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andrey.ignatoff@gmail.com, {nk, vanhoey, timofter, vangool}@vision.ee.ethz.ch

Figure 1: iPhone 3GS photo enhanced to DSLR-quality by our method. Best zoomed on screen.

Abstract

Despite a rapid rise in the quality of built-in smartphone cam-

eras, their physical limitations — small sensor size, compact

lenses and the lack of specific hardware, — impede them to

achieve the quality results of DSLR cameras. In this work we

present an end-to-end deep learning approach that bridges this

gap by translating ordinary photos into DSLR-quality images.

We propose learning the translation function using a residual

convolutional neural network that improves both color rendition

and image sharpness. Since the standard mean squared loss is

not well suited for measuring perceptual image quality, we intro-

duce a composite perceptual error function that combines con-

tent, color and texture losses. The first two losses are defined

analytically, while the texture loss is learned in an adversarial

fashion. We also present DPED, a large-scale dataset that con-

sists of real photos captured from three different phones and one

high-end reflex camera. Our quantitative and qualitative assess-

ments reveal that the enhanced image quality is comparable to

that of DSLR-taken photos, while the methodology is general-

ized to any type of digital camera.

1 Introduction

During the last several years there has been a significant

improvement in compact camera sensors quality, which has

brought mobile photography to a substantially new level. Even

low-end devices are now able to take reasonably good photos

in appropriate lighting conditions, thanks to their advanced soft-

ware and hardware tools for post-processing. However, when it

comes to artistic quality, mobile devices still fall behind their

DSLR counterparts. Larger sensors and high-aperture optics

yield better photo resolution, color rendition and less noise,

whereas their additional sensors help to fine-tune shooting pa-

rameters. These physical differences result in strong obstacles,

making DSLR camera quality unattainable for compact mobile

devices.

While a number of photographer tools for automatic image

enhancement exist, they are usually focused on adjusting only

global parameters such as contrast or brightness, without im-

proving texture quality or taking image semantics into account.

Besides that, they are usually based on a pre-defined set of rules

that do not always consider the specifics of a particular device.

Therefore, the dominant approach to photo post-processing is

still based on manual image correction using specialized re-

touching software.

1.1 Related work

The problem of automatic image quality enhancement has not

been addressed in its entirety in the area of computer vision,

though a number of sub-tasks and related problems have been al-

ready successfully solved using deep learning techniques. Such

tasks are usually dealing with image-to-image translation prob-

lems, and their common property is that they are targeted at re-
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moving artificially added artifacts to the original images. Among

the related problems are the following:

Image super-resolution aims at restoring the original im-

age from its downscaled version. In [4] a CNN architecture

and MSE loss are used for directly learning low to high reso-

lution mapping. It is the first CNN-based solution to achieve

top performance in single image super-resolution, comparable

with non-CNN methods [20]. The subsequent works devel-

oped deeper and more complex CNN architectures (e.g., [10, 18,

16]). Currently, the best photo-realistic results on this task are

achieved using a VGG-based loss function [9] and adversarial

networks [12] that turned out to be efficient at recovering plau-

sible high-frequency components.

Image deblurring/dehazing tries to remove artificially added

haze or blur from the images. Usually, MSE is used as a target

loss function and the proposed CNN architectures consist of 3 to

15 convolutional layers [14, 2, 6] or are bi-channel CNNs [17].

Image denoising/sparse inpainting similarly targets removal

of noise and artifacts from the pictures. In [28] the authors pro-

posed weighted MSE together with a 3-layer CNN, while in [19]

it was shown that an 8-layer residual CNN performs better when

using a standard mean square error. Among other solutions are

a bi-channel CNN [29], a 17-layer CNN [26] and a recurrent

CNN [24] that was reapplied several times to the produced re-

sults.

Image colorization. Here the goal is to recover colors that

were removed from the original image. The baseline approach

for this problem is to predict new values for each pixel based

on its local description that consists of various hand-crafted fea-

tures [3]. Considerably better performance on this task was ob-

tained using generative adversarial networks [8] or a 16-layer

CNN with a multinomial cross-entropy loss function [27].

Image adjustment. A few works considered the problem of

image color/contrast/exposure adjustment. In [25] the authors

proposed an algorithm for automatic exposure correction using

hand-designed features and predefined rules. In [23], a more

general algorithm was proposed that – similarly to [3] – uses

local description of image pixels for reproducing various pho-

tographic styles. A different approach was considered in [13],

where images with similar content are retrieved from a database

and their styles are applied to the target picture. All of these

adjustments are implicitly included in our end-to-end transfor-

mation learning approach by design.

1.2 Contributions

The key challenge we face is dealing with all the aforementioned

enhancements at once. Even advanced tools cannot notably im-

prove image sharpness, texture details or small color variations

that were lost by the camera sensor, thus we can not generate tar-

get enhanced photos from the existing ones. Corrupting DSLR

photos and training an algorithm on the corrupted images does

not work either: the solution would not generalize to real-world

and very complex artifacts unless they are modeled and applied

as corruptions, which is infeasible. To tackle this problem, we

present a different approach: we propose to learn the transfor-

mation that modifies photos taken by a given camera to DSLR-

Table 1: DPED camera characteristics.

Camera Sensor Image size Photo quality

iPhone 3GS 3 MP 2048× 1536 Poor

BlackBerry Passport 13 MP 4160× 3120 Mediocre

Sony Xperia Z 13 MP 2592× 1944 Average

Canon 70D DSLR 20 MP 3648× 2432 Excellent

Figure 2: The rig with the four DPED cameras from Table 1.

quality ones. Thus, the goal is to learn a cross-distribution trans-

lation function, where the input distribution is defined by a given

mobile camera sensor, and the target distribution by a DSLR sen-

sor. To supervise the learning process, we create and leverage a

dataset of images capturing the same scene with different cam-

eras. Once the function is learned, it can be further applied to

unseen photos at will.

Our main contributions are:

• A novel approach1 for the photo enhancement task based on

learning a mapping function between photos from mobile

devices and a DSLR camera. The target model is trained in

an end-to-end fashion without using any additional super-

vision or handcrafted features.

• A new large-scale dataset of over 6K photos taken syn-

chronously by a DSLR camera and 3 low-end cameras of

smartphones in a wide variety of conditions.

• A multi-term loss function composed of color, texture and

content terms, allowing an efficient image quality estima-

tion.

• Experiments measuring objective and subjective quality

demonstrating the advantage of the enhanced photos over

the originals and, at the same time, their comparable qual-

ity with the DSLR counterparts.

The remainder of the paper is structured as follows. In

Section 2 we describe the new DPED dataset. Section 3 presents

our architecture and the chosen loss functions. Section 4 shows

and analyzes the experimental results. Finally, Section 5 con-

cludes the paper.

1https://github.com/aiff22/DPED
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iPhone BlackBerry Sony Canon

Figure 3: Example quadruplets of images taken synchronously

by the DPED four cameras.

2 DSLR Photo Enhancement Dataset

In order to tackle the problem of image translation from poor

quality images captured by smartphone cameras to superior

quality images achieved by a professional DSLR camera, we

introduce a large-scale real-world dataset, namely the “DSLR

Photo Enhancement Dataset” (DPED)2, that can be used for the

general photo quality enhancement task. DPED consists of pho-

tos taken in the wild synchronously by three smartphones and

one DSLR camera. The devices used to collect the data are de-

scribed in Table 1 and example quadruplets can be seen in Fig-

ure 3.

To ensure that all cameras were capturing photos simultane-

ously, the devices were mounted on a tripod and activated re-

motely by a wireless control system (see Figure 2). In total, over

22K photos were collected during 3 weeks, including 4549 pho-

tos from Sony smartphone, 5727 from iPhone and 6015 photos

from each Canon and BlackBerry cameras. The photos were

taken during the daytime in a wide variety of places and in vari-

ous illumination and weather conditions. The photos were cap-

tured in automatic mode, and we used default settings for all

cameras throughout the whole collection procedure.

Matching algorithm. The synchronously captured images are

not perfectly aligned since the cameras have different viewing

angles and positions as can be seen in Figure 3. To address this,

we performed additional non-linear transformations resulting in

a fixed-resolution image that our network takes as an input. The

algorithm goes as follows (see Fig. 4). First, for each (phone-

DSLR) image pair, we compute and match SIFT keypoints [15]

across the images. These are used to estimate a homography

using RANSAC [21]. We then crop both images to the intersec-

tion part and downscale the DSLR image crop to the size of the

phone crop.

2http://dped-photos.vision.ee.ethz.ch

Figure 4: Matching algorithm: an overlapping region is deter-

mined by SIFT descriptor matching, followed by a non-linear

transform and a crop resulting in two images of the same resolu-

tion representing the same scene. Here: Canon and BlackBerry

images, respectively.

Training CNN on the aligned high-resolution images is infea-

sible, thus patches of size 100×100px were extracted from these

photos. Our preliminary experiments revealed that larger patch

sizes do not lead to better performance, while requiring consid-

erably more computational resources. We extracted patches us-

ing a non-overlapping sliding window. The window was mov-

ing in parallel along both images from each phone-DSLR im-

age pair, and its position on the phone image was additionally

adjusted by shifts and rotations based on the cross-correlation

metrics. To avoid significant displacements, only patches with

cross-correlation greater than 0.9 were included in the dataset.

Around 100 original images were reserved for testing, the rest

of the photos were used for training and validation. This proce-

dure resulted in 139K, 160K and 162K training and 2.4-4.3K test

patches for BlackBerry-Canon, iPhone-Canon and Sony-Canon

pairs, respectively. It should be emphasized that both training

and test patches are precisely matched, the potential shifts do not

exceed 5 pixels. In the following we assume that these patches

of size 3×100×100 constitute the input data to our CNNs.

3 Method

Given a low-quality photo Is (source image), the goal of the con-

sidered enhancement task is to reproduce the image It (target

image) taken by a DSLR camera. A deep residual CNN FW pa-

rameterized by weights W is used to learn the underlying trans-

lation function. Given the training set {Ijs , I
j
t }

N
j=1

consisting of

N image pairs, it is trained to minimize:

W∗ = argmin
W

1

N

N
∑

j=1

L
(

FW(Ijs ), I
j
t

)

, (1)

where L denotes a multi-term loss function we detail in sec-

tion 3.1. We then define the system architecture of our solution

in Section 3.2.
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Figure 5: Fragments from the original and blurred images taken

by the phone (two left-most) and DSLR (two right-most) cam-

era. Blurring removes high-frequencies and makes color com-

parison easier.

3.1 Loss function

The main difficulty of the image enhancement task is that in-

put and target photos cannot be matched densely (i.e., pixel-

to-pixel): different optics and sensors cause specific local non-

linear distortions and aberrations, leading to a non-constant shift

of pixels between each image pair even after precise alignment.

Hence, the standard per-pixel losses, besides being doubtful as

a perceptual quality metric, are not applicable in our case. We

build our loss function under the assumption that the overall per-

ceptual image quality can be decomposed into three independent

parts: i) color quality, ii) texture quality and iii) content quality.

We now define loss functions for each component, and ensure

invariance to local shifts by design.

3.1.1 Color loss

To measure the color difference between the enhanced and tar-

get images, we propose applying a Gaussian blur (see Figure 5)

and computing Euclidean distance between the obtained repre-

sentations. In the context of CNNs, this is equivalent to using

one additional convolutional layer with a fixed Gaussian kernel

followed by the mean squared error (MSE) function. Color loss

can be written as:

Lcolor(X,Y ) = ‖Xb − Yb‖
2

2
, (2)

where Xb and Yb are the blurred images of X and Y , resp.:

Xb(i, j) =
∑

k,l

X(i+ k, j + l) ·G(k, l), (3)

and the 2D Gaussian blur operator is given by

G(k, l) = A exp

(

−
(k − µx)

2

2σx
−

(l − µy)
2

2σy

)

(4)

where we defined A = 0.053, µx,y = 0, and σx,y = 3.

The idea behind this loss is to evaluate the difference in bright-

ness, contrast and major colors between the images while elim-

inating texture and content comparison. Hence, we fixed a con-

stant σ by visual inspection as the smallest value that ensures that

texture and content are dropped. The crucial property of this loss

is its invariance to small distortions. Figure 6 demonstrates the

MSE and Color losses for image pairs (X, Y), where Y equals X

shifted in a random direction by n pixels. As one can see, color

loss is nearly insensitive to small distortions (6 2 pixels). For
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Figure 6: Comparison between MSE and color loss as a function

of the magnitude of shift between images. Results were averaged

over 50K images.

higher shifts (3-5px), it is still about 5-10 times smaller com-

pared to the MSE, whereas for larger displacements it demon-

strates similar magnitude and behavior. As a result, color loss

forces the enhanced image to have the same color distribution as

the target one, while being tolerant to small mismatches.

3.1.2 Texture loss

Instead of using a pre-defined loss function, we build upon gen-

erative adversarial networks (GANs) [5] to directly learn a suit-

able metric for measuring texture quality. The discriminator

CNN is applied to grayscale images so that it is targeted specifi-

cally on texture processing. It observes both fake (improved) and

real (target) images, and its goal is to predict whether the input

image is real or not. It is trained to minimize the cross-entropy

loss function, and the texture loss is defined as a standard gener-

ator objective:

Ltexture = −
∑

i

logD(FW(Is), It), (5)

where FW and D denote the generator and discriminator net-

works, respectively. The discriminator is pre-trained on the

{phone, DSLR} image pairs, and then trained jointly with the

proposed network as is conventional for GANs. It should be

noted that this loss is shift-invariant by definition since no align-

ment is required in this case.

3.1.3 Content loss

Inspired by [9, 12], we define our content loss based on the ac-

tivation maps produced by the ReLU layers of the pre-trained

VGG-19 network. Instead of measuring per-pixel difference be-

tween the images, this loss encourages them to have similar fea-

ture representation that comprises various aspects of their con-

tent and perceptual quality. In our case it is used to preserve

image semantics since other losses don’t consider it. Let ψj() be

the feature map obtained after the j-th convolutional layer of the

4



VGG-19 CNN, then our content loss is defined as Euclidean dis-

tance between feature representations of the enhanced and target

images:

Lcontent =
1

CjHjWj

‖ψj

(

FW(Is)
)

− ψj

(

It
)

‖, (6)

where Cj , Hj and Wj denotes the number, height and width of

the feature maps, and FW(Is) the enhanced image.

3.1.4 Total variation loss

In addition to previous losses, we add total variation (TV)

loss [1] to enforce spatial smoothness of the produced images:

Ltv =
1

CHW
‖∇xFW(Is) +∇yFW(Is)‖, (7)

where C, H and W are the dimensions of the generated image

FW(Is). As it is relatively lowly weighted (see Eqn. 8), it does

not harm high-frequency components while it is quite effective

at removing salt-and-pepper noise.

3.1.5 Total loss

Our final loss is defined as a weighted sum of previous losses

with the following coefficients:

Ltotal = Lcontent + 0.4 · Ltexture + 0.1 · Lcolor + 400 · Ltv, (8)

where the content loss is based on the features produced by the

relu 5 4 layer of the VGG-19 network. The coefficients were

chosen based on preliminary experiments on the DPED training

data.

3.2 Generator and Discriminator CNNs

Figure 7 illustrates the overall architecture of the pro-

posed CNNs. Our image transformation network is fully-

convolutional, and starts with a 9×9 layer followed by four

residual blocks. Each residual block consists of two 3×3 layers

alternated with batch-normalization layers. We use two addi-

tional layers with kernels of size 3×3 and one with 9×9 kernels

after the residual blocks. All layers in the transformation net-

work have 64 channels and are followed by a ReLU activation

function, except for the last one, where a scaled tanh is applied

to the outputs.

The discriminator CNN consists of five convolutional lay-

ers each followed by a LeakyReLU nonlinearity and batch nor-

malization. The first, second and fifth convolutional layers are

strided with a step size of 4, 2 and 2, respectively. A sigmoidal

activation function is applied to the outputs of the last fully-

connected layer containing 1024 neurons and produces a proba-

bility that the input image was taken by the target DSLR camera.

3.3 Training details

The network was trained on a NVidia Titan X GPU for 20K iter-

ations using a batch size of 50. The parameters of the network
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Figure 7: The overall architecture of the proposed system.

were optimized using Adam [11] modification of stochastic gra-

dient descent with a learning rate of 5e-4. The whole pipeline

and experimental setup was identical for all cameras.

4 Experiments

Our general goal to “improve image quality” is subjective and

hard to evaluate quantitatively. We suggest a set of tools and

methods from the literature that are most relevant to our prob-

lem. We use them, as well as our proposed method, on a set of

test images taken by mobile devices and compare how close the

results are to the DSRL shots.

In section 4.1, we present the methods we compare to. Then

we present both objective and subjective evaluations: the former

w.r.t. the ground truth reference (i.e., the DSLR images) in sec-

tion 4.2, the latter with no-reference subjective quality scores in

section 4.3. Finally, section 4.4 analyzes the limitations of the

proposed solution.

4.1 Benchmark methods

In addition to our proposed photo enhancement solution, we

compare with the following tools and methods.

Apple Photo Enhancer (APE) is a commercial product

known to generate among the best visual results, while the al-

gorithm is unpublished. We trigger the method using the auto-

matic Enhance function from the Photos app. It performs image

improvement without taking any parameters.

Dong et al. [4] is a fundamental baseline super-resolution

method, thus addredding a task related to end-to-end image-to-

image mapping. Hence we chose it to apply on our task and

compare with. The method relies on a standard 3-layer CNN

and MSE loss function and maps from low resolution / corrupted

image to the restored image.
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Figure 8: From left to right, top to bottom: original iPhone photo and the same image after applying, respectively: APE, Dong et

al. [4], Johnson et al. [9], our generator network, and the corresponding DSLR image.

Table 2: Average PSNR/SSIM results on DPED test images.

Phone APE Dong et al. [4] Johnson et al. [9] Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

iPhone 17.28 0.8631 19.27 0.8992 20.32 0.9161 20.08 0.9201

BlackBerry 18.91 0.8922 18.89 0.9134 20.11 0.9298 20.07 0.9328

Sony 19.45 0.9168 21.21 0.9382 21.33 0.9434 21.81 0.9437

Johnson et al. [9] is one of the latest state of the art in

photo-realistic super-resolution and style transferring tasks. The

method is based on a deep residual network (with four resid-

ual blocks, each consisting of two convolutional layers) that is

trained to minimize a VGG-based loss function.

Manual enhancement. We asked a graphical artist to en-

hance color, sharpness and general look-and-feel of 9 images

using professional software (Adobe Photoshop CS6). A time

limit of one workday was given, so as to simulate a realistic sce-

nario. Figure 8 illustrates the ensemble of enhancement methods

we consider for comparison in our experiments. Dong et al. [4]

and Johnson et al. [9] are trained using the same train image pairs

as for our solution for each of the smartphones from the DPED

dataset.

4.2 Quantitative evaluation

We first quantitatively compare APE, Dong et al. [4], Johnson et

al. [9] and our method on the task of mapping photos from three

low-end cameras to the high-quality DSLR (Canon) images and

report the results in Table 3. As such, we do not evaluate global

image quality but, rather, we measure resemblance to a reference

(the ground truth DSLR image). We use classical distance met-

rics, namely PSNR and SSIM scores: the former measures sig-

nal distortion w.r.t. the reference, the latter measures structural

similarity which is known to be a strong cue for perceived qual-

ity [22]. First, one can note that our method is the best in terms

of SSIM, at the same time producing images that are cleaner and

sharper, thus perceptually performs the best. On PSNR terms,

our method competes with the state of the art: it slightly im-

proves or worsens depending on the dataset, i.e., on the actual

phone used. Alignment issues could be responsible for these mi-

nor variations, and thus we consider Johnson et al.’s method [4]

and ours equivalent here, while outperforming other methods.

In Fig. 8 we show visual results comparing to the source photo

(iPhone) and the target DSLR photo (Canon). More results are

in the supplementary material.

4.3 User study

Our goal is to produce DSLR-quality images for the end user of

smartphone cameras. To measure overall quality we designed

a no-reference user study where subjects are repeatedly asked

to choose the better looking picture out of a displayed pair.

6



BlackBerry BlackBerry Sony Sony

Figure 9: Four examples of original (top) vs. enhanced (bottom) images captured by BlackBerry and Sony cameras.

Users were instructed to ignore precise picture composition er-

rors (e.g., field of view, perspective variation, etc.). There was

no time limit given to the participants, images were shown in full

resolution and the users were allowed to zoom in and out at will.

In this setting, we did the following pairwise comparisons (ev-

ery group of experiments contains 3 classes of pictures, the users

were shown all possible pairwise combinations of these classes):

(i) Comparison between:

• original low-end phone photos,

• DSLR photos,

• photos enhanced by our proposed method.

At every question, the user is shown two pictures from differ-

ent categories (original, DSLR or enhanced). 9 scenes were used

for each phone (e.g., see Fig. 11). In total, there are 27 questions

for every phone, thus 81 in total.

(ii) Additionally, we compared (iPhone images only):

• photos enhanced by the proposed method,

• photos enhanced manually (by a professional),

• photos enhanced by APE.

We again considered 9 images that resulted in 27 binary se-

lection questions. Thus, in total the study consists of 108 binary

questions. All pairs are shuffled randomly for every subject, as

is the sequence of displayed images. 42 subjects unaware of the

goal of this work participated. They are mostly young scientists

with a computer science background.

Figure 10 shows results: for every experiment the first 3 bars

show the results of the pairwise comparison averaged over the

9 images shown, while the last bar shows the fraction of cases

when the selected method was chosen over all experiments.

The subfigures 10a-c show the results of enhancing photos

from 3 different mobile devices. It can be seen that in all cases

both pictures taken with a DSLR as well as pictures enhanced by

the proposed CNN are picked much more often than the original

ones taken with the mobile devices. When subjects are asked

to select the better picture among the DSLR-picture and our en-

hanced picture, the choice is almost random (see the third bar

in subfigures 10a-c). This means that the quality difference is

inexistent or indistinguishable, and users resort to chance.

Subfigure 10d shows user choices among our method, human

artist work, and APE. Although human enhancement turns out to

be slightly preferred to the automatic APE, the images enhanced

by our method are picked more often, outperforming even man-

ual retouching.

We can conclude that our results are of on pair quality com-

pared to DSLR images, while starting from low quality phone

cameras. The human subjects are unable to distinguish between

them – the preferences are equally distributed.

4.4 Limitations

Since the proposed enhancement process is fully-automated,

some flaws are inevitable. Two typical artifacts that can

appear on the processed images are color deviations (see

ground/mountains in first image of Fig. 12) and too high contrast

levels (second image). Although they often cause rather plau-

sible visual effects, in some situations this can lead to content

changes that may look artificial, i.e. greenish asphalt in the sec-

ond image of Fig. 12. Another notable problem is noise amplifi-

cation – due to the nature of GANs, they can effectively restore

high frequency-components. However, high-frequency noise is

emphasized too. Fig. 12 (2nd and 3rd images) shows that a high

noise in the original image is amplified in the enhanced image.

Note that this noise issue occurs mostly on the lowest-quality

photos (i.e., from the iPhone), not on the better phone cameras.

Finally, the need of a strong supervision in the form of

matched source/target training image pairs makes the process

tedious to repeat for other cameras. To overcome this, we pro-

pose a weakly-supervised approach in [7] that does not require

the mentioned correspondence.
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(a) BlackBerry phone (b) iPhone (c) Sony phone (d) Enhanced iPhone pictures

Figure 10: User study: results of pairwise comparisons. In every subfigure, the first three bars show the result of the pairwise

experiments, while the last bar shows the distribution of the aggregated scores.

Figure 11: The 9 scenes shown to the participants of the user study. Here: BlackBerry images enhanced using our technique.

Figure 12: Typical artifacts generated by our method (2nd row) compared with original iPhone images (1st row)

5 Conclusions

We proposed a photo enhancement solution to effectively

transform cameras from common smartphones into high quality

DSLR cameras. Our end-to-end deep learning approach uses

a composite perceptual error function that combines content,

color and texture losses. To train and evaluate our method we

introduced DPED – a large-scale dataset that consists of real

photos captured from three different phones and one high-end

reflex camera, and suggested an efficient way of calibrating the

images so that they are suitable for image-to-image learning.

Our quantitative and qualitative assessments reveal that the

enhanced images demonstrate a quality comparable to DSLR-

taken photos, and the method itself can be applied to cameras of

various quality levels.
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6 Appendix. Results of the proposed method: iPhone3

iPhone original Enhanced with our method

Figure 13: Image results of our method for iPhone DPED test images.

3All visual results for iPhone are available at http://people.ee.ethz.ch/˜ihnatova/dped_iphone.html
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iPhone original Enhanced with our method

Figure 14: Image results of our method for iPhone DPED test images.
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7 Appendix. Results of the proposed method: BlackBerry4

BlackBerry original Enhanced with our method

Figure 15: Image results of our method for BlackBerry DPED test images.

4All visual results for BlackBerry are available at http://people.ee.ethz.ch/˜ihnatova/dped_blackberry.html
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BlackBerry original Enhanced with our method

Figure 16: Image results of our method for BlackBerry DPED test images.
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8 Appendix. Results of the proposed method: Sony5

Sony original Enhanced with our method

Figure 17: Image results of our method for Sony DPED test images.

5All visual results for Sony are available at http://people.ee.ethz.ch/˜ihnatova/dped_sony.html
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Sony original Enhanced with our method

Figure 18: Image results of our method for Sony DPED test images.
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9 Appendix. Loss analysis

In this section, we study the contribution of different terms of the proposed perceptual loss function. For this purpose, we consider

four different loss combinations: 1) the proposed one [color + content + texture], 2) [content + texture] loss, 3) [MSE + texture]

loss and 4) [MSE] loss. For each of these target loss combinations, a CNN was trained on the DPED dataset and validated on its test

subset. The results of this experiment are provided in Table 3 and visual results are shown in Fig. 19. As one can see, the adversarial

network that stands behind the texture loss can cause significant color deviations, and the additional MSE term cannot effectively

suppress them since it is not precise in this task (images are not perfectly aligned). Content loss shows better results in this case

since it is less sensitive to image mismatches. Adding an extra color term further improves the resulting images, making the colors

more saturated and closer to the target. Single MSE demonstrates high PSNR and SSIM values and natural color rendition while

causing strong artifacts and slightly degrading image sharpness. Overall our proposed [color + content + texture] loss leads to the

best visual results while at the same time achieves top SSIM scores.

Table 3: PSNR/SSIM scores for different loss functions.

Phone Color + Content + Texture Content + Texture MSE + Texture MSE

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

iPhone 20.08 0.9201 19.05 0.9166 20.11 0.9125 20.56 0.9198

BlackBerry 20.07 0.9328 19.64 0.9312 20.13 0.9241 20.15 0.9292

Sony 21.81 0.9437 21.59 0.9426 21.72 0.9416 21.35 0.9453

Color + Content + Texture Content + Texture MSE + Texture MSE

Figure 19: Result images for iPhone camera for 4 different target loss functions.
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