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Abstract. The Direct Simulation Monte Carlo (DSMC) method has been used for more than 50 years to simulate rarefied 
gases. The advent of modern supercomputers has brought higher-density near-continuum flows within range. This in turn 
has revived the debate as to whether the Boltzmann equation, which assumes molecular chaos, can be used to simulate 
continuum flows when they become turbulent. In an effort to settle this debate, two canonical turbulent flows are examined, 
and the results are compared to available continuum theoretical and numerical results for the Navier-Stokes equations.  

INTRODUCTION  

The Direct Simulation Monte Carlo (DSMC) method was developed over 50 years ago by Graeme A. Bird1 and is 
now a well-established statistical particle technique for modeling low-density gas flows. Recent advances in 
supercomputing technology (currently approaching the exascale level) have brought higher-density near-continuum 
flows within reach. However, at higher densities, the Reynolds numbers can become large enough for the flows to be 
in the turbulent regime. The ability of the Boltzmann equation (BE) and of DSMC to represent turbulent flow has 
been questioned and debated2-5. The source of this controversy is an assumption inherent in the derivation of the BE: 
molecular chaos. Some researchers2,3 have suggested that molecular chaos globally eliminates correlations throughout 
the gas and thus is not compatible with the long-range velocity correlations that are needed to establish turbulent flow. 
Other researchers4,5 have suggested that molecular chaos applies only at the molecular level (for collisions) and thus 
does not preclude the BE and DSMC from representing turbulent flows. Herein, we attempt to settle this debate by 
performing DSMC molecular-level simulations of two canonical incompressible turbulent flows studied extensively 
by many investigators and comparing the DSMC results to continuum-level computational and theoretical results from 
the Navier-Stokes equations (NSEs).  

TAYLOR-GREEN FLOW 

The first canonical turbulent flow examined is Taylor-Green (TG) vortex flow6,7. TG flow is a canonical turbulent 
flow in which the generation of small-scale eddies and the corresponding cascade of energy from small to large 
wavenumbers can be observed numerically. TG flow is initialized in a triply periodic domain , ,L x y z L  
using velocity and pressure fields having only a single length scale L  and a single velocity scale 0V :  
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Here, , ,u v wu  is the velocity and p  is the pressure at position , ,x y zx  and time 0T , where 0T V t L . 
Thus, all of the kinetic energy is initially resident in a single wavenumber. Simulation results for the energy dissipation 
rate and the spectral energy distribution in TG flow are obtained for Re 450 . Here, the Reynolds number is defined 
as 0Re V L , where   and  are the gas density and the gas viscosity, respectively.  

The DSMC code SPARTA8 is used to simulate TG flow. SPARTA is an exascale-class open-source code capable 
of running efficiently on massively parallel, heterogeneous-architecture computational platforms. The computational 
domain is the cube defined by , ,L x y z L , where the domain length scale is 0.0001 mL . This domain is 
subdivided into 8 billion cells (20003) with an average of 30 particles per cell for a total of 0.24 trillion particles. The 
time step is 3 ps . The gas has molecular mass 2746.5 10  kgm  (nitrogen), specific heat ratio 5 3  (internal 
energy disabled), and reference-property values at STP (101325 Pa, 273.15 K) for pressure, temperature, and density. 
The (maximum) velocity 0V  corresponds to a Mach number of 0.3, so the final temperature increase is roughly 1%. 
These conditions marginally satisfy the incompressibility assumption. The total physical time simulated is 18 s .  

Molecular collisions are performed using the Variable Soft Sphere (VSS) model1. To improve the spatial 
discretization, collision partners are selected from within a sphere having a radius that equals the distance traveled by 
the particle during a time step9. Multiple collisions between the same molecules during the same time step are not 
allowed, in accord with molecular chaos for collisions. Based on DSMC simulations of the two-dimensional analog 
to TG flow, this procedure yields a viscosity that leads to an effective Reynolds number of Re 450 .  

The DSMC results are compared to Direct Numerical Simulation (DNS) results from the spectral element code 
Nek500010. The simulation domain is a cube with sides of length 2 , and the initial conditions are given by Eq. (1) 
with 0 1V . The fluid is incompressible with a constant density 1  and a constant viscosity 1 Re . The 
simulation domain is discretized using 32 seventh-order spectral elements along each coordinate direction. Each 
spectral element contains 38  grid points placed at the Gauss-Lobatto nodes, for a total of 256 grid points along each 
coordinate axis. Third-order-accurate temporal integration is employed with a fixed Courant number of 0.8. After the 
simulation, the velocity fields are interpolated onto a uniform grid using the seventh-order polynomials associated 
with the spectral elements as interpolants. After interpolating the data onto this grid of equally-spaced points, discrete 
Fourier transforms are applied to obtain the energy spectra. To verify the DNS approach, the TG simulations of 
van Rees11 at a Reynolds number of Re 1600  are reproduced. To confirm that the DNS results herein are mesh-
independent, simulations are performed on 2563 and 5123 grids (i.e., 32 and 64 elements along each coordinate axis). 
The energy dissipation rates are found to differ by only 0.02% at 9T  and by at most only 0.06% over 0 20T .  

Figure 1 presents the u  velocity component on the bounding planes of the domain from the DNS and DSMC 
simulations at 9T , the time of maximum dissipation. Except for being slightly noisy, the DSMC molecular results 
are virtually identical to the DNS Navier-Stokes results. At the time of maximum dissipation, the large-scale structures 
that are the remnants of the initial conditions are clearly discernible, but smaller-scale structures are also present.  

 
FIGURE 1. DNS and DSMC u  velocity fields at 9T  (maximum dissipation) have almost identical flow structures.  
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FIGURE 2. Left: energy dissipation rate as a function of time. Right: kinetic-energy spectra near maximum dissipation.  

Figure 2 presents the DSMC and DNS energy dissipation rates as a function of time. The DSMC and DNS results 
are in good agreement over the entire time period during which the energy dissipation rate is significant. Both methods 
yield the same rapid increase from 2T  to 6T , the same plateau from 6T  to 8T , the same maximum 
between 8T  and 9T , the same rapid decrease from 9T  to 15T , and the same slow decrease from 15T  
to 20T . DSMC does generally yield a slightly faster energy dissipation rate than DNS: the noticeably larger rate 
for 2T  may be caused by compressibility effects related to the finite initial Mach number (0.3). Results from the 
approximate viscous theory of Taylor and Green6 and the approximate inviscid theory of Brachet et al.7 are shown for 
comparison. Both theories are appropriate only for early times. For 2 4T , these two approximate theories bracket 
the DSMC and DNS results.  

Figure 2 also presents the DSMC and DNS three-dimensional kinetic-energy spectra at times near maximum 
dissipation. The DSMC spectra from 7.5T  to 9T  and the DNS spectrum at 9T  are in good agreement and 
both exhibit the Kolmogorov 5 3  law characteristic of turbulence over about 70% of a decade12. As time progresses, 
the kinetic energy in the low-wavenumber (large-wavelength) region of the spectrum decreases. During this time, 
energy is transferred from the initial large wavelength to smaller wavelengths, a process known as the energy cascade.  

MINIMAL COUETTE FLOW 

The second canonical turbulent flow examined is Minimal Couette Flow (MCF). As shown in Figure 3, MCF is a 
geometrically constrained three-dimensional Couette flow13. The domain is a rectangular cuboid bounded by walls on 
two opposite sides, and the origin of the coordinate system is located at the center of the cuboid. Its length in the x  
direction (streamwise) is 1.75xL h , its length in the z  direction (spanwise) is 1.2zL h , and the corresponding 
pairs of boundaries are periodic. The walls are separated in the y  direction (normal) by a distance 2yL h  and slide 
in the x  direction with tangential velocities 0wu V . Typically, the no-slip boundary condition is applied on the 
walls so that 0u V  at y h , respectively. In the DSMC simulations, these walls are fully accommodating. A fully 
accommodating wall reflects the incident particles so that the reflected particles have a velocity distribution function 
in equilibrium with the wall velocity and temperature1. This boundary condition enforces impermeability but allows 
a nonzero slip velocity to exist between the wall and the gas in the presence of shear. When the mean free path  is 
small relative to the gap half-height h  (as is the case in this simulation), this slip velocity su  is small compared to the 
wall velocity 0wu V . The normalized time and the Reynolds number are defined as 0T V t h  and 0Re V h , 
where the gas has density  and viscosity .  
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FIGURE 3. Minimal Couette Flow (MCF) physical domain.  

The DSMC code SPARTA8 is used to simulate MCF at Re 500 . The gap half-height is 500 mh , and the 
domain is divided into 1982×721×1359 cells (about 2 billion in total), which yields nearly cubical cells with a side 
length of 1.387 ms . Each of these cells has an average of 30 particles per cell (about 58 billion particles in total). 
Gas-molecule collisions are performed using the Hard Sphere (HS) collision model1. To improve spatial discretization, 
collision partners in a cell are selected from other particles within a sphere having a radius equal to the distance 
traveled by the particle during a time step9. The gas (argon) has molecular mass 2766.3 10  kgm  and specific heat 
ratio 5 3  and is initially at pressure 0 18190 Pap  and temperature 0 273.15 K  (the wall value), which yields 
a sound speed of 0 307.9 m/sc . A time step of 45.6 pst  is used, so particles move ~1% of the cell size s  
during each time step. The wall velocity 0 92.35 m/sV  corresponds to a Mach number of 0.3, so the conditions 
marginally satisfy incompressibility. The domain length scale h  has been selected to be large enough to establish 
continuum flow throughout the domain (small Knudsen layers) but small enough so that the simulation is tractable.  

Discretization errors in DSMC increase the effective transport properties14. For these simulations, the effective 
viscosity  and hence the effective Reynolds number Re  are determined by comparing a one-dimensional DSMC 
simulation of laminar Couette flow (the domain is a single column of three-dimensional cells in the y  direction) to 
the analytical expression for the wall shear stress of laminar Couette flow ( 0V h ). This comparison indicates 
that the discretization used for these simulations leads to an effective Reynolds number of Re 500 .  

The gas has an initial velocity field that is the sum of a laminar Couette flow ( 0u V y h ) plus a sinusoidal 
perturbation applied throughout the domain. A perturbation is needed to enable MCF to become turbulent because 
linear stability theory indicates that laminar Couette flow is stable for all Reynolds numbers13. In agreement with 
linear stability theory, DSMC simulations initialized with only the unperturbed laminar profile stay laminar until the 
simulations are terminated (at 100T ).  

To assess the accuracy of the DSMC results, DNS simulations are performed using the spectral element code 
Nek500010, which has previously been shown to accurately simulate published results for turbulent Couette flow15. 
The fluid is continuum, incompressible, and isothermal. The DNS domain is discretized using 32 seventh-order 
spectral elements along each coordinate direction, with each element containing 83 grid points at the Gauss-Lobatto 
nodes, for a total of 256 grid points along each side of the domain. To confirm mesh independence, the simulations 
are repeated with 192 and 320 grid points along each coordinate axis, with no significant changes observed in the 
turbulence statistics (e.g., Reynolds stresses change by less than 2%). The DNS simulations are initialized with the 
same initial conditions used in the DSMC simulations. To ensure sampling statistics from a fully turbulent flow field, 
the DNS simulation is run without sampling until 200T  and then run with sampling up to 3000T . Convergence 
of the turbulence statistics is quantified by monitoring the profile of average shear stress through the channel, which 
is constant for statistically converged turbulent Couette flow. Here, the average shear stress profile differs from a 
constant by less than 0.6% across the channel, indicating sufficient sampling.  

Figure 4 presents DSMC profiles of the streamwise velocity component u  on the midplane between the sliding 
walls ( 0y ) at 27 consecutive times for MCF. The first profile is at time 267.408T , and adjacent profiles are 
separated by a time increment of 8.422T . Two vortices of opposite sense that are oriented predominantly in the 
streamwise direction are present. These vortices have diameters comparable to the gap height 2h , so two vortices fit 
well into the spanwise extent of the domain since 2z yL L . As time progresses, these vortices pass through several 
cycles of regeneration and decay: the vortices are disrupted significantly in Profiles 4, 8, 12, 16, and 20, and additional 
vortices appear transiently in Profiles 18, 21, 22, and 26. This continuous cycle of regeneration and decay sustains the 
turbulence in this flow.  
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FIGURE 4. DSMC MCF streamwise velocity profiles on midplane between walls show sustained turbulence with several cycles 

of regeneration and decay of coherent structures.  

  
FIGURE 5. DSMC and DNS MCF results. Left: shear stress averaged over both walls. Right: law of the wall.  

Figure 5 presents the shear stress (averaged over both walls) versus time from the DSMC and DNS simulations. 
The turbulent values are normalized by their laminar values: lam 0V h . Over the time interval of 200-600T , 
the DSMC simulation yields a normalized shear stress of 3.13 0.18 , which agrees closely with the corresponding 
DNS value of 3.13 0.20  (if the DNS averaging duration is increased to 200-3000T , the expected value is 
unchanged). The DSMC simulation yields a normalized kinetic energy (not plotted herein) of 0.449 0.048, which 
agrees closely with the DNS value of 0.449 0.047 . Although not identical in detail because turbulent flow is chaotic, 
the DSMC and DNS fluctuations have similar magnitudes and durations16.  

Figure 5 also presents the mean velocity profiles from the DSMC and DNS simulations. These profiles are found 
by averaging the streamwise velocity component u  over times 200-600T  and over the streamwise and spanwise 
coordinates x  and z  at each fixed value of the normal coordinate y . The resulting profiles are plotted using standard 
wall-based quantities: position *ˆy yv  and velocity *ˆu u v , where *

wv , ˆ
wy y y , ˆ

wu u u , 
wy h , 0wu V , and w  is the average wall shear stress. The profiles from both walls are nearly identical, so their 

average is presented. The DSMC and DNS mean velocity profiles are almost identical and agree closely with the inner 
law u y  in the viscous sublayer ( 8y ). The log law 1 lnu y B  with 0.41 and 5.1B  is plotted 
for comparison. The DSMC and DNS mean velocity profiles approach the log law from below near 20y , but the 
Reynolds number Re 500  is too low for the log law to be observed over a large portion of the domain. Although 
the DNS profiles exactly satisfy the no-slip condition at the walls, the DSMC profiles have a slip velocity of 

0.5 m/ssu , which is small relative to the wall velocity of 0 92.35 m/sV  and thus not dynamically significant.  
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CONCLUSIONS 

The many aspects of agreement between the DSMC and DNS results indicate that the nonlinear regeneration 
processes in gas-kinetic methods (e.g., the BE) and continuum methods (e.g., the NSEs) are basically the same. The 
fact that the DSMC and DNS results agree closely for both the TG and MCF flows indicates that gas-kinetic methods 
like DSMC and, by extension, the BE that enforce molecular chaos only for gas-molecule collisions can indeed be 
used for quantitative investigations of turbulence. This conclusion is of significance to gas-kinetic theory because the 
assumption of molecular chaos for gas-molecule collisions plays key roles in derivations of the BE and of gas-kinetic 
molecular methods like DSMC. Additionally, DSMC can complement DNS because phenomena such as thermal 
relaxation and chemical reactions can be incorporated into DSMC at the molecular level in a straightforward manner. 
As supercomputing technology continues to advance, even larger Reynolds numbers will come within reach of DSMC.  
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