.

Meanwhile, IoU score coupling is marginally more efficient than the other two

improvements.
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In Impr 0, replacing centerness score by IoU score deduces the mAP from

36.6% to 35.2%. This is because, IoU score constantly changes in the entire

training process and is extremely low in the early stage. Learning such values is

inefficient. As the prior, centerness score would force the network to converge to

a better local optima. The experiments demonstrate the effectiveness of DSLA.

Meanwhile, the proposed coupling strategy would be helpful to further boost

the performance of other anchor-free detectors.

Effect of hyper-parameter κ: DSLA introduces the hyper-parameter

κ. Obviously, κ affects the transition between positive and negative samples

and the label assignment across different levels of heads. We conduct several

experiments to study the effect of κ. Different values of κ in [0.1, 0.2, 0.3, 0.4]

are used to train the detector and the results are shown in Table 2. From the

results, we observe that, the performance is insensitive to κ. Setting κ = 0.2

achieves the highest performance and thus it is adopted in all the experiments.

Table 2: Effect of the hyper-parameter κ.

κ AP AP50 AP75

0.1 0.379 0.568 0.410

0.2 0.381 0.568 0.413

0.3 0.378 0.566 0.410

0.4 0.377 0.564 0.407

4.3. Application of DSLA to popular anchor-free detectors

Popular anchor-free detectors are chosen as the baselines. The representative

anchor-free detector, FCOS, is firstly chosen. Its improved version [50] further

boosts the performance, which is denoted as FCOSv2 in the comparison exper-

iments. The classical anchor-free detector, FoveaBox [21], is chosen as well. For

a fair comparison, we follow all the training settings of the original experiments

in the baselines [19, 50, 21] except for the improved components. ResNet-50 and

ResNet-101 backbones are adopted and the comparison results are provided in

Table 3. We observe from the table that, the improvements by using DSLA
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commonly exceed 1% mAP. Especially, with the ResNet-101, DSLA improves

FCOSv2 from 41.5% mAP to 44.1% mAP. The improvements are obvious.

Several examples of detection results are visualized in Figure 5 and Figure 6

for better illustration. As shown in Rows 1 and 2 in the figures, DSLA could pre-

dict more precise bounding boxes. Meanwhile, as shown in Rows 3 and 4 in the

figures, baseline models cannot detect several small objects. Nevertheless, after

applying DSLA, these objects are successfully detected. This is because DSLA

increases the confidence score with the core zone strategy and thus improves

the recall rate of small objects. From Table 3, we can also observe that DSLA

performs better on small objects compared with the baselines. The experiments

demonstrate the effectiveness of DSLA.

Table 3: Detection results on MS COCO.

Method Backbone and neck AP AP50 AP75 APS APM APL

FCOS[19] ResNet-50-FPN 0.366 0.560 0.389 0.209 0.403 0.472

FCOS[19] ResNet-101-FPN 0.391 0.583 0.421 0.227 0.433 0.503

FCOS w / DSLA ResNet-50-FPN 0.381 0.568 0.413 0.212 0.422 0.506

FCOS w / DSLA ResNet-101-FPN 0.399 0.588 0.434 0.227 0.438 0.531

FCOSv2[50] ResNet-50-FPN 0.386 0.574 0.414 0.223 0.425 0.498

FCOSv2[50] ResNet-101-FPN 0.415 0.607 0.450 0.244 0.448 0.516

FCOSv2 w / DSLA ResNet-50-FPN 0.404 0.603 0.442 0.227 0.448 0.529

FCOSv2 w / DSLA ResNet-101-FPN 0.441 0.623 0.482 0.263 0.480 0.577

FoveaBox[21] ResNet-50-FPN 0.365 0.560 0.386 0.205 0.399 0.477

FoveaBox[21] ResNet-101-FPN 0.386 0.579 0.411 0.216 0.425 0.504

FoveaBox w / DSLA ResNet-50-FPN 0.375 0.572 0.404 0.207 0.412 0.496

FoveaBox w / DSLA ResNet-101-FPN 0.398 0.596 0.429 0.226 0.434 0.523

4.4. Comparison with state-of-the-art detectors

Comparison studies are carried out with state-of-the-art detectors. Table 4

provides the best reported performances of the detectors with ResNet-50 back-

bone. Notably, CornerNet [17] and CenterNet [18] are not involved in Table 4 as

they adopt a different type of backbone, Hourglass. We observe from the table

that, DSLA achieves comparable performance to GFL (42.7% vs 42.9%) and
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FCOS FCOS-DSLA

Figure 5: FCOS vs FCOS w / DSLA. Both models adopt ResNet-101 backbone and are trained

with COCO trainval35k dataset. The left column contains the results from the conventional

FCOS and the right column is from FCOS equipped with DSLA. Bounding boxes with score

of 0.3 or higher are drawn.
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FoveaBox FoveaBox-DSLA

Figure 6: FoveaBox vs FoveaBox w / DSLA. Both models adopt ResNet-101 backbone and

are trained with COCO trainval35k dataset. The left column contains the results from the

conventional FoveaBox and the right column is from FoveaBox equipped with DSLA. Bounding

boxes with score of 0.3 or higher are drawn.
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is superior than all other detectors with the same backbone. Deformable Con-

volutional Networks (DCN) further boosts the performance of DSLA to 44.4%

mAP. Compared with FCOS, DSLA achieves a significant improvement of 2.1%

mAP. Additionally, higher performances are achieved when DSLA is equipped

with stronger backbones. With the backbone of X-101-64x4d-DCN, 48.1% mAP

is achieved. Using Swin-S as the backbone and following the default setting to

adopt 3× scheduler, the performance of 49.2% mAP is achieved. The proposed

DSLA greatly improves the performances of anchor-free detectors.

Table 4: Performance comparison with state-of-the-art detectors on MS COCO. R: ResNet.

X: ResNeXt. DCN: Deformable Convolutional Network.

Method Backbone Epoch AP AP50 AP75 APS APM APL

multi-stage:

Cascade R-CNN[51] R-50 20 0.419 0.600 0.459 0.232 0.449 0.559

Grid R-CNN[52] R-50 25 0.404 0.585 0.436 0.227 0.439 0.530

Libra R-CNN[53] R-50 12 0.383 0.595 0.419 0.221 0.420 0.485

TridentNet[54] R-50 36 0.402 0.598 0.435 0.217 0.444 0.562

RepPoints[30] R-50 24 0.386 0.596 0.416 0.225 0.422 0.504

one-stage anchor-based:

RetinaNet [14] R-50 24 0.374 0.567 0.396 0.200 0.407 0.497

ATSS [22] R-50 12 0.394 0.576 0.428 0.236 0.429 0.503

PAA [45] R-50 24 0.416 0.598 0.453 0.244 0.450 0.546

GFL [26] R-50 24 0.429 0.612 0.465 0.273 0.469 0.533

one-stage anchor-free:

Autoassign [46] R-50 12 0.404 0.596 0.437 0.227 0.441 0.529

FoveaBox [21] R-50 24 0.404 0.612 0.429 0.245 0.444 0.521

FCOSv2 [50] R-50 24 0.385 0.577 0.410 0.219 0.428 0.486

FCOSv2 [50] R-50-DCN 12 0.423 0.611 0.454 0.244 0.459 0.558

FSAF [32] R-50 12 0.374 0.568 0.398 0.204 0.411 0.488

Our method:

DSLA R-50 24 0.427 0.603 0.462 0.269 0.468 0.549

DSLA R-50-DCN 24 0.444 0.625 0.484 0.266 0.477 0.593

DSLA X-101-64x4d-DCN 24 0.481 0.668 0.522 0.299 0.518 0.629

DSLA Swin-S 36 0.492 0.681 0.535 0.326 0.525 0.641
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5. Conclusion

The inconsistency problems suffered by prevalent anchor-free detectors are

investigated in the paper. A novel method, DSLA, is proposed to continuously

boost the performance of anchor-free detectors by addressing the inconsistency

problems. Interval relaxation strategy is proposed and is combined with the im-

proved representation of centerness to make the transition between positive and

negative samples smoother. Dynamic IoU score is coupled with the classification

branch to provide a reasonable estimation of localization quality. As a result,

dynamic smooth labels are deduced, with which inconsistencies is greatly allevi-

ated. DSLA naturally integrates the centerness branch suggested in FCOS into

the classification branch to make the architecture simpler and to maintain the

consistency of training and inference. Extensive experiments conducted on MS

COCO validate the effectiveness of DSLA. For further improvement of DSLA,

more optimal combination of centerness score and IoU score deserves in-depth

investigation. In the future, extending the smooth label assignment strategy

to anchor-based detector would be a promising research topic. Additionally,

inconsistency is a general problem that would be encountered in other tasks

such as semantic segmentation and category classification. Using smooth label

to alleviate the inconsistencies would be meaningful.
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Appendix A. Inconsistency analysis

The convolutional network Ne is represented by a list of composed convo-

lutional layers: Ne(X) = FM � FM−1 � · · · � F1(X) =
⊙

j=1···M Fj(X), where

Fi denotes the i − th convolutional layer, X is the input tensor. Suppose that

two adjacent locations A and B are identified as positive and negative samples,

respectively. Their RFs denoted as RFA and RFB are similar and the centers

of their RFs are (xA, yA) and (xB , yB). The classification loss of anchor-free

detector is defined as

CL =
1

Npos

∑
(x,y)

FLcls(pθ(x, y), c∗(x, y)) (A.1)

where, FLcls is focal loss as in [14], Npos denotes the number of positive samples,

pθ(x, y) is the classification score predicted by the network with parameter θ for

location (x, y) and c∗(x, y) is the target. Then, the following relationships are

obtained

pθ(xA, yA) = S(Ne(RFA)) (A.2)

pθ(xB , yB) = S(Ne(RFB)) (A.3)

where S(·) is the sigmoid function defined as S(x) = 1
1+e−x . In the following,

pθ(xA, yA) and pθ(xB , yB) are simplified as pAθ and pBθ , respectively. The gra-

dients of the two locations are derived by using the chain rule of compound

function

∇θCL|(xA,yA) =

[
αγ(1− pAθ )γ−1 log(pAθ )

−α(1− pAθ )γ
1

pAθ

]
S(x)(1− S(x))︸ ︷︷ ︸

GA

∂Ne
∂θ

∣∣∣∣
(xA,yA)︸ ︷︷ ︸
DA

(A.4)

∇θCL|(xB ,yB) =

[
− (1− α)γpBθ

γ−1
log(1− pBθ )

+(1− α)pBθ
γ 1

1− pBθ

]
S(x)(1− S(x))︸ ︷︷ ︸

GB

∂Ne
∂θ

∣∣∣∣
(xB ,yB)︸ ︷︷ ︸
DB

(A.5)
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GA

GB
Supervised by location B

Supervised by location A

GA

GB

(a) (b)

Figure A.7: G-part curves. In (a), discrete labels are assigned and the loss is calculated by

FL [14]. In (b), smooth labels are assigned and the loss is calculated by GFL [26]

where α and γ are hyper-parameters and are set to 0.25 and 2 as in [14]. For

each location, the derived gradient is divided into two parts, G-part and D-part.

For example, ∇θCL|(xA,yA) can be expressed as GA · DA, where GA and DA

respectively represent the G-part and D-part of the gradient. GA and GB play

important role in gradient back-propagation. Figure A.7(a) shows how GA and

GB change as the functions of predicted scores. We note from the figure that,

GA and GB have different signs. If the predicted score is greater than 0.7 (or

smaller than 0.2), the gradient derived by A (or B) is high which dominates

the learning. If the score lies in [0.2, 0.7], the network is trained with both

of the two opposing gradients. If the score is close to 0.5, the total gradient

vanishes by counteraction. The classification inconsistency might be attributed

to inconsistent gradients (IG) when the network tries to balance the totally

different supervisions but with similar inputs. Obviously, the existing of IG

would lead to learning inefficiency and degrades the performance.

Using smooth label as the supervision, the classification is optimized by GFL

[26]. The gradients are uniformly derived as

∇θCL|(x,y) = 2(y − pθ) [(1− y) log(1− pθ) + y log(pθ)]

+(y − pθ)2
[
(1− y)

1

1− pθ
− y 1

pθ

]
︸ ︷︷ ︸

G

∂Ne
∂θ

∣∣∣∣
(x,y)︸ ︷︷ ︸

D

(A.6)
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where, y is the assigned smooth label and pθ is the simplification of pθ(x, y).

The curves of GA and GB are shown in Figure A.7(b). Smooth change of the

assigned labels only causes small deviation of the gradients. By comparing the

curves in Figure A.7(a) and Figure A.7(b), we found that gradient consistency

is guaranteed. As a result, the predicted classification scores are more consistent

with training objectives, as illustrated in Figure 1. Thus, smooth label greatly

alleviates classification inconsistency by addressing IG.

Figure 2 illustrates the quality estimation inconsistency. The accurately lo-

calized green box is suppressed by the less accurate yellow box in NMS. By

coupling with the IoU score, green box has a higher confidence than yellow box

and is maintained after NMS. Compared with only centerness score, coupling

with IoU score would provide more reasonable estimation of localization qual-

ity. Therefore, the deduced dynamic smooth label overcomes the limitation of

quality estimation inconsistency.

References

[1] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-

nition, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 770–778.

[2] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for

accurate object detection and semantic segmentation, in: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2014,

pp. 580–587.

[3] Y. Xue, J. Mao, M. Niu, H. Xu, M. Bi Mi, W. Zhang, X. Wang,

X. Wang, Point2seq: Detecting 3d objects as sequences, arXiv preprint

arXiv:2203.13394.

[4] E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for seman-

tic segmentation, IEEE Transactions on Pattern Analysis and Machine

Intelligence 39 (2017) 640–650.

27



[5] Y. Yang, Z. Feng, M. Song, X. Wang, Factorizable graph convolutional

networks, in: Advances in Neural Information Processing Systems, 2020,

pp. 20286–20296.

[6] Y. Y. Yang, J. Qiu, M. Song, D. Tao, X. Wang, Distilling knowledge from

graph convolutional networks, in: Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, 2020, pp. 7072–7081.

[7] Z. Huang, Z. Zeng, H. Yupan, B. Liu, D. Fu, J. Fu, Seeing out of the

box: end-to-end pre-training for vision-language representation learning,

in: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2021, pp. 12971–12980.

[8] J. Zhang, Z. Zhang, H. Su, W. Zou, X. Gong, F. Zhang, Quality inspection

based on quadrangular object detection for deep aperture component, IEEE

Transactions on Systems, Man, and Cybernetics: Systems 51 (2021) 1938–

1948.

[9] C. Guo, B. Fan, J. Gu, Q. Zhang, S. Xiang, V. Prinet, C. Pan, Progressive

sparse local attention for video object detection, in: Proceedings of the

IEEE/CVF International Conference on Computer Vision, 2019, pp. 3908–

3917.

[10] F. Wang, L. Zhao, X. Li, X. Wang, D. Tao, Geometry-aware scene text

detection with instance transformation network, in: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2018, pp. 1381–1389.

[11] G. Wang, X. Wang, F. Fan, Bin, C. Pan, Feature extraction by rotation-

invariant matrix representation for object detection in aerial image, IEEE

Geoscience and Remote Sensing Letters 14 (2017) 851–855.

[12] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object

detection with region proposal networks, IEEE Transactions on Pattern

Analysis and Machine Intelligence 39 (2017) 1137–1149.

28



[13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A. C.

Berg, Ssd: Single shot multibox detector, in: Proceedings of European

Conference on Computer Vision, Springer, 2016, pp. 21–37.

[14] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense

object detection, in: Proceedings of the IEEE International Conference on

Computer Vision, 2017, pp. 2980–2988.

[15] J. Redmon, A. Farhadi, Yolo9000: better, faster, stronger, in: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,

2017, pp. 7263–7271.

[16] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: uni-

fied, real-time object detection, in: Proceeding of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 779–788.

[17] H. Law, J. Deng, Cornernet: Detecting objects as paired keypoints, in:

Proceedings of the European Conference on Computer Vision, 2018, pp.

734–750.

[18] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, Q. Tian, Centernet: keypoint

triplets for object detection, in: Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, 2019, pp. 6568–6577.

[19] Z. Tian, C. Shen, H. Chen, T. He, Fcos: Fully convolutional one-stage ob-

ject detection, in: Proceedings of the IEEE/CVF International Conference

on Computer Vision, 2019, pp. 9627–9636.

[20] X. Zhou, D. Wang, P. Krahenbuhl, Object as points, arXiv preprint

arXiv:1904.07850v1.

[21] T. Kong, F. Sun, H. Liu, Y. Jiang, L. Li, J. Shi, Foveabox: beyond anchor-

based object detection, IEEE Transactions on Image Processing 29 (2020)

7389 – 7398.

29



[22] S. Zhang, C. Chi, Y. Yao, Z. Lei, S. Z. Li, Bridging the gap between anchor-

based and anchor-free detection via adaptive training sample selection, in:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 9759–9768.

[23] Z. Ge, S. Liu, Z. Li, O. Yoshie, J. Sun, Ota: Optimal transport assign-

ment for object detection, in: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2021, pp. 303–312.

[24] V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning,

arXiv preprint arXiv:1603.07285.

[25] B. Jiang, R. Luo, J. Mao, T. Xiao, Y. Jiang, Acquisition of localization

confidence for accurate object detection, in: Proceedings of the European

Conference on Computer Vision, 2018, pp. 784–799.

[26] X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li, J. Tang, J. Yang, Generalized

focal loss: Learning qualified and distributed bounding boxes for dense

object detection, in: Advances in Neural Information Processing Systems,

2020, pp. 21002–21012.

[27] S. Wu, X. Li, X. Wang, Iou-aware single-stage object detector for accurate

localization, Image and Vision Computing 97 (2020) 103911.

[28] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, C. L. Zitnick, Microsoft coco: Common objects in context, in:

Proceedings of European Conference on Computer Vision, Springer, 2014,

pp. 740–755.

[29] K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask r-cnn, in: Proceedings of

the IEEE International Conference on Computer Vision, 2017, pp. 2980–

2988.

[30] Z. Yang, S. Liu, H. Hu, L. Wang, S. Lin, Reppoints: Point set representa-

tion for object detection, in: Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2019, pp. 9656–9665.

30



[31] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, W. Yichen, Deformable

convolutional networks, in: Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2017, pp. 764–773.

[32] C. Zhu, Y. He, M. Savvides, Feature selective anchor-free module for single-

shot object detection, in: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp. 840–849.

[33] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Fea-

ture pyramid networks for object detection, in: Proceedings of the IEEE

International Conference on Computer Vision, 2017, pp. 936–944.

[34] W. Liu, S. Liao, W. Ren, W. Hu, Y. Yu, High-level semantic feature de-

tection: A new perspective for pedestrian detection, in: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2019, pp. 5182–5191.

[35] Z. Xingyi, Z. Jiacheng, K. Philipp, Bottom-up object detection by grouping

extreme and center points, in: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2019, pp. 850–859.

[36] C. G. Guo, B. Fan, Q. Zhang, S. Xiang, C. Pan, Augfpn: improving

multi-scale feature learning for object detection, in: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2020, pp. 12592–12601.

[37] Z. Shen, H. Shi, J. Yu, H. Phan, R. Feris, L. Cao, D. Liu, X. Wang,

T. Huang, M. Savvides, Improving object detection from scratch via gated

feature reuse, in: Proceedings of the British Machine Vision Conference,

2019.

[38] Y. Wu, K. He, Group normalization, in: Proceedings of the European

Conference on Computer Vision, 2018, pp. 3–19.

31



[39] Y. Jing, X. Liu, Y. Ding, X. Wang, E. Ding, M. Song, S. Wen, Dynamic

instance normalization for arbitrary style transfer, in: Proceedings of the

AAAI Conference on Artificial Intelligence, 2020, pp. 4369–4376.

[40] K. Shuang, Z. Lyu, J. Loo, W. Zhang, Scale-balanced loss for object detec-

tion, Pattern Recognition 117 (2021) 107997.

[41] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, D. Ren, Distance-iou loss: faster

and better learning for bounding box regressionl feature pyramid network,

in: Proceedings of the AAAI Conference on Artificial Intelligence, 2020,

pp. 12993–13000.

[42] J. Peng, H. Wang, S. Yue, Z. Zhang, Context-aware co-supervision for

accurate object detection, Pattern Recognition 121 (2022) 108199.

[43] C. Chen, J. Yu, Q. Ling, Sparse attention block: Aggregating contextual

information for object detection, Pattern Recognition.

[44] X. Zhang, F. Wan, C. Liu, R. Ji, Q. Ye, Freeanchor: Learning to match

anchors for visual object detection, in: Advances in Neural Information

Processing Systems, 2019, pp. 147–155.

[45] K. Kim, H. S. Lee, Probabilistic anchor assignment with iou prediction for

object detection, in: Proceedings of the European Conference on Computer

Vision, 2020, pp. 355–371.

[46] B. Zhu, J. Wang, Z. Jiang, f. Zong, S. Liu, Z. Li, J. Sun, Autoassign:

differentiable label assignment for dense object detection, arXiv preprint

arXiv:2007.03496.

[47] W. Luo, Y. Li, R. Urtasun, R. Zemel, Understanding the effective recep-

tive field in deep convolutional neural networks, in: Advances in Neural

Information Processing Systems, 2016, pp. 4898–4096.

[48] K. Chen, J. Wang, J. Pang, Y. Cao, X. Yu, X. Li, S. S. Sun, W. Feng, Z. Liu,

J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. L. Lu,

32



R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. Loy, D. Lin, Mmde-

tection: open mmlab detection toolbox and benchmark, arXiv preprint

arXiv:1906.07155v1.

[49] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, S. Savarese, Gen-

eralized intersection over union: a metric and a loss for bounding box

regression, in: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2019, pp. 658–666.

[50] Z. Tian, C. Shen, H. Chen, T. He, Fcos: a simple and strong anchor-

free object detector, IEEE Transactions on Pattern Analysis and Machine

Intelligence 44 (2021) 1922–1933.

[51] Z. Cai, N. Vasconcelos, Cascade r-cnn: delving into high quality object de-

tection, in: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2018, pp. 6154–6162.

[52] X. Lu, B. Li, Y. Yue, Q. Li, J. Yan, Grid r-cnn, in: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2019, pp. 7355–7364.

[53] J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, D. Lin, Libra r-cnn: towards

balanced learning for object detection, in: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp. 821–

830.

[54] Y. Li, Y. Chen, N. Wang, Z. Zhang, Scale-aware trident networks for ob-

ject detection, in: Proceedings of the IEEE/CVF Conference on Computer

Vision, 2019, pp. 6053–6062.

33


	1 Introduction
	2 Related Works
	2.1 Anchor-free detectors
	2.2 Label assignment strategy in object detection

	3 Our method
	3.1 Centerness based smooth label assignment
	3.2 IoU based dynamic label assignemnt
	3.3 Application of DSLA to anchor-free detectors

	4 Experiments
	4.1 Implementation Details
	4.2 Ablation study and analysis
	4.3 Application of DSLA to popular anchor-free detectors
	4.4 Comparison with state-of-the-art detectors

	5 Conclusion
	Appendix  A Inconsistency analysis

