
DSML: A Proposal for XML Standards for Messaging Between
Components of a Natural Language Dialog System

Dragomir R. Radev, Nanda Kambhatla, Yiming Ye, Catherine Wolf, Wlodek Zadrozny
IBM TJ Watson Research Center

30 Saw Mill River Road
Hawthorne, NY 10532

{radev,nanda,yiming,cwolf,wlodz}@watson.ibm.com

Abstract

In this paper, we propose using standard XML messaging interfaces between components of natural language dialog
systems. We describe a stock trading and information access system, where XML is used to encode speech acts, trans-
actions and retrieved information in messages between system components. We use an XML/XSL based unification
approach to display personalized, multi-modal system responses. We are proposing the creation of XML standards for
all messaging between components of NLP systems. We hope that the use of XML in messaging will promote greater
interoperability of both data and code. The working name of the proposed standard messaging language(s) is DSML
(“Dialog System Markup Language”.)

1 Introduction

In this paper, we propose using XML based messaging
between the components of natural language dialog sys-
tems. We describe our dialog system, present an example
illustrating the XML messaging, and discuss the advan-
tages of using XML.

XML or eXtensible Markup Language (Bray et al.
[1998]) is an emerging worldwide standard (recommended
by the World Wide Web ConsortiumW 3C) for document
or message markup. XML is a descendant of the Stan-
dard Generalized Markup Language or SGML. XML al-
lows developers to create their own markup languages,
the semantics of which enable specific applications. XML
parsers are widely available for different platforms. Using
XML for messaging facilitates the development of com-
mon data abstractions leading to more modularity, and
sharing of data and code by researchers.

2 Architecture of NLD system

In our natural language dialog (NLD) processing system,
a user can express requests in any modality (e.g., speech,
text, graphics, etc.). The NLD system iteratively identifies
the communicative act(s) of a user, queries for and fills the
parameters of the identified action, executes the action,
and displays the results to the user using an appropriate
modality.

Our class of NLD systems can be considered to be a
sub-class of more general language engineering systems
such as the General Architecture for Text Engineering
(GATE) (Gaizauskas et al. [1996]) system. Whereas the

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Dialogue manager

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Presentation manager

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

FS
machine

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Text-to-
speech

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Speech
recognizer

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

SES/LT
memory

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Action
dictionary

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Action manager

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

LRR
manager

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

DB
manager













































































































Transaction
manager

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

GUI
builder

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

CGI/Java
input





























�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

XML
XML

Figure 1: Block diagram of architecture of natural lan-
guage dialog (NLD) processing system

GATE architecture is intended for general language engi-
neering systems, we are specifically focusing on language
engineering applications which involve a dialog with a
user to accomplish transaction execution or information
exchange.

The natural language dialog (NLD) processing system
(see Figure 1) consists of three main modules: the presen-
tation manager (PM), the dialog manager (DM), and the
action manager (AM).

2.1 Presentation Manager

The presentation manager is responsible for obtaining any
input from the user and for displaying the system’s re-
sponse to the user. The PM pre-processes the user input
and sends a modality and channel independent represen-



tation of the user input to the DM. For instance, if the
user input is spoken, the PM is responsible for executing
a speech recognition process to obtain a textual represen-
tation of the user’s utterance. If the user input is typed in,
the PM employs a natural language parser before sending
the user text to the DM.

The PM is also responsible for obtaining the system’s
response from the DM and presenting it to the user us-
ing appropriate channels and modalities. For instance, if
the user had spoken her request, the PM might decide to
present the system’s response in an audio format by ex-
ecuting a ”text-to-speech” process. The PM’s choice of
the specific output format is based on the modality and
the channel being used by the user, the bandwidth and
display capabilities of the channel, and the personal pref-
erences of the user. Thus, the PM might display a sys-
tem response from DM as a HTML table, as a textual de-
scription, as a spoken summary, etc. The user preferences
might either be inferred by the system or explicitly stated
by the user (through some mechanism for specifying pref-
erences). After displaying the system response, any user
input (e.g. a clarification or a correction or a new request)
is again sent to the PM as described above.

2.2 Dialog Manager

The dialog manager is responsible for determining the
specific action requested by the user and filling the pa-
rameters of the identified action by way of a dialog with
the user. For example, the parameters of a stock mar-
ket buy request are the ticker symbol of the company, the
number of shares, etc. After filling in the parameters, the
DM sends the filled action template to the AM for execu-
tion. The dialog manager uses the following modules:
FS (an augmented finite-state transition table), SES/LT
(session/long-term memory), and an action dictionary.

The finite-state transition table is used by the dialog
manager to track the current state of the discourse in re-
lation to the goal state. For example, if a money transfer
transaction with three parameters (A=amount, F=from ac-
count, T=to account) is to be performed, the initial state of
the finite state machine will correspond to (A=uninstantiated,
F=uninstantiated, T=uninstantiated). The final state cor-
responds to (A=instantiated, F=instantiated, T=instantiated).
The dialogue manager is in charge with driving the user
from the initial to the final state by asking appropriate
questions (which are encoded by the developer for each
possible machine node). As an example, if the user asks
to “move 100 dollars from my savings account”, the ma-
chine would go to the state that corresponds to (A=instantiated,
F=instantiated, T=uninstantiated) and appropriately, ask
the user “To which account do you want to transfer 100
dollars from your savings account?”

The session memory keeps track of the current in-
stantiated values of the various transaction parameters while
the long-term memory keeps track of previous interac-
tions (e.g., a successful login) and user preferences.

The action dictionary specifies the translation from
user requests (both transactions and information requests)
to action plans for the action manager to satisfy the re-
quests, for example, associating a “buy” request with a
particular database engine.

2.3 Action Manager

The action manager is responsible for determining the
best mechanism for executing an action, given a filled
template. Thus, for a stock news request, the AM de-
cides which information source to look at and the specific
information to look for. The AM sends the retrieved in-
formation to the DM. The AM is responsible for the co-
ordination of user-initiated transactions, database lookups
and information retrieval.

2.4 Use of XML for communication between
components

We use XML for three purposes:

• for messaging between the PM and DM, where the
messages encode multi-modal information requests
by the user and display requests by the DM,

• for messaging between the DM and AM, where the
messages encode action requests by the DM and
action responses by the AM,

• as a mechanism for generating personalized and modality-
specific output response for a user (see Section 4)
in the PM.

In the next two sections, we elaborate on the specific XML
messaging using a simple stock trading example.

3 XML messaging interfaces

In this section, we will demonstrate the XML messag-
ing interfaces using the example of a dialog between a
user and our NLD system for stock trading over the Web.
We assume that a user is logged in and can select actions
using either a menu of task selections or by typing free
form text in a text area. Suppose our user typed in the text
”How is Cisco doing today?”. The PM sends the follow-
ing XML to the DM.

<?xml version="1.0" encoding="UTF-8"?>
<CUSTOMER_REQUEST>
<INFORMATION_INPUT>
<TEXT VALUE="How is Cisco doing today?"/>
</INFORMATION_INPUT>
</CUSTOMER_REQUEST>

The DM parses the user text using a natural language
grammar, and identifies the speech act(s) in the textual
input. The DM uses the identified speech acts (Austin



[1962], Searle [1980]) to determine the intent of the user
and formulates a response (e.g. ask user for more infor-
mation, update session history, send request to AM to sat-
isfy user request, etc.). In this example, the DM identifies
it as a news information request, and sends the following
XML to the AM.

<?xml version="1.0" encoding="UTF-8"?>
<MESSAGE SPEECH_ACT="REQUEST">
<COMPANY_NEWS TIME="TODAY"
SYMBOL="CSCO">
</COMPANY_NEWS>
</MESSAGE>

The AM retrieves the latest stock quotes for Cisco
from a stock database server and uses ”language reuse and
regeneration” (LRR) (Radev [1998]) technology against a
set of information servers (e.g., CNNFn.com) to retrieve
the latest news about Cisco. The LRR component extracts
sentences from text sources to answer questions like the
one above without any deep semantic processing of the
original question. Note that the type of textual response
in the above example can only be obtained using LRR (in
the example, no information extraction is required). The
AM sends the following XML to the DM:

<?xml version="1.0" encoding="UTF-8"?>
<MESSAGE SPEECH_ACT="REPLY">
<COMPANY_NEWS>
<TIME DAY="5" MONTH="October"
HOUR="4:48PM"/>
<COMPANY SYMBOL="CSCO" CHANGE="-7 7/16"
PRICE="48 5/16" VOLUME="1,200,000">
<LRR> Shares of Cisco Systems Inc.
(CSCO) plummeted 7-7/16 to close
at 48-5/16 after the company
confirmed that the FTC is
investigating the company.
</LRR>

</COMPANY>
</COMPANY_NEWS>
</MESSAGE>

The DM sends the following XML display request to
the PM containing both the stock quote and LRR portions
of the above XML.

<?xml version="1.0" encoding="UTF-8"?>
<DISPLAY_REQUEST CURRENT_ACTION="NEWS">
<INFORMATION_DISPLAY>
<QUOTE_PARAMETERS COMPANY="CSCO"
PRICE="48 5/16" CHANGE="-7 7/16"
VOLUME="1,200,000"/>
<NEWS COMPANY="CSCO">
Shares of Cisco Systems Inc.
(CSCO) plummeted 7-7/16 to close
at 48-5/16 after the company
confirmed that the FTC is

investigating the company.
</NEWS>

</INFORMATION_DISPLAY>
</DISPLAY_REQUEST>

The PM retrieves the above message and presents the
information to the user. Note that the actual format and
style of the rendered response is determined by the PM
based on the available modalities and channels, their band-
width and display limitations, and the preferences of the
user. In this instance, the PM decides to ignore the quote
parameters and directly displays the LRR retrieved text to
the user. We will further discuss the presentation algo-
rithms in the next section.

The user sees the information displayed and enters the
text ”buy 150 shares at market” in the text area. The PM
sends the following XML message to the DM.

<?xml version="1.0" encoding="UTF-8"?>
<CUSTOMER_REQUEST>
<INFORMATION_INPUT>
<TEXT VALUE="buy 150 shares at market"/>

</INFORMATION_INPUT>
</CUSTOMER_REQUEST>

The DM identifies the user request as a ”BUY” trans-
action request where the ”COMPANY” is ”CSCO” (in-
ferred from history of the conversation). The DM uses
system defaults and the user account profile to obtain the
values of ”ACCT TYPE”, ”ACCT NO”, and ”ALLORNONE”.

The DM sends the following XML to the PM, request-
ing confirmation from the user for all the parameters of
the buy request. In the XML excerpt below, the param-
eters of the buy transaction that are directly entered by
the user (e.g. QUANTITY, ORDERTYPE) are differen-
tiated from the parameters that are inferred by the DM
(based on the session history and/or the user preferences,
e.g. COMPANY, ALLORNONE, etc.). This potentially
enables the PM to display these parameters differently.

<?xml version="1.0" encoding="UTF-8"?>
<DISPLAY_REQUEST>
<INFORMATION_REQUEST CURRENT_ACTION="BUY">
<CONFIRM PARAMETER_TYPE="USER">
<BUY_PARAMETERS QUANTITY="150"
ORDERTYPE="MARKET"/>

</CONFIRM>
<CONFIRM PARAMETER_TYPE="SYSTEM">
<BUY_PARAMETERS COMPANY="CSCO"
PRICE="48 5/16" ALLORNONE="YES"
ACCT_TYPE="MARGIN" ACCT_NO="1234"/>

</CONFIRM>
</INFORMATION_REQUEST>
</DISPLAY_REQUEST>

The PM displays this information in a graphical tab-
ular format. The user uses the menu item ”QUANTITY”
to change the filled in parameter from 150 to 100. The
PM sends XML to DM indicating the parameter which
changed and the change itself.



<?xml version="1.0" encoding="UTF-8"?>
<CUSTOMER_INPUT>
<INFORMATION_INPUT CURRENT_ACTION="BUY">
<BUY_PARAMETERS QUANTITY="100"/>

</INFORMATION_INPUT>
</CUSTOMER_INPUT>

The DM retrieves the changed parameter and sends
an updated buy action template with all parameters filled
to the user for final confirmation. The user clicks a but-
ton to confirm the purchase. The PM sends XML to the
DM indicating a confirmed intention to ”BUY” with the
stated parameters. The DM sends a filled action template
to the AM for execution. The AM completes the trans-
action (against a transactional database) and sends an ac-
tion confirmation message (XML) to the DM. The DM
then sends an XML message confirming the purchase of
shares with the parameters stated. The PM displays the
information to the user.

<?xml version="1.0" encoding="UTF-8"?>
<DISPLAY_REQUEST>
<ACTION_EXECUTED CURRENT_ACTION="BUY"
CONFIRMATION_NO="4567">
<BUY_PARAMETERS COMPANY="CSCO"
QUANTITY="100" ORDERTYPE="MARKET"
PRICE="48 5/16" ALLORNONE="YES"
ACCT_TYPE="MARGIN" ACCT_NO="1234"/>

</ACTION_EXECUTED>
</DISPLAY_REQUEST>

In the above example, using XML enables us to en-
code semantic abstractions in a platform (or language) in-
dependent manner. This in turn enables us to separate
content generation from content presentation and drive
the response to the user through multiple modalities. It
is obvious that the separation of form and content is en-
abled by the modular architecture more than the specific
language used. We advocate the use of XML primarily
for convenience (standardized language, existing genera-
tion and parsing tools, etc.). In the next section, we dis-
cuss an XML based scheme for generating personalized
responses on varied modalities in the presentation man-
ager.

4 Personalized, Multi-Modal Content
Presentation

As mentioned earlier, the presentation manager (PM) re-
ceives modality independent responses from the dialog
manager (DM), and generates a personalized response for
a specific modality based on the user’s preferences and
display capabilities and time and/or space constraints. Sev-
eral mechanisms exist for transforming the modality inde-
pendent responses to a specific output for a given modal-
ity. In this section, we briefly discuss a mechanism based
on XML/XSL and functional unification for achieving the

transformation. XSL or eXtensible Style Language ((Clark
and Deach [1998])) is an emerging standard for trans-
forming an XML document into formatting objects or into
other XML documents.

Using the XML/XSL unification approach for presen-
tation, we match the XML sent by DM to PM against a set
of IF/THEN rules. Whenever XML fragments match the
”IF” portion of any of these rules, the corresponding rule
is activated and the ”THEN” portion of the rule contains
the transformed XML (e.g., an HTML table). Modality
specific output and personalization is achieved by storing
a set of rules (e.g., as an XSL document) for each mode
of output (e.g., text paragraph, HTML table, etc.) and
for each user (to encode personalized choices of presen-
tation). The matching of rules occurs via a unification
mechanism which can be used to fill in personalized pa-
rameter values.

We illustrate this approach with a few examples. In
these examples, we assume that the PM uses the following
algorithm:

1. GET MESSAGE %M FROM THE DM
2. SELECT USER MODEL %U
3. SELECT OUTPUT MODE %C
4. %M <--- PERSONALIZE (%M,%U)
5. %M <--- RENDER_FOR_MODALITY (%M,%C)
6. SEND %M TO BROWSER
7. GOTO 1.

We assume that the PM executes steps 2. and 3. using
some algorithm based on the display constraints and sys-
tem defaults. We further assume Steps 4. and 5. are per-
formed using unification (e.g., using Michael Elhadad’s
FUF system (Elhadad [1991])) in an XSL or other stan-
dard styling platform.

Please note that currently, the XSL syntax and speci-
fications are in flux. So, we are using our own syntax for
the examples below. However, we are certainly advocat-
ing the use of a standard ”pattern/action” rule matching
mechanism (provided by XSL) by the PM. In the exam-
ples below, the ”IF” portion of the rules is specified using
the ”<INPUT>” element and the ”THEN” portion of the
rules is specified using the ”<OUTPUT>” element. We
use ”&” to denote function invocation and ”%” to denote
variable names.

Text Generation: In this mode of output, any lan-
guage reuse components (i.e. <LRR> components in
XML sent by DM) are ignored and text is generated from
scratch using the parameters of the action. A sample rule
might look like the following:

<INPUT>
<MESSAGE>
<TIME DAY="%D" MONTH="%M"

HOUR="%T"/>
<COMPANY_NEWS>
<COMPANY SYMBOL="%S"

CHANGE="%C" PRICE="%P"/>



</COMPANY_NEWS>
</MESSAGE>
</INPUT>
<OUTPUT>
<MESSAGE>
<HTML><P>&text_generate(COMPANY_NEWS,

%D,%M,%T,%S,%C,%P)</P>
</HTML>

</MESSAGE>
</OUTPUT>

In this example, the rule uses variables to store the values
of the parameters (e.g., DAY, MONTH, etc.) and calls
an external function &text generate() to generate text and
format it in HTML based on the parameters.

Language Reuse: In this mode of output, all ele-
ments other than <LRR> are ignored. The rule activates
only if an<LRR> element is present in the XML sent by
DM. The output HTML contains the value of the<LRR>
element.

<INPUT>
<MESSAGE>
<COMPANY_NEWS>
<COMPANY><LRR> %L </LRR></COMPANY>
</COMPANY_NEWS>

</MESSAGE>
</INPUT>
<OUTPUT>
<MESSAGE><HTML><P>%L</P></HTML>
</MESSAGE>
</OUTPUT>

HTML table: In this mode of output, the parameters
are extracted, any <LRR> elements are ignored, and an
HTML table is directly generated from the parameters in
the ”THEN” portion of the rule.

<INPUT>
<MESSAGE>

<TIME DAY="%D" MONTH="%M"
HOUR="%T"/>

<COMPANY_NEWS>
<COMPANY SYMBOL="%S"

CHANGE="%C" PRICE="%P"/>
</COMPANY_NEWS>

</MESSAGE>
</INPUT>
<OUTPUT>
<MESSAGE>
<HTML>
<TABLE>
<TR>
<TH> Day </TH>
<TH> Month </TH>
<TH> Time </TH>
<TH> Stock Symbol </TH>
<TH> Change </TH>
<TH> Price </TH>

</TR>
<TR>
<TD> %D </TD>
<TD> %M </TD>
<TD> %T </TD>
<TD> %S </TD>
<TD> %C </TD>
<TD> %P </TD>

</TR>
</TABLE>

</HTML>
</MESSAGE>
</OUTPUT>

Personalization: We assume personalization infor-
mation is also encoded as rules. For example, suppose
a user prefers to read text that is summarized to 30% of
its original length. The rule is expressed as

<INPUT>
<MESSAGE>
<COMPANY_NEWS> <LRR>%L</LRR>
</COMPANY_NEWS>

</MESSAGE>
</INPUT>
<OUTPUT>
<MESSAGE>
<LRR> &text_summarize (%L, .3) </LRR>

</MESSAGE>
</OUTPUT>

Here is another example of a user model (the ”iden-
tity” user model which doesn’t indicate any user-specific
preferences):

<INPUT> %I </INPUT>
<OUTPUT> %I </OUTPUT>

The ”identity” user model I has the following prop-
erty:

PERSONALIZE (%X, I) = %X

Both &text generate() and &text summarize() are ex-
ternal functions that implement the semantics of XML.

5 Discussion

In this paper, we have proposed to standardize the lan-
guages for messaging between the different components
of a dialog processing system that uses the dialog sys-
tem markup language (DSML). We also described our
natural language dialog (NLD) system and presented the
XML messaging interfaces between the components of
the NLD system as an illustration of the proposed stan-
dard. Using XML enables us to:

• move towards a plug-and-play architecture. For ex-
ample, we plan to build XML interfaces to enable



different text summarization and machine transla-
tion modules to connect to the PM, grammar parsers
to connect to the DM, and information retrieval mod-
ules to connect to the AM.

• have platform-independent components. For exam-
ple using Java for coding DM on NT does not con-
strain any other modules in any way.

• encode semantic abstractions such as transactions,
actions, speech acts, etc. as data.

• separate content from presentation, which in turn
enables us to generate personalized modality spe-
cific content using unification.

• build facilitators for existing systems.

6 Related Work

Our research is related to previous work on agent com-
munication languages and in architectures for natural lan-
guage generation.

6.1 Agent communication languages

An overview of agent communication languages is avail-
able in (Singh [1998]). Here we will mention some of the
most relevant languages that have influenced our design,
namely KQML and Arcol.

KQML (Knowledge Query and Manipulation Lan-
guage) (Finin et al. [1994]) is a language and protocol
for exchanging information and knowledge and is part of
the ARPA Knowledge Sharing Effort (Patil et al. [1992]).
KQML defines an extensible set of performatives which
specify the actions that intelligent agents can perform or
attempt to perform on themselves and on each other’s
knowledge bases. KQML has been used in concurrent
engineering, intelligent planning, and scheduling.

Arcol, developed at France Télécom is an agent-based
communication language, which unlike KQML, has prim-
itives that can be composed and uses belief information to
achieve communicative goals.

6.2 Architectures for Natural Language En-
gineering

Several large-scale architectural projects have similar goals
to ours:

The General Architecture for Text Engineering (GATE;
Gaizauskas et al. [1996]) is a general software environ-
ment for research and development in natural language
engineering. The GATE architecture can be used both
to develop language engineering modules or to develop
large scale, end-to-end, real world applications of natural
language techniques.

Our NLD system presented in section 2 is specifically
designed for supporting the design and development of

natural language dialog systems, where the system is in-
volved in an iterative dialog with the user to satisfy her
transactional or information requests. Thus, our system is
less general in scope than the GATE system.

XML at the LTG in Edinburgh The MUC-7 System
built by the Language Technology Group at the Univer-
sity of Edinburgh (Mikheev et al. [1998]) used a set of
reusable text handling tools, which interacted with each
other using XML input/output streams in a UNIX pipeline.
The whole system was designed to enable inter-operability
of tools and data for different tasks and applications. The
tools do not convert the XML into internal representa-
tions, but instead just operate on the elements and at-
tributes of interest, potentially creating new elements or
modifying existing ones. Our NLD system is designed to
be similarly flexible, but for the specific domain of natural
language dialog processing.

Finally, Tipster (http://www.fas.org/irp/program/
process/tipster.htm) is a DARPA effort to build
text applications for areas ranging from Document De-
tection to Information Extraction using a set of general-
purpose building blocks. Tipster’s architecture has a wide
acceptance among the research community, however its
focus on batch-mode applications makes it unsuitable for
natural language dialog.

7 Conclusion and Future Work

We are proposing the use of XML/XSL technologies as
a standard messaging format for the components of nat-
ural language dialog systems. The XML can be used at
several levels. For instance, we can use XML for repre-
senting the logical forms output by NLP parsers and also
to represent the dialog acts for dialog processing. Simi-
larly, XML can be used to represent contextual informa-
tion needed for utterance interpretation (e.g., background
knowledge, previous discourse, etc.).

We envision a phased approach to building XML based
standards for NLP systems:

Phase I There is a broad usage of XML for NLP/dialog
processing systems leading to more modular and
easily exchangeable code and data. However, each
group uses their own custom XML. The groups com-
municate with each other.

Phase II Standard XML languages are identified for dif-
ferent domains (e.g., brokerage systems, ATIS, di-
rectory services, etc.). Thus, we agree both on the
syntax and the vocabulary of the representations.
We foresee potential development of transducers
to transform messages in other languages such as
KQML to XML. Like XML, our XML-based stan-
dard will facilitate the encoding of speech acts such
as ”request”, ”assert”, ”reply”, etc.

Phase III Standard semantics are identified for interpret-
ing the standard XML languages, leading to inter-



operable data and code. This stage will involve the
use of content languages such as KIF(Genesereth
and Fikes [1992]) or Lisp as well as standardized
domain ontologies.

Acknowledgments

We are extremely grateful to David Epstein, Kathy Bohrer,
and Scott McFaddin for their review of this paper and
helpful comments. We also thank Sylvie Levesque and
Joyce Chai for participating in several key design discus-
sions and for their very helpful comments. Hongyan Jing
made some very useful remarks which we incorporated in
the paper.

References

J. Austin. How to do things with words. Boston, Harvard
University Press, 1962.

Tim Bray, Jean Paoli, and C.M. Sperberg-McQueen.
Extensible markup language (XML) 1.0. Technical
Report http://www.w3.org/TR/REC-xml, World Wide
Web Consortium Recommendation, 1998.

James Clark and Stephen Deach. Extensible
stylesheet language (XSL) 1.0. Technical Report
http://www.w3.org/TR/WD-xsl-19980818.html, World
Wide Web Consortium Working Draft, 1998.

Michael Elhadad. FUF: The universal unifier - user
manual, version 5.0. Technical Report CUCS-038-91,
Columbia University, 1991.

Tim Finin, Rich Fritzson, Don McKay, and Robin McEn-
tire. KQML - a language and protocol for knowledge
and information exchange. Technical Report CS-94-02,
Computer Science Department, University of Mary-
land and Valley Forge Engineering Center, Unisys Cor-
poration, 1994.

Robert Gaizauskas, Hamish Cunningham, Yorick Wilks,
Peter Rodgers, and Kevin Humphreys. GATE: An en-
vironment to support research and development in nat-
ural language processing. In Proceedings of the 8th
IEEE International Conference on Tools with Artificial
Intelligence, Toulouse, France, 1996.

Michael Genesereth and Richard Fikes. Knowledge inter-
change format, version 3.0 reference manual. Techni-
cal Report Logic-92-1, Computer Science Department,
Stanford University, Stanford, California, 1992.

Andrei Mikheev, Claire Grover, and Marc Moens. De-
scription of the LTG system used for MUC-7. Tech-
nical Report http://www.ltg.ed.ac.uk/papers/muc.ps,
HCRC Language Technology Group, University of Ed-
inburgh, 1998.

R. S. Patil, R. E. Fikes, P. F. Patel-Schneider, D. McKay,
T. Finin, T. Gruber, and R. Neches. The DARPA
knowledge sharing effort: Progress report. In C. Rich,
W. Swartout, and B. Nebel, editors, Knowledge Repre-
sentation, pages 777–788, 1992.

Dragomir R. Radev. Language Reuse and Regeneration:
Generating Natural Language Summaries from Multi-
ple On-Line Sources. PhD thesis, Department of Com-
puter Science, Columbia University, New York, 1998.

J. Searle. The background of meaning. In J.R. Searle,
F. Kiefer, and M. Bierwisch, editors, Speech act theory
and progmatics. 1980.

Munindar P. Singh. Agent communication languages: Re-
thinking the principles. IEEE Computer, 31(12):40–47,
1998.


