DSPs, BRAMs and a Pinch of Logic: New Recipes for AES on FPGAs

Saar Drimer!, Tim Giineysu?, Christof Paar?
! Computer Laboratory, University of Cambridge, UK

2Horst Gortz Institute for IT Security, Ruhr University Bochum, Germany

http://www.cl.cam.ac.uk/~sd410, {gueneysu, cpaar}@crypto.rub.de

Abstract

We present an AES cipher implementation that is based
on the BlockRAM and DSP units embedded within Xilinx’s
Virtex-5 FPGAs. An iterative “basic” module outputs a
32 bit column of an AES round each clock cycle, with a
throughput of 1.76 Gbit/s when processing two 128 bit in-
puts. This construct is replicated four times for a 128 bit
datapath for a full AES round with 6.21 Gbit/s throughput
when processing eight inputs. Finally, the “round” mod-
ule is replicated ten times for a fully unrolled design that
vields over 55 Gbit/s of throughput. The combination and
arrangement of the specialized embedded functions avail-
able in the FPGA allows us to implement our designs using
very few traditional user logic elements such as flip-flops
and lookup tables, yet still achieve these high throughputs.
The complete source code for these designs is made publicly
available for use in further research and for replicating our
results. Our contribution ends with a discussion of com-
paring cipher implementations in the literature, and why
these comparisons can be meaningless without a common
reporting style, platform, or within the context of a specific
constrained application.

1 Introduction

The Advanced Encryption Standard (AES) [16] is a
block cipher used in many applications with a rich litera-
ture discussing how to optimize implementations of it for
both software and hardware. Most available AES imple-
mentations for reconfigurable hardware, however, are based
on traditional configurable logic and do not exploit the full
potential of modern devices. Our implementation focuses
on new embedded functions inside of the Xilinx Virtex-5
FPGA [17], such as large dual-ported RAMs and digital
signal processing (DSP) blocks [18] with the goal of min-
imizing the use of registers and look-up tables that could
otherwise be used for other functions. Therefore, the de-
sign we present will be especially appealing in applica-

tions where user logic is scarce, yet not all embedded mem-
ory and DSP blocks are used. We have created a “basic”
eight-stage pipeline module based on a combination of two
36 Kbit BlockRAM (BRAM) and four DSP blocks, which
outputs one 32 bit column of an AES round each cycle with
a feedback loop for iterative operation. This basic module
is replicated four times for a full AES round with a 128 bit
datapath, which, in turn, is replicated ten times for a fully
unrolled operation; we do not include the key expansion
function in these designs. All Verilog source code for the
three variants is publicly available for reuse, evaluation, and
reproduction of our results.

We begin with a background discussion in Sections 2 and
3 followed by the implementation details in Section 4 and
results in Section 5. In Section 6 we discuss comparing
results of cipher implementations from multiple sources,
along with a brief survey of previous work.

2 AES cipher operation

We encrypt data when we want to keep it confidential
and illegible to people who are not meant to see it in its
“plaintext” form. Encryption is used in a wide range of
applications, some requiring large amounts of data to be
encrypted or decrypted at very high speeds. Symmetric
encryption using block ciphers is often used, with the se-
curity relying on a pre-established secret key shared be-
tween sender(s) and receiver(s). AES has been designed
as a substitution-permutation network (SPN) and uses be-
tween 10 to 14 encryption rounds (depending on the length
of the key) for a full encryption and decryption of one
128 bit block. In a single round, the AES operates on all
of the 128 input bits represented as a 4 x 4 matrix of bytes.
Fundamental operations of the AES are performed based
on byte-level field arithmetic over the Galois Field GF(28)
so that operands can be represented in 8 bit vectors. The
AES cipher has been designed to be efficient in both hard-
ware and software, and is versatile in that it can be made
either area-optimized, iterative, and slow, or “unrolled” and
fast by parallelizing round operations and pipelining. Its

http://www.cl.cam.ac.uk/~sd410, {gueneysu,cpaar}@crypto.rub.de

8 bit vector representation allows implementations on very
small processing units, while 128 data paths allow for giga-
bit throughput. We now describe the operation of AES and
how we use it in our designs.

When describing the cipher’s operations, A is denoted as
the input block consisting of bytes a; ; in columns C'; and
rows R;, where j and 7 are the respective indices ranging
between 0 and 3 .

ap,0 ap,1 Gop2 Go,3
A= aio aipi1 ai2 ai3
2,0 QA21 0Aa22 23
a3zo as;1 as2 ass

An AES round consists of four basic operations on A:

1. SubBytes: all input bytes of A are substituted with val-
ues from a non-linear 8 x 8 bit S-Box.

2. ShiftRows: the bytes of rows R; are cyclically shifted
to the left by 0, 1, 2 or 3 positions.

3. MixColumns: ~ columns C; are matrix-vector-
multiplied by a matrix of constants in G F'(2%).

4. AddRoundKey: a round key K, is added to the input
using GF(28) arithmetic.

The sequence of these four operations define an AES
round, and they are iteratively applied for a full encryption
or decryption of a single 128 bit input block. Since some of
the operations above rely on GF'(28) arithmetic we are able
to combine them into a single complex operation. The Ad-
vanced Encryption Standard defines such an approach for
software implementations on 32 bit processors with the use
of large lookup tables. This approach requires four 8 to 32
bit lookup tables for the four round transformations, each
the size of 8 Kbit. We can compute these transformation
tables, Ty (0.3, in the following way:

S[z] x 02 [S[x] x 03
= | g nil = | g
| S[z] x 03 | | S[z]
s e
x| X 03 T
Bl =1 g0 x 02 Tsltl = | gla] x 03
| S[z]] | Sfx] x 02 |

S[x] denotes a table lookup in the original 8 x 8 bit AES
S-Box (for a more detailed description of this AES opti-
mization see NIST’s FIPS-197 [16]). The last round, how-
ever, is unique in that it omits the MixColumns operation,
so we need to give it special consideration. There are two
ways for computing the last round, either by “reversing” the

MixColumns operation from the output of a regular round
by another multiplication in GF(28), or creating dedicated
“last round” T-tables, one per regular T-table. The latter ap-
proach will allow us to maintain the same datapath for all
rounds, so we chose this method and denote these T-tables
as T[j]/. With all T-tables at hand, we can redefine all trans-
formation steps of a single AES round as

E; = K, ® Tolao,;] ® Ti[ar,(j4+1 mod 4)] ®
Tslas,(j42 mod 4)] ® 13[a3,(j43 moa 4] (1)

where K,.[;] is a corresponding 32 bit “sub-key” and E;
denotes one of four encrypted output columns of a full
round. We now see that based on only four T-table lookups
and four XOR operations, a 32 bit column EJ/ can be com-
puted. To obtain the result of a full round, Equation (1) must
be performed four times with all 16 bytes.

Input data to an AES encryption can be defined as four
32 bit column vectors C; = (ao,;, 41,5, G2,j, a3, ;) with the
output similarly formatted in column vectors. According to
Equation 1, these input column vectors need to be split into
individual bytes since all bytes are required for the com-
putation steps for different E]/ For example, for column
Co = (a()’o,al)o,(lg‘[),ag,o) the first byte ap,o is part of
the computation of E(;, the second byte a; o is used in Eé,
etc. Since fixed (and thus simple) data paths are prefer-
able in hardware implementations, we have rearranged the
operands of the equation to align the bytes according to the
input columns C; when feeding them to the T-table lookup.
In this way, we can implement a unified data path for com-
puting all four E; for a full AES round. Thus, Equation (1)
transforms into

E, = Korjo) EB/TO(CfO,O) o Ti(ar,1) © Ta(azz2) © T3(as3)
= (“0,0,‘11,07”2.0,%,0)
E, = K7[1] @/T3(Cf3,0) e To(ap) ® Th(a1,2) ® Ta(az3)
= (ag,1,01,1,091,03,)
E, = r[2] @/Tz(alz,o) @ Ts(as,1) ® To(ao2) @ Ti(ars)
= (‘l().2»01,27a2.2aa3,2)
E; = KT[B] @/T1(Cf1,o) @ Ty(az) @ Ts(as,2) @ To(ao,3)
= (%,3»“1.37%,37“3,3)
where a; ; denotes an input byte, and a;, ; the corre-
sponding output byte after the round transformation. How-
ever, the unified input datapath still requires a look-up to all
of the four T-tables for the second operand of each XOR op-
eration. For example, the XOR component at the first posi-
tion of the sequential operations E, to /5 and thus requires
the IOOkllpS To(aoﬁ()),T3((1370),T2((12_[)) and Tl(aLo) (11’1
this order) and the corresponding round key K,;;. Though
operations are aligned for the same input column now, it

becomes apparent that the bytes of the input column are not
processed in canonical order, i.e., bytes need to be swapped
for each column C; = (ay_j, 1,5, a2,j, as,;) first before be-
ing fed as input to the next AES round. The required byte
transposition is reflected in the following equations:

: / / /
Co = (“9,070;,0,(1;,07%,0)
Cr = (‘{1,17 ap,la “:}.17 ag,1))
Cy = (az,za a1,2,00,2, a3,2)
Cs = (“/3,3@,2,3#"/1‘37@6,3)

Note that the given transpositions are static so that they can
be efficiently hardwired in our implementation.

The AES also has a “key schedule” or “key expansion”
operation, which takes the input key and derives from it
“sub-keys” for each round, denoted here as K,.[;;. Many ap-
plications, however, use a single key for processing a bulk
of data, so the round keys need only to be computed at the
initialization phase and then remain static until a new key
is required. In this paper we do not include the key expan-
sion function as part of the implementation mainly because
of the above reasoning, but also because there already exist
efficient designs for this function; we will, however, pro-
pose how this function can be integrated into our design in
Section 5.1. One final operation has not been mentioned
yet and lies between the key schedule and the round oper-
ation; this is an XOR operation of the input key and the
input 128 bit block. We omit this operation when reporting
our results, though we discuss how it can be performed at a
minor expense of performance and resources.

2.1 Decryption

AES encryption and decryption of data require different
treatment so that usually separate hardware components and
a significant logic overhead becomes necessary to support
both operations. With our approach, all primitive opera-
tions are encoded into T-tables for encryption, so that we
can apply a similar strategy for decryption by creating ta-
bles representing the inverse cipher transformation. Hence,
we can basically support an encryptor and decryptor engine
with the same circuit by only swapping the values of the
transformation tables. As with Equation (1), decryption of
columns D; is governed by the following set of equations:

Dy = Kr[o] @,Io(a/o,o) S I(a1,3) @ Ix(az,2) @ I3(asq)
= (ao,Oaal,O:az.Ov%,o)

Dy = K7[3] @/13(@3,0) S In(ao,3) ® I1(a1,2) ® Iz(az,1)
= (a0,37(11.3>a2,3a‘13,3)

D, = r(2] @,IQ(Q/QJ]) @ Is(as,3) @ In(ao2) @ Ii(a1,1)
= (“0,2@1,2,@2,27‘13,2)

D, = K’r/’[l] 63/11(({1,0) ® I(az,3) ® I3(as32) ® Io(ao,1)
= (ao,la0171,@2,17”3;1)

This requires the following inversion tables (I-Tables),
where S~! denotes the inverse 8 x 8 S-Box for the AES
decryption:

S—1x] x OE S—1z] x 0B

S—1z] x 09 S—1x] x OE

ol = | g1y i 0D hlel = g1y i 09
| S7'[z] x 0B | | S7'[z] x 0D |
[g—lﬁ x 0D | [g—lﬂ x 09 |

~1x] x OB ~1z] x 0D

Blrl = | g-173) x o8 Ilel =1 g-11] x 0B
| S [z] x 09 | | S7'[z] x OE |

We can see that compared to encryption, the input to the
decryption equations is different at two positions for each
decrypted column D;. But, instead of changing the data-
path from the encryption function, we can change the order
in which the columns D; are computed so that instead of
computing Ey, By, E,, Es for encryption, we determine the
decryption output in the column sequence D'O, Dé, D;, Dll.
Preserving the datapath by only changing the content of the
tables will allow us to use (nearly) the same circuit for both
functions, as we shall see in Section 4.

3 Embedded FPGA elements

Since the early 2000s, FPGA vendors have started de-
signing into the FPGA popular functions that previously
required separate peripheral devices. Examples are large
memory blocks, clock managers, hard microprocessors, and
fast serial transceivers. We are also seeing a process of
industry-specific sub-families within a single family of de-
vices that cater to embedded, DSP, military, and automo-
tive applications; this means that the distribution of the var-
ious embedded blocks is different across family members.
Of particular interest to us is the integration of large mem-
ory elements and arithmetic hard cores for efficient multi-
plication and addition operations with low carry propaga-
tion times. Since the U.S. NIST adopted the Rijndael ci-
pher as the AES in 2001, it has been implemented in vari-
ous ways on both FPGAs and ASICs. Early AES designs
were usually straightforward implementations of loop un-
rolled or pipelined architectures, mostly on FPGAs utiliz-
ing a vast amount of user logic elements [4, 9]. Particularly,
the required 8 x 8 S-Boxes of the AES have been imple-
mented in the lookup tables (LUT) of the user logic usu-
ally requiring large portions of the device. More advanced
approaches [11, 15, 6, 2] used the on-chip memory com-
ponents of FPGAs, implementing the S-Box tables in sep-
arate RAM sections on the device. Since RAM capacities
were limited in previous generations of FPGAs, the major-
ity of implementations only mapped the 8 x 8 S-Box into

=N
32 |}
Prext” 18 8 8 8
8K 8K [8K:i8K| |8K 8K [8K:8K
TOiTO' | T2iT2'| [TOiTO'|T2iT2
32 32 32 32
Key| DsP || DsP DSP || DSP
32| & &b (32| D @ |[Ctext
Col0 Col1 Col2 Col3

Figure 1. The basic construct structure. Each
dual ported BRAM contains four T-tables, two
for the first nine rounds, and two for the last
one. Each DSP48E block performs a 32 bit bit-
wise XOR operation. After passing through
the four DSP blocks, column results are fed
back as the input to the next round.

the memory while all other AES operations like ShiftRows,
MixColumns and the AddRoundKey are realized using tra-
ditional user logic, and proved costly in terms of flip flops
and LUTs. To our knowledge, only two previous imple-
mentations [5, 2] have transferred the software architec-
ture based on the T-table to FPGAs for saving logic cells
required for the AES primitive operations. However, due
to the large tables and the restricted memory capacities on
those devices, certain functionality must be still encoded
in user logic. Our contribution is the first T-table-based
AES-implementation that efficiently used device-specific
features available in one particular FPGA family.

4 Implementation

In the previous section we have introduced the lookup-
table method for implementing the AES round optimized
for 32 bit microprocessors. Now we will demonstrate how
to adapt this software-oriented approach into modern recon-
figurable hardware devices in order to achieve high through-
put for modest amounts of resources. We use the Xilinx
Virtex-5 FPGA which has advanced features that are use-
ful for our application beyond traditional LUTs and regis-
ters. These are dual ported 36 Kbit BlockRAMs (BRAM)
— ones that have independent address and data buses for
the same stored content — and versatile digital signal pro-
cessing (DSP) cores. The DSP cores allow the designer
to implement timing- or resource-critical functions such as
arithmetic operations on integers or Boolean expressions
that would otherwise be considerably slower or resource
demanding if implemented with “ordinary” logic elements.
The DSP blocks were introduced in the Virtex-4 family of

FPGAs to perform 18 x 18 bit integer along with a 48 bit ac-
cumulator, though they were limited to 24 bit bit-wise logic
operations. 48 bit bit-wise logic operations were added in
Virtex-5, and can run at up to 550 MHz, the maximum fre-
quency rating of the device. The internal datapath inside
of the DSP block is 48 bit wide, except for integer mul-
tiplication. The Virtex-5 DSP blocks come in pairs that
span the height of five configurable logic blocks (CLB), and
they can be efficiently cascaded between pairs with an addi-
tional dedicated paths to adjacent DSP tiles. A single dual-
ported 36 Kbit BRAM also spans the height of five CLBs
and matches the height of the pair of DSP blocks, with a fast
datapath between them. Our initial observation was that the
8 to 32 bit lookup followed by a 32 bit XOR AES operation
perfectly matched this architectural alignment for efficient
and fast implementation. Based on these primitives, we de-
veloped a basic AES module that performs a quarter (one
column) of an AES round transformation given by Equa-
tion (1). We have designed it so that it allows efficient plac-
ing and routing of components such that it can operate at
the maximum device frequency of 550 MHz. Furthermore,
our basic module is designed such that it can be replicated
for higher throughput.

4.1 Basic module

The basic construct we started out with is shown in Fig-
ure 1. Since each column requires all four T-table lookups
with their last-round T-table counterparts, that means that
we needed to fit a total of eight 8 Kbit T-tables in a sin-
gle 36 Kbit dual-port RAM. As we discussed in Section 2,
for performance and resource efficiency reasons we opted
against “reversing” the last operation and searched for a
solution that would enable us to fit all tables into a single
BRAM. We realized that our design can use the fact all T-
tables are byte-wise transpositions of each other, such that
by cyclically byte-shifting of the BRAM’s output for T-table
Ty we can produce the output of 77, 75 and T5. Using this
observation, we only store T and 75, and also their last-
round counterparts 7 and T, in a single BRAM. Using a
single byte circular right rotation (a, b, ¢,d) — (d,a,b,c),
To becomes 17, and 15 becomes 15 and the same for the
last round’s T-tables. In hardware, this requires a 32 bit 2:1
multiplexer at the output of each BRAM with a select sig-
nal from the control logic. For the last round, a control bit
is connected to a high order address bit of the BRAM to
switch from the regular T-table to the last round’s T-table.
The memory layout is shown in Figure 1: the first 8 bits of
the address is the input byte a; ; to the transformation, bit 9
controls the choice between regular and last round T-table,
while bit 10 chooses between T and 7T5. Thus, a dual-port
32 Kbit BRAM with three control bits, and a 2:1 32 bit mux
allows us to output all the needed T-tables for two columns.

=N
e 7
w] 2 =
— RAM ? E
32
—— —— [rawm ?
32 8
C——1 l:IZI RAM
Key | 32 |
32 619 ':[:' —1 I
Col 0 619 I -
—— D I:l:I
Col 1 |
Col 2 G9| 35
Col3 - Ctext

Figure 2. The “basic” iterative round (with-
out control logic). Plaintext P,.,; is chosen
as the initial input, then output data is fed
back through 8 bit shift registers for a com-
plete AES encryption. The pipeline stage be-
tween BRAMs and DSPs block is used as an
optional 8bit right-shift when 70 and 72 are
turned into 7'1 and 7'3, respectively.

Using two such BRAMs with identical content, we get the
necessary lookups for four columns, each capable of per-
forming all four T-table lookups.

Both the BRAMs and DSP blocks provide internal input
and output registers for pipelining along the datapath; we
get these registers “for free” without use of any flip flops in
the fabric. At this point, we already had six pipeline stages
that could not have been easily removed if our goal was high
throughput. So we decided that instead of trying to reduce
pipeline stages, we could add two more so that we are able
to process two input blocks at the same time, doubling the
throughput. One of these added stages is the 32 bit regis-
ter after the 2:1 multiplexer that shifts the T-tables at the
output of the BRAM; these are the only user logic registers
we use for the basic construct (shown inside dotted line in
Figure 2).

A full AES operation is implemented by operating the
basic construct with an added feedback scheduling in the
datapath. Combined with BRAM lookups, we assigned a
cascade of DSP blocks to perform the four XOR operations
required for computing the AES column output according to
Equation (1). For feeding in the corresponding a; ; for the
lookup into the BRAM, we added a sequence of three 8 bit
loadable shift registers and an input multiplexer for each
column. These 24 bit registers are loaded in sequence, the
leftmost (Cy) on the first cycle, and the one to its right on
the next, and so on.

This construct has eight pipeline stages with the follow-
ing operations, in order: lookup L, where the 8 to 32 bit
T-table lookup is performed within the BRAM; register R
is the BRAM’s output register; transform Tg_ 3], where Tj
and 75 are optionally shifted into 77 and 73 content, re-
spectively; DSP D input register; and @, the exclusive-or
operation. There are also four columns (Cf. 3)) which are
staggered as shown in Figure 2. As previously mentioned,
the shaded pipeline stages are part of the BRAM or DSP
blocks, not “traditional” user logic in the form of CLB flip-
flops — our goal was to minimize the use of these resources.

Table 1 shows the eight pipeline stages in the first thir-
teen clock cycles; the plaintext at the top is fed in four 32 bit
words, one word per cycle. The first column output E(/) is
produced on the 8" clock cycle and is fed back to the in-
put for processing the second round. Notice that the cor-
responding outputs are produced as defined by Equation 1.
For the second round, after eight clock cycles, the control
logic chooses the feedback rather than the plaintext input
using a 32bit 2:1 mux. Our decision to add two pipeline
stages to interleave two plaintexts is apparent Table 1, as
we can see that each pipeline stage is performing an oper-
ation only four out of every eight cycles. This allows us
to feed two consecutive 128 bit blocks one after another, in
effect doubling our throughout without any additional com-
plexity.

A grayed-out multiplexer is shown in Figure 2 as an al-
ternative input, which makes it easy to perform the XOR
operation of the key and initial input prior to the first round.
For four consecutive clock cycles, Cy’s DSP performs the
XOR operation while the output passes through the other
DSPs; this results in the initial round input appearing at
the top of the pipeline and the sequence continues as pre-
viously described. We have implemented this design, and
noticed an expected slight degradation in performance due
to the insertion of a 32 bit 2:1 mux in the datapath. There
are also additional signals required for the control logic, but
those do not affect performance. Finally, we also tried a
different approach for computing columns using the same
basic structure, but instead of feeding the output of each
DSP to the one on its right, the data is fed back onto itself
for the next XOR operation with the data arriving from the

Cycle| Key |CO C1 C2 C3 |Out
13 - 012 (1/23 A3
12 aén @10 Q21 Q33
11 Qo2 G13 Qg —
10 ag3 @y — -
i o A
N| 8 -
P 7 — — — aso
Ul 6 — — a3 asi
T 5 — a2 a4z as2
4 apr 1o @21 a33
3 ag2 a1z azy —
2 aps ai; — —
1 apgpg — — -
1 L
2 R L
Pl 3 T R L
1| 4 D T R L
LI 7 [Kog|&\ &\, &\ D
I 8 |Kog|® & &\ @ —|F
N| 9 L @ o ®—|E
E| 10 R L o\ o&—|E
11 T R L &—|E,
12 D T R L
13 |Kiglex D T R

Table 1. Initial 13 clock cycles of the eight
pipeline stages computing a plaintext input.
The stages are: RAM lookup L; RAM output
register R; transform 7'; DSP input register
D; and, DSP XOR @. After eight cycles the
output column E, is used as input to the next
round, and so on.

BRAM. We found, however, that this requires the input of
a key to each DSP block, extra control logic, different op-
erating modes for the DSP , and a 32 bit 4:1 mux to choose
between the output of each DSP for the feedback loop. All
those introduced extra delays when routed, and performed
worse than the original design.

Up to now we focused on the encryption process, though
decryption is quite simply achieved with minor modifica-
tions to the circuit. As the T-tables are different for encryp-
tion and decryption, storing them all would require double
the amount of storage, which we want to avoid. Recall,
however, that any T; can be converted into 7} simply by
shifting the appropriate amount of bytes. The modifica-

Q
SNlig

Figure 3. This construct is replicated four
times for a full round (the multiplexer for the
initial input is not shown). Except for the
input to Cj, each column receives the input
from the other three instances. The T-tables
are static so the shifting of the BRAMs’ out-
puts is fixed by routing.

tion to the design is therefore, replacing the 32 bit 2:1 mux
at the output of the BRAM with a 4:1 mux such that all
possible byte shifting is possible, and loading the BRAMs
with TE, TF, TP and TP, T and T denoting encryp-
tion and decryption T-tables, respectively. Of course, this
would degrade the performance because the datapath be-
tween BRAM and DSP are now longer. An alternative is
to dynamically reconfigure the content of the BRAMs with
the decryption T-tables; this can be done from an external
source, or even from within the FPGA using the internal
configuration access port (ICAP) [17] with a storage BRAM
for reloading content through the T-table BRAMSs’ data in-
put port.

4.2 Round and unrolled modules

Since the single AES round requires the computation of
four 32bit columns, we can replicate the basic construct
four times and add 8, 16, and 24 bit registers at the inputs
of the columns. The first of four instances is shown in Fig-
ure 3; one byte is fed back to the same instance while 3
bytes are distributed to the other three instances. The la-
tency of this construct is still 80 clock cycles as before, but
allows us to interleave eight 128 bit inputs at any given time.
This is possible because of the eight pipeline stages, where
each of the four instances receives a 32 bit input every clock

cycle. As apposed to the previous module, though, the byte
arrangements allow that the T-tables be static so the 32 bit
2:1 multiplexers are no longer required. This simplifies the
data paths between the BRAMSs and DSPs since the shifting
can be fixed in routing. The control logic is simple as well,
comprising of a 3 bit counter and a 1 bit control signal for
choosing the last round’s T-tables.

Finally, the natural thing to do was to implement a fully
unrolled AES design for achieving maximum throughput.
For this, we connected ten instances of the “round” design
presented above for an 80-stage pipeline using 80 BRAMs
and 160 DSP blocks. Since this design does not require
any dynamic control logic it produces a 128 bit output ev-
ery clock cycle. The initial XOR of the input block with
the main key can be done by adding one to four DSP blocks
(amount will affect latency) as a pre-stage to the round op-
eration, or be performed in “regular” logic. We now move
on to performance results.

5 Results

Our Verilog designs target a Virtex-5 LX30 and SX95T
devices at their fastest speed grade (-3) using Xilinx Syn-
thesis Technology (XST) and the ISE 9.2i.03 implementa-
tion flow. For simulation we used Mentor’s ModelSim 6.2g
for both behavioral and post place-and-route stages; we did
not, however, verify the design on an actual device. Sim-
ulation was performed under nominal conditions of volt-
age (0.95 V) and temperature (85°C) using minimum delay
data (netgen option “-s min”). Various effort settings for
“map” and “par” were used, along with “multi-pass place-
and-route” to achieve best results, which are reported here.
In addition, the 10s were ignored for timing (“TIG” con-
straint), as we consider the cores as a stand-alone function.
Once within the context of an application, the designer will
have to make sure signals arrive on time at the module’s
input; we discuss how this will affect performance in Sec-
tion 6.

The basic AES module as shown in Figure 2 passed
timing (post place-and-route) for a frequency just over
550 MHz, the maximum frequency rating of the device. The
design requires the following resources: 247 flip-flops, 96
(8 - 3 - 4) for the input shift registers plus 128 (4 - 32)
for the pipeline stages in between the BRAMSs and DSPs,
with the rest used for control logic; 275 look-up tables,
mostly functioning as multiplexers; and finally, two 36 Kbit
dual-port BRAM (32 Kbit used in each) and four DSP48E
blocks. We calculate throughput as follows: given that
there are 80 processing cycles operating at 550 MHz and
we maintain state of 256 bits in the pipeline stages, we
achieve 550 - 10% - 256/80 = 1.76 Gbit/s of throughput.
This assumes that the pipeline stages are always full, mean-
ing that the module is processing two 128 bit inputs at any

given time; if only one input is processed, the throughput
is halved. As we have mentioned, the eight pipeline stages
were implemented for the purpose of interleaving two in-
puts, though the designer can remove pipeline stages to re-
duce resources. Removing pipeline stages reduces latency,
though it may also reduce the maximum frequency, so there
is a trade-off that needs to be assessed according to the ap-
plication.

In the “round” module the basic construct is used four
times for a 128 bit-width interface. The maximum fre-
quency reported by the tools post place-and-route was over
485MHz, and it uses 621 flip-flops, 204 look-up tables, 8
36 Kbit BRAMs (32 Kbit used in each), and 16 DSP48E
blocks. Notice that we expect at least 4 - 48 +4 - 128 = 704
registers but the tools report only 621. This is because
the synthesizer tries to achieve a balanced FF-LUT ratio
for better packing into slices so the 2- and 3-stage input
shift registers for each basic cells are implemented in eight
LUTs each. The latency of 80 clock cycles is the same
as the previous design, though now we can maintain state
of 128 - 8 = 1024 bits, thus giving us a throughput of
485-105-8-128/80 = 6.21 Gbit/s when processing eight in-
put blocks. We can see that the complexity of this design re-
duces the maximum frequency and throughput, though hand
placement of DSPs and BRAMs, along with matching the
bit ordering to the routing can improve on this performance.
As with the basic module, pipeline stages can be removed to
minimize the use of logic resources if they are required for
other functions and the highest throughput is not required.

Finally, the “unrolled” implementation produces 128 bits
of output every clock cycle once the initial latency is com-
plete. We have experimented with eliminating the pipeline
stage between the BRAM and DSP to see if it adversely
affects performance; this will save us 5,120 registers. We
found that the performance degradation is minimal, with
the added benefit of having an initial latency of only 70
clock cycles instead of 80. The resulting throughput is
430 - 10% - 128 = 55Gbit/s. This design operates at a
maximum frequency of over 430 MHz and uses 992 flip-
flops, 672 look-up tables, 80 36 Kbit BRAMs (only 16 Kbit
in each for dec/enc or 32 Kbit for both), and 160 DSP48E
blocks; the same balancing act of FF-LUT ratio by the syn-
thesizer occurs here as well. There are very few flip-flops
and LUTSs compared to what is available in the large SX95T
device: 1.68% and 1.14%, respectively, though we use 32%
of BRAMs and 25% of DSP48E:s.

Out results are summarized in Table 2. Verilog source
code for all three modules, including XFLOW commands
to replicate the above results, are available at this URL:
http://www.cl.cam.ac.uk/~sd410/aes

http://www.cl.cam.ac.uk/~sd410/aes

5.1 Extensions

We have shown three pipelined architectures for AES op-
erations supporting simultaneous encryption of 2, 8, and 80
128 bit input blocks in electronic codebook (ECB) mode.
Cipher block chaining (CBC) mode can be efficiently im-
plemented by adding a further XOR component at the input
of the respective AES design to support encryption or au-
thentication of up to 80 independent data streams. Addition-
ally, the architectures can be extended to provide authen-
ticated encryption as well, for example, the counter with
CBC-MAC (CCM) mode [3] requires two AES operations
to be performed in parallel — one for encrypting or decrypt-
ing data and another for creating or verifying a message au-
thentication code (MAC), a cryptographic checksum over
the data. Thus, with an additional encryption counter, we
can easily adapt our modules to provide CCM authenticated
encryption for 1, 4, or 40 individual streams of data using
the three designs.

In this contribution, we focused on implementations of
the AES round operation. Thus, the round key expansion
which is mostly done in a pre-computation phase prior en-
cryption has not been considered. In case that the high
throughput of our architecture is not required but the key
schedule needs to be precomputed on chip without ad-
versely increasing logic resource utilization, our basic AES
module can be modified to support the key generation. For
the key schedule, the plain 8 x 8 S-Boxes and a small set of
round constants are required which are XORed with other
previously computed 32 bit round keys. Remember that
we already store T-tables Ty, 3 for the last round in the
BRAMs without the MixColumns operation so that the val-
ues of these tables are basically a byte-rotated 8 bit S-Box
value. These values are perfectly suited for generating a
32 bit round key from S-Box lookups. Furthermore, our
datapath has been specifically designed for 32 bit XOR op-
erations based on the DSP unit. Hence, with appropriate
input multiplexers, control logic and a separate BRAM as
key store, we can integrate a key schedule in our existing
design without introducing much overhead. Alternatively, a
separate circuit for the key schedule can be implemented to
preserve the regularity of the basic module and the option
to operate the design at maximum device frequency. For a
minimal footprint, we propose to add another dual-ported
BRAM to the design used for storing the expanded 32 bit
subkeys (e.g., 44 words for AES-128), the round constants
and S-Box entries with 8 bit each. One port of that BRAM
is 32 bit wide and feeding the subkeys to the AES module,
the other is configured for 8 bit data I/O. With an 8-bit mul-
tiplexer, register and XOR connected to the second BRAM
port, a minimal and byte-oriented key schedule can be im-
plemented computing the full key expansion in 520 clock
cycles.

6 Performance evaluations and prior work

Comparing FPGA implementations developed and re-
ported by different people, and that target different archi-
tectures, often yields only a very rough idea of relative
performance, along with a long list of caveats. In addi-
tion, without context the outcome of this comparison is
not very useful. There are several causes for this. Bun-
dled resources, such as “slices” and “logic elements”, are
often inappropriately used as a metric which leaves room
for interpretation. The “definition” of these bundlings also
change with time and are inconsistent across device fami-
lies, even ones from the same vendor. The Virtex-5 “slice”,
for example, has twice as many LUTs and FFs as a Virtex-4
“slice” in addition to having a 6-input LUT instead of 4-
input one. Even without these differences, when “slices”
are used as a fundamental unit, we cannot know the exact
amount of resources that are actually being used — a sin-
gle flip-flop, two, four, or one and two LUTs? In addition,
“slices” do not include additional resources that are some-
times used for cipher implementations such as BRAMs and
DSPs. This means that comparing designs on “slice-count”
alone does not make sense except in the case where a de-
sign is packed into fewer slices of the same device, using
the same software tools, while maintaining or exceeding
throughput. Since all resources within a “slice” share sig-
nals such as clock and enable signals, they cannot be used
by functions in a different clock domain; thus, better pack-
ing frees up otherwise unusable resources, and is indica-
tive of the logic-packing efficiency and skills of the designer
(and/or tools). Using LUTs as a fundamental unit is prob-
lematic in a similar way since not all of its memory cells
are used. Our unrolled module, for example, uses 672 6-
input LUTs, which would translate into 672 - 64 = 43, 008
memory cells, where in fact, all these LUTs are used as
either 2 or 3 bit shift registers consuming only 1, 696 mem-
ory cells (this is shown in Table 2 as “distributed RAM”,
d.RAM). XST reports the distribution of LUT RAM bits
and with these figures we are able to more accurately com-
pare designs across architectures. Due to the above reason-
ing, it is now also apparent that the often-used “throughput
per slice” metric of performance is unsuitable for compar-
ison purposes, and should be used only in special cases;
our 55 Gbit/s fully unrolled design uses only 428 “slices”
— about 128 Mbit/slice — though, clearly, we cannot fairly
use this figure in comparison with other designs. One way
to hold some variables constant is to implement designs
from multiple sources from code, while using the same tools
and targeting the same architecture. Results from this ap-
proach, however, may be skewed by an asymmetry of ef-
fort because implementers know their own designs best, and
may naturally end up investing more effort in the optimiz-
ing them. When it comes to cipher implementations, such

b C

Design Dec* Ec%y Device slices | LUT | FF Re?lﬁr/sfi/sl BRAM | DSPs (M)Ic{z) Thf?;‘é?tl/‘s‘;“t
Basic Virtex-5 93 245 | 274 7838 2x36K 4 550 1.76
Round o o Virtex-5 277 204 | 601 1432 8x36K 16 485 6.21
Unrolled ° o Virtex-5 428 672 | 992 1696 80x36K 160 430 55
Algotronix [1] o o Virtex-5 161 n/a n/a n/a 2x36K 0 250 0.8
Chaves et al. [2] ° o Virtex-II Pro 515 n/a n/a n/a 12x 18K 0 182 2.33
Helion [7] o . Virtex-5 349 n/a n/a n/a 0 0 350 4.07
Kotturi et al. [10] . o Virtex-II Pro | 10816 | n/a n/a n/a 400x 18K 0 126 16
Hodjat et al. [8] o o Virtex-II Pro | 5177 n/a n/a n/a 84x 18K 0 168 21.5
Chaves et al. [2] ° o Virtex-1I Pro | 3513 n/a n/a n/a 80x 18K 0 272 34.7

“For “basic” and “round” implementations, decryption can be achieved by adding 32 bit muxes in the datapath between BRAM and DSP.
bVirtex-5 has 4 FF and 4 6-LUT per slice and a 36 Kbit BRAM, while Virtex-II PRO has 2 FF and 2 4-LUT per slice, and an 18 Kbit BRAM.
“For “basic” and “round” implementations, figures reflect two and eight concurrent stream processing, respectively.

Table 2. Our results along with recent academic and commercial implementations.

as AES, the variety of modes makes it such that designers
rarely implement those with identical set of functions (en-
cryption/decryption or both, inclusion of key schedule, key-
lengths supported, support of various modes of operation,
and so on). Standaert [13] discusses this as well, and poses
nine questions to ask when implementing AES with respect
to design goals. Implementation conditions such as which
software tools, speed grades, verification/simulation condi-
tions, and the stage from which figures were quoted (post-
synthesis, map, or place-and-route) are often missing, but
are crucially important for evaluation. Post-synthesis per-
formance report, for example, can be significantly different
(often too optimistic) than the post place-and-route report
that take actual delays into account (synthesis reported that
our unrolled variant will run at 655 MHz). Finally, the un-
availability of source code of many designs is detrimental
to the process of effective evaluation and comparison.

So how can we better compare designs? We should
start by mandating the reporting of all possible details, as
we have tried to do in this paper, and encourage making
the source code available for evaluation. When releasing
code is not possible, synthesis, map, PAR, and timing re-
ports should be accessible instead. The best way to com-
pare, however, is to assess the suitability of one design
over another in meeting the constraints of a specific end
application. An end application provides context, with-
out which, the merits of each design cannot be fully ap-
preciated. System designers would benefit the most from
our implementations if their application requires process-
ing multiple streams, that other FPGA functions do not use
all BRAMs and DSP blocks, and that other logic resources
are scarce. We report the performance results for our de-
signs when they are used as stand-alone functions and under
optimal conditions, though when used in conjunction with
other functions these maximum throughput figures may de-
grade. For example, if other functions occupy many of the
resources (routing, slices), the efficient routing we use as

a stand-alone function may no longer be fully available.
Other functions that interface with these AES modules may
not be capable of matching their operating frequency, so in
these cases, either more elements need to be added, such as
FIFOs, or other proposed AES designs may be better suited.
We now survey previous work.

6.1 Prior work

McLoone et al. [12] proposed an implementation of
the AES-128 in ECB mode based on the Xilinx Virtex-E
812(-8) device using 2,457 “Configurable Logic Blocks”
and 226 BRAMs providing an overall encryption rate of
12 Gbit/s. Hodjat et al. [8] report an AES-128 implemen-
tation with 21.54 Gbit/s throughput using 5,177 “slices”
and 84 BRAMs on a Xilinx Virtex-II Pro 20(-7) FPGA.
Zhou et al. [19] recently reported figures for an AES im-
plementation of the Galois Counter Mode (GCM) on a
Xilinx Virtex-4 L.X40(-12) FPGA achieving a throughput
of 20.6 Gbit/s without use of BRAMs, which uses 8,035
“slices”. Gaj and Chodowiec [6] proposed an area-efficient
AES implementation on a Xilinx Spartan-II 30(-6) with
222 “slices” and 3 BlockRAMs with an encryption rate of
0.166 Gbit/s. Fischer and Drutarovsky [5] proposed an eco-
nomic and a high-performance AES implementation on an
Altera ACEX 1K100(-1) device FPGAs using the T-Table
technique. Their economic encryptor/decryptor yielded
a throughput of 0.212 Gbit/s using 12 “Embedded Array
Block” memories and 2,923 “Logical Elements”. The fast
implementation based on an Altera APEX 1K400(-1) and
T-tables requires 86 “Embedded System Block™ memories
and 845 “Logical Elements” to provide a throughput of
0.750 Gbit/s. Chaves et al. [2] also use the memory-based
AES implementation with a Virtex-II Pro 20(-7) where an
architecture implementing a single iteration and a loop un-
rolled AES based on a similar strategy as ours.

Following the discussion in this section, we are able to

conclude that comparing designs based on a couple of fig-
ures of merit without the context of an application does not
do justice to any of the compared designs. We thus provide
Table 2 only as a reference, with designs that are closest to
the ones we report in this paper. Since we are unaware of
other Virtex-5 AES implementations in the academic litera-
ture, we also consider two commercial AES cores by Algo-
tronix [1] and Helion Technology [7].

7 Conclusions and future work

We have presented new ways for performing AES oper-
ations at a high throughput using on-chip RAM and DSP
blocks with minimal use of traditional user logic such as
flip-flops and look-up tables. The source code for these de-
signs are publicly available so that they are used in further
research, and provide readers with the ability to reproduce
our reported results.

Future work includes integrating the key scheduling op-
eration into the architecture while maintaining throughput
and exploring efficient ways in which to use the basic mod-
ule for further modes of operation. We would also like to
give these designs context and integrate them into a real ap-
plication, and measure performance and power consump-
tion on an actual device. Another interesting direction is
the evaluation of our designs against side channel attacks,
such as power analysis. Since we use the same basic con-
struct for our designs, we would be able to evaluate how
pipelining and unrolling affect power signatures, similarly
to what was previously done by Standaert et al. [14], but on
newer architectures.

Acknowledgments

We thank Xilinx for the donation of development tools,
and David Ellington for helping resolve simulation issues.
Saar Drimer’s research is funded by Xilinx Inc.

References

[1] Algotronix Ltd. AES G3 data sheet Xilinx edition, October
2007. http://www.algotronix—store.com/kb_
results.asp?ID=7.

R. Chaves, G. Kuzmanov, S. Vassiliadis, and L. Sousa. Re-
configurable memory based AES co-processor. Reconfig-
urable Architectures Workshop, page 192, 2006.

M. Dworkin. SP 800-38C: Recommendation for block ci-
pher modes of operation: the CCM mode for authentication
and confidentiality. U.S. NIST, 2005.

(2]

(3]

10

(4]

(5]

(6]

[7

—

(8]

(9]

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]
(18]

[19]

A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA-
based performance evaluation of the AES block cipher can-
didate algorithm finalists. /EEE Transactions on Very Large
Scale Integration Systems (VLSI), 9(4):545-557, 2001.

V. Fischer and M. Drutarovsky. Two methods of Rijn-
dael implementation in reconfigurable hardware. In Crypto-
graphic Hardware and Embedded Systems (CHES), volume
2162, pages 77-92, 2001.

K. Gaj and P. Chodowiec. Very compact FPGA implemen-
tation of the AES algorithm. In CHES, volume 2779, pages
319-333, 2003.

Helion Technology Ltd. High performance AES (Ri-
jndael) cores for Xilinx FPGAs, 2007 (Rev. 2.3.3).
http://www.heliontech.com/downloads/
aes_xilinx_helioncore.pdf.

A. Hodjat and I. Verbauwhede. A 21.54 Gbits/s fully
pipelined AES processor on FPGA. In Field-Programmable
Custom Computing Machines, pages 308-309. IEEE Com-
puter Society, 2004.

T. Ichikawa, T. Kasuya, and M. Matsui. Hardware evalua-
tion of the AES finalists. AES Candidate Conference, pages
13-14, 2000.

D. Kotturi, S.-M. Yoo, and J. Blizzard. AES crypto chip uti-
lizing high-speed parallel pipelined architecture. In /IEEE
International Symposium on Circuits and Systems, pages
4653-4656, 2005.

M. McLoone and J. McCanny. High performance single-
chip FPGA Rijndael algorithm implementations. In CHES,
volume 2162, pages 65-76, 2001.

M. McLoone and J. McCanny. Rijndael FPGA implemen-
tations utilising look-up tables. The Journal of VLSI Signal
Processing, 34(3):261-275, 2003.

F-X. Standaert. Secure and efficient implementation
of symmetric encryption schemes using FPGAs, 2007.
http://www.dice.ucl.ac.be/~fstandae/
PUBLIS/45.pdf.

F.-X. Standaert, S. B. Ors, and B. Preneel. Power analysis of
an FPGA implementation of Rijndael: Is pipelining a DPA
countermeasure? In CHES, volume 3156 of LNCS, pages
30—44, London, UK, 2004. Springer.

E-X. Standaert, G. Rouvroy, J.-J. Quisquater, and J.-D.
Legat. Efficient implementation of Rijndael encryption in
reconfigurable hardware: improvements and design trade-
offs. In CHES, volume 2779, pages 334-350, 2003.

U.S. National Institute of Standards and Technology (NIST).
FIPS 197: Advanced encryption standard, 2001.

Xilinx Inc. UG190: Virtex-5 user guide, 2006.

Xilinx Inc. UG193: Virtex-5 XtremeDSP design considera-
tions user guide, 2007.

G. Zhou, H. Michalik, and L. Hinsenkamp. Efficient and
high-throughput implementations of AES-GCM on FPGAs.
In Field Programmable Technology, pages 185-192, 2007.

http://www.algotronix-store.com/kb_results.asp?ID=7
http://www.algotronix-store.com/kb_results.asp?ID=7
http://www.heliontech.com/downloads/aes_xilinx_helioncore.pdf
http://www.heliontech.com/downloads/aes_xilinx_helioncore.pdf
http://www.dice.ucl.ac.be/~fstandae/PUBLIS/45.pdf
http://www.dice.ucl.ac.be/~fstandae/PUBLIS/45.pdf

	Introduction
	AES cipher operation
	Decryption

	Embedded FPGA elements
	Implementation
	Basic module
	Round and unrolled modules

	Results
	Extensions

	Performance evaluations and prior work
	Prior work

	Conclusions and future work

