
DSRN: A Deep Scale Relationship Network for Scene Text Detection

Yuxin Wang , Hongtao Xie∗ , Zilong Fu and Yongdong Zhang

School of Information Science and Technology, University of Science and Technology of China

{wangyx58, JeromeF}@mail.ustc.edu.cn, {htxie, zhyd73}@ustc.edu.cn

Abstract

Nowadays, scene text detection has become in-
creasingly important and popular. However, the
large variance of text scale remains the main chal-
lenge and limits the detection performance in most
previous methods. To address this problem, we
propose an end-to-end architecture called Deep
Scale Relationship Network (DSRN) to map multi-
scale convolution features onto a scale invariant
space to obtain uniform activation of multi-size
text instances. Firstly, we develop a Scale-transfer
module to transfer the multi-scale feature maps to
a unified dimension. Due to the heterogeneity of
features, simply concatenating feature maps with
multi-scale information would limit the detection
performance. Thus we propose a Scale Relation-
ship module to aggregate the multi-scale informa-
tion through bi-directional convolution operations.
Finally, to further reduce the miss-detected in-
stances, a novel Recall Loss is proposed to force the
network to concern more about miss-detected text
instances by up-weighting poor-classified exam-
ples. Compared with previous approaches, DSRN
efficiently handles the large-variance scale problem
without complex hand-crafted hyperparameter set-
tings (e.g. scale of default boxes) and complicated
post processing. On standard datasets including
ICDAR2015 and MSRA-TD500, the proposed al-
gorithm achieves the state-of-art performance with
impressive speed (8.8 FPS on ICDAR2015 and
13.3 FPS on MSRA-TD500).

1 Introduction

Recently, extracting and recognizing textual information in
the wild have become increasingly important and popular
because of its significant value in practical applications [Long
et al., 2018; Lyu et al., 2018; Fang et al., 2018; Xie et al.,
2019]. Scene text detection, playing a critical role in the
whole process, is one of the main bottlenecks in recognition
quality.
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Figure 1: We visualize the feature maps of different channels in
training stage. The proposed method can obtain more uniform
activation of multi-size text instances. Both models use ResNet50
as their basic network.

Despite the fact that recent multi-scale object detection
algorithms [Liu et al., 2016; Zhou et al., 2018] gain great
improvements, directly implementing these approaches for
scene text detection, which are only for horizontal targets,
may not be a good choice for multi-oriented text detection.

In the past few years, detecting objects with large-variance
scale has been the main challenge in both general object
detection and scene text detection. To address this problem,
SSD [Liu et al., 2016] combines predictions from multi-scale
features to handle the objects with various scales. SAN [Kim
et al., 2018] constructs scale normalized patches to reduce
the scale variation of objects in feature maps. Besides the
scale variance, multi-oriented detection is another challenge
in scene text detection. TextSnake [Long et al., 2018] uses
the sequence of overlapping disks to represent text instances
of arbitrary orientation. Lyu et al. [2018] propose a novel
approach for multi-oriented scene text detection by predicting
the corners of a text instance. However, these previous
methods usually simply fuse multi-scale features and require
fairly complicated post processing, which would limit the
performance and result in large amount of time consumption.

In this paper, we propose an end-to-end architecture called
Deep Scale Relationship Network (DSRN) to handle the
large-variance scale problem in scene text detection by map-
ping multi-scale convolution features onto a scale invariant
space, which obtains uniform activation of multi-size text
instances. Although different-scale features facilitate the
detection of multi-size objects, simply concatenating features
with multi-scale information would limit the performance
of network due to the heterogeneity of features. To handle
this issue, we firstly develop a Scale-transfer module to
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transfer multi-scale features to a unified dimension. Then a
Scale Relationship module is constructed on different layers
to pass contextual scale information through bidirectional
convolution operations. In the end, the proposed method
essentially improves the quality of convolutional features
by obtaining uniform activation of multi-size text instances
(Figure 1 (c)).

The contributions of this paper are following:

• We develop a Scale Relationship module for multi-scale
feature aggregation, which maps multi-scale convolu-
tion features onto a scale invariant space and obtains
uniform activation of multi-size text instances.

• We propose a new loss function called Recall Loss,
which up-weights the loss assigned to poor-classified
examples. It efficiently reduces the miss-detected in-
stances and boosts performance in recall.

• Our DSRN essentially improves the quality of convolu-
tional features, and the proposed Scale Relation module
can be easily embedded into other existing detection
networks, boosting the performance without obvious
speed sacrifice.

2 Related Works

2.1 Indirect Regression based methods.

Indirect Regression based methods regress the offsets from
a default box to the corresponding ground truth. As in-
spired by the object detection method [Liu et al., 2016],
Liao et.al.[2018] construct a fully convolutional architecture
and adopt ARF [Zhou et al., 2017b] to generate rotation-
sensitive features, which obtains better representation for
multi-oriented texts. He et.al.[2017a] develop a hierarchical
inception module to aggregate multi-scale features, then
predictions from multi-scale features are combined for better
multi-size detection.

2.2 Direct Regression based methods.

In order to handle the large variance of text scale and
multi-orientation issues, many previous works often contain
multiple sequential steps or complicated post processing,
which result in large time consumption and are difficult
for practical application. Different from previous methods,
direct regression based methods directly predict offsets from
bounding box boundaries or vertexes to points without setting
complex hand-crafted hyperparameters (e.g. scale of default
boxes), providing a new approach for accurate and efficient
text detection [Zhou et al., 2017a; He et al., 2017b].

Although direct regression based methods provide an effi-
cient approach for scene text detection, simply concatenating
features from different levels would limit the network perfor-
mance due to the heterogeneity of features. Thus we propose
an effective approach to aggregate multi-scale information
through bidirectional convolution operations, which maps
multi-scale convolution features onto a scale invariant space.
Contributing to the aggregation of multi-scale information,
our DSRN obtains more uniform activation of multi-size text
instances (Figure 1).

2.3 Segmentation based methods.

Inspired by the segmentation methods [Long et al., 2015;
Min and Chen, 2018], some algorithms are proposed for
scene text detection by using segmentation maps. TextSnake
[Long et al., 2018] uses the sequence of overlapping disks to
represent text instances of arbitrary orientation. Pixel link
[Deng et al., 2018] predicts the links among every pixel
and their neighbors which are valid when both of the linked
pixels belong to text instances. By doing this, pixel link
successfully separates text instances that are very close to
each other. Although the segmentation based methods are
able to handle the text with various scales, they usually
require fairly complicated post processing which will slow
down the speed.

3 The Proposed Method

3.1 Overview

In this section, we will introduce the details of DSRN. Our
method is based on [Zeng et al., 2016], which is originally
proposed to use the contextual visual cues of ROIs in general
object detection. We design a novel Scale Relationship
module and implement a Scale-transfer module to extend this
framework for scene text detection. Different from [Zeng et
al., 2016], our method is proposed to aggregate multi-scale
feature maps and to map the multi-scale features onto a scale
invariant space to obtain uniform activation of multi-size text
instances. The total architecture of DSRN is illustrated in
Figure 2.

We use ResNet50 [He et al., 2016] as our basic network
and reduce the channels of feature maps during up-sample
to obtain a light framework. In order to aggregate multi-
scale information from feature maps of different scales,
Scale-transfer module is proposed to transfer the multi-scale
convolution features to a unified dimension. Then Scale Re-
lationship module passes contextual multi-scale information
between unified features during both feature learning and
extraction. Such message passing is conducted in different
layers and carried out through bidirectional convolution op-
erations. In the end, the Non-maximum suppression (NMS)
is adopted to reduce redundant results and the whole network
is optimized in an end-to-end way. The effective aggregation
of multi-scale information and lightness of this architecture
make our approach accurate and efficient.

3.2 Feature Extraction

The backbone of DSRN is adapted from a pre-trained
ResNet50 [He et al., 2016] network and designed with
following considerations: 1) the backbone must have
enough capacity to handle the large variance of text scale.
2) Features should contain more contextual information,
due to the complexity of background within natural scene
images. 3) The corresponding feature maps should include
strong semantic information to represent multi-size texts.
Inspired by FPN [Lin et al., 2017a] which achieves the good
performance on those problems, we adopt the backbone with
a similar architecture to extract features.

Particularly, we convert the fc layers in ResNet50 to an
attention module [Wang et al., 2017] (F1 in Figure 2). Then
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Figure 2: The architecture of proposed network. The network contains three parts: backbone, Scale-transfer module and Scale Relationship
module. The backbone is adapted from ResNet50. Scale-transfer module and Scale Relationship module are built on multiple feature layers.
Output features from Scale relationship module are used for classification and regression.

several extra convolutional layers (F2, F3 and F4) are stacked
above the attention module in a top-down pathway.

3.3 Scale-transfer Module

Features from different stages have various scales, which
makes it difficult for aggregation. Inspired by the object
detection method [Zhou et al., 2018], we develop a Scale-
transfer module to generate feature maps with a unified
dimension (1/4 of input image in our experiment).

As illustrated in Figure 3, channel matching layer first-
ly produces features with corresponding channels, which
controls the output channels of scale-transfer layer. Then
scale-transfer layer expands width and hight of feature maps
simultaneously by compressing the number of channels. The
dimensions of input tensor are Ci×Hi×Wi (i = 1, 2, 3) and

those of outputs are Ci

m2 ×m×Hi ×m×Wi. We choose m
to 8, 4, 2 for F1, F2, F3 respectively. Finally, the multi-scale
features are mapped to a unified dimension through Scale-
transfer module.

As channel matching layer should also be implemented
following other expanding approaches for channel normali-
zation (channels of features are usually related to stages),
Scale-transfer module expands the scale of feature maps with
less additional parameters, which can make our network more
efficient.

3.4 Scale Relationship Module

The detection of large text requires features from late-stage
with small scales, while accurate geometry prediction of
small texts needs low-level information from early-stage
[Zhou et al., 2017a]. However, simply concatenating features
with multi-scale information would limit the performance
of network due to the heterogeneity of features. Different
from previous methods [He et al., 2017a; Lyu et al., 2018;
Liao et al., 2018] which combine predictions from multi-
scale features to handle the large-variance scale problem, we
propose a Scale Relationship module to aggregate multi-scale
features. It passes contextual scale information among multi-
scale feature maps and maps the multi-scale features onto a

Figure 3: The architecture of Scale-transfer module. Channel
matching layer produces features with corresponding channels to
control output dimensions of scale-transfer layer.

Figure 4: The architecture of bidirectional convolution. Inputs
are feature maps from decoding layers in Figure 2. Contextual
scale information passes through bidirectional convolution layers.
Element-wise product is learned to control the multi-scale informa-
tion passing.

scale invariant space, which results in uniform activation of
multi-size text instances and essentially improves the quality
of features (Figure 1(c)).

As illustrated in Figure 4, Scale Relationship module pas-
ses contextual scale information by sequentially convoluting
feature maps through bidirectional convolution operations.
f0, f1, f2 and f3 are corresponding features from decoding
layers F1, F2, F3 and F4 in Figure 2 respectively. Con-
volution in the first direction starts from the last decoding
layer (f3) and ends at the first decoding layer (f0), thus the
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Figure 5: Feature aggregation. Two following convolution layers are
implemented for better representation

sequential feature maps can receive scale information from
larger-scale features, which is better for small text detection.
In contrast, sequential features can also receive large-size
textual information in the second direction. Element-wise
product operation is learned to control how much contextual
scale information can be received from previous feature
maps. The outputs of bidirectional convolution (gi and hi,
i = 0, 1, 2, 3 in Figure 4) have richer multi-scale and stronger
semantic information than previous feature maps (fi, i =
0, 1, 2, 3).

In the end, we concatenate the output features from bidirec-
tional convolution operations and implement two sequential
convolution layers to obtain better representation. In order to
balance the accuracy and efficiency in the detection task, only
four decoding layers are used in the proposed method.

4 Loss Functions

The multi-task loss is formulated as:

L = Lcls + λregLreg (1)

Where Lcls and Lreg are classification loss and regression
loss respectively. λreg is a hyperparameter to balance Lcls

and Lreg . In our experiment, we set λreg to 1.

4.1 Loss for Clssification

In most previous detection approaches, processes such as
hard negative mining and balanced sampling are implemented
to handle the imbalanced distribution between background
and target objects. Lin et al. [2017b] propose a Focal Loss
(FL), which achieves better training by down-weighting the
well-classified examples, as seen in (2).

FL(pt) = −at(1− pt)
λ log(pt) (2)

As direct regression based methods directly predict a score
map of text regions, Focal Loss will distribute almost the
same weight to miss-detected text instances (red region in
Figure 6) and the border of text instances (green region in Fig-
ure 6), which makes the model pay identical attention to both
regions during training and is harmful to the performance. To
handle this issue, we propose a new loss function to force
the network to pay more attention to the miss-detected text
instances without concerning about the border of texts, which
is called Recall Loss (RL).

RL =

{

−αη1 log(p) if y = 1
−η2 log(1− p) otherwise

(3)

α =

{

(e− θ)
β−IoU

if IoU < β
1 otherwise

(4)

IoU = S ∩G/S ∪G (5)

Figure 6: Pixels with confidence below 0.5 in score map are regarded
as negative samples. Left regions are miss-detected text instances
(IoU = 0 in (5)), and right regions are detected text instances. Both
miss-detected text instances and border of detected text instances
obtain the similar confidence the in score map. Top: weight in Focal
Loss. We set λ and at to 1 for visualization. Down: weight in
Recall Loss. We set β, θ in Recall Loss to 0.4 and 1 respectively for
visualization.

As seen in (3)(4)(5). Where S is the predicted region
with confidence of pixels above 0.5, G is the corresponding
ground truth, e is a constant, and α and β are hyperparameters
which will be illustrated in ablation studies. If IoU < β
, then α > 1 exists, which means all the pixels in this
region will be assigned a larger weight, and the border and
the center of text instances with IoU > β will obtain the
same weight that is lower than miss-detected text instances.
This property forces the network to focus on regions with
small IoU , which can effectively reduce the miss-detected
instances (Figure 7 (a)). η1 and η2 are balancing factors
between positive and negative samples. In our experiment,
we combine Recall Loss with Dice Loss (6) and balance them
by λR and λD respectively (oi and yi are pixels in score map
and ground truth respectively). In the end, the classification
loss is formulated as (7).

LDice = 1−
2
∑

i oiyi
∑

i oi+
∑

i yi
(6)

Lcls = λRRL+ λDLDice (7)

4.2 Loss for Regression

We choose the same regression approach in [Zhou et al.,
2017a], which is invariant against scales of objects (8)(9).

Lloc = − log IoU(P,G) = − log
|P ∩G|

|P ∪G|
(8)

Lθ = 1− cos(θ′ − θ∗) (9)

We combine Lloc with Lθ for final regression loss. Dis-
tance from a pixel to 4 boundaries and value of angle are
outputs for both training and inference.
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5 Experiment
In this section, we evaluate the performance of Scale Rela-
tionship module and of Recall Loss respectively. We compare
our DSRN with recent state-of-art methods on benchmark
datasets to prove our accuracy and efficiency.

5.1 Benchmark Datasets

ICDAR2015. This is a dataset for incidental scene text
detection proposed in the Challenge 4 of ICDAR 2015 Robust
Reading Competition [Karatzas et al., 2015]. It includes 1000
training images and 500 test images with annotations labeled
as 4 vertices of a word level quadrangle. We fit a rotated
rectangle with the minimum area for training. Different
from previous dataset with only horizontal annotations, this
benchmark is proposed for evaluating multi-orientation text
detection and contains text of different scales, ambiguities,
resolutions, perspectives, and directions.

HUST. [Yao et al., 2014] is a dataset contains 400 images,
which consists of Arabic numbers and English letters of
different fonts with text line level labels.

MSRA-TD500. This is a dataset proposed in [Yao et al.,
2012] for detecting arbitrary-oriented and multi-lingual long
text lines. It contains 300 images for training and 200 images
for testing. Since the size of training data is too small to learn
a deep newtwork, we also use 400 images from HUST [Yao
et al., 2014] in training stage.

5.2 Experimental Setup

Our proposed network is trained end-to-end on NVIDIA TI-
TAN X GPU using ADAM[Kingma and Ba, 2014] optimizer.
We perform data augmentation by randomly cropping each
image and resize it to 512 × 512 for training. We update the
learning rate by a multi-step strategy. The initial learning rate
is 1e-3, and decays by 0.94 every 10k steps. We set batchsize
to be 14 and training continues until convergence. In test
stage, NMS is implemented to reduce the redundant results.

5.3 Ablation Studies

Recall Loss. θ and β are important hyperparameters which
allow us to vary the capacity of Recall Loss in our model. To
investigate this relationship, several experiments are conduc-
ted using different θ and β values on ICDAR2015 in Table
1. We also conduct an experiment without Recall Loss (α =
1 in (3)) for optimizing. The comparison reveals that Recall
Loss can boost the performance in recall and obtain higher
F-measure. Furthermore, we compare Recall Loss with Focal
Loss [Lin et al., 2017b] and Lovasz-Softmax Loss [Berman et

θ β R P F

0 0 0.772 0.846 0.807
1 0.3 0.787 0.788 0.788
1.5 0.3 0.796 0.82 0.808
1.7 0.3 0.796 0.832 0.814
1.7 0.2 0.766 0.81 0.787
1.7 0.4 0.777 0.83 0.803

Table 1: Performance on ICDAR2015 with different settings of θ
and β.

Loss R P F

Focal Loss 0.592 0.923 0.721
Lovasz-Softmax 0.767 0.834 0.799
Recall Loss 0.796 0.832 0.814

Table 2: Compared with other loss functions on ICDAR2015.

Algorithm R P F FPS

baseline1† 0.541 0.751 0.62 16.1
baseline2† 0.67 0.847 0.748 15.4
DSRN† 0.712 0.876 0.785 13.3

baseline1∗ 0.612 0.70 0.657 12.1
baseline2∗ 0.777 0.826 0.80 10.8
DSRN∗ 0.796 0.832 0.814 8.8

Table 3: Performance gain of Scale Relationship module. † and ∗

means experiments on MSRA-TD500 and ICDAR2015 respectively.

al., 2018] in Table 2. The comparison reveals that Recall Loss
achieves better performance in both recall and F-measure.

Scale Relationship module. To explore the gain of our
Scale Relationship module, we train baseline networks with-
out Scale Relationship module (baseline1) and with unidi-
rectional convolution operation (baseline2). All baseline
models contain the identical backbone, prediction module
and training settings as DSRN. With slight time consumption,
DSRN boosts the performance greatly.

5.4 Comparison with existing methods

We evaluate our model on ICDAR2015 incidental scene text
to test its performance of arbitrarily oriented text detection.
229 images from ICDAR2013 are also used for training. We
choose θ and β to 1.7 and 0.3 respectively in training stage
and resize images to 768× 1280 in test stage .

We compare the proposed method with state-of-art algo-
rithms in Table 4. DSRN works better in direct regression
based methods [He et al., 2017b; Zhou et al., 2017a], and
outperforms them by a large margin (0.814 vs 0.70 and
0.782). We attribute our high performance to the aggregation
of multi-scale information in Scale Relationship module,
which essentially improves the quality of feature maps. When
tested at single scale, the proposed method surpasses most
state-of-art methods [Lyu et al., 2018; Wang et al., 2018;
Liu et al., 2018] with the fastest speed. Although [Liao et
al., 2018] is slightly better than ours (0.822 vs 0.814), which
contains a corner grouping process resulting a lot of time

Algorithm R P F FPS

[He et al., 2017b]∗ 0.62 0.82 0.70 -
[Zhou et al., 2017a]∗ 0.735 0.836 0.782 -
[Jiang et al., 2018]∗ 0.743 0.764 0.753 2.2
[Liu et al., 2018] 0.80 0.72 0.76 -
[Wang et al., 2018] 0.741 0.857 0.795 -
[Lyu et al., 2018]∗ 0.707 0.941 0.807 3.6
[Liao et al., 2018]∗ 0.79 0.856 0.822 6.5
DSRN∗ 0.796 0.832 0.814 8.8

Table 4: Results on ICDAR2015. ∗means single scale.
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(a) (b) (c) (d)

Figure 7: Some detection samples on ICDAR2015 and MSRA-TD500. (a) illustrates the performance of training without Recall Loss (top)
and training with Recall Loss (down). The miss-detected word ’by’ is able to be located by training with Recall Loss. Some failure cases are
presented in (d), where red boxes are ground truths while green boxes are predicted results

Algorithm R P F FPS

[He et al., 2017b] 0.70 0.77 0.74 -
[Zhou et al., 2017a] 0.674 0.873 0.761 13.2
[Long et al., 2018] 0.739 0.832 0.783 1.1
[Deng et al., 2018] 0.732 0.83 0.778 3
[Liao et al., 2018] 0.73 0.87 0.79 10
[Lyu et al., 2018] 0.762 0.876 0.815 5.7
DSRN 0.712 0.876 0.785 13.3

Table 5: Results on MSRA-TD500.

consumption, our method achieves 35% faster speed (8.8 FPS
vs 6.5 FPS) due to a lighter architecture with simpler post
processing (NMS).

On MSRA-TD500, we evaluate the capacity of our al-
gorithm for detecting long and multi-lingual text lines. We
pre-train our model on ICDAR2015 and then finetune it until
convergence. In test stage, we resize images to 672× 672.

With comparisons to other representative results in Ta-
ble 5, our method achieves the state-of-art performance in
recall, precision and F-measure (0.712, 0.876 and 0.785),
outperforming the direct regression based methods [He et al.,
2017b; Zhou et al., 2017a] (0.785 vs 0.74 and 0.761) and
other representative methods [Long et al., 2018; Deng et al.,
2018]. Furthermore, our method achieves the identical state-
of-art performance in recall to [Lyu et al., 2018] with 142%
faster speed (13.3 FPS vs 5.7 FPS).

Particularly, [Lyu et al., 2018] and [Liao et al., 2018] use
SynthText [Gupta et al., 2016] (800000 images in [Lyu et al.,
2018]) to pre-train their models and then finetune them on
corresponding tasks (both ICDAR2015 and MSRA-TD500).
The proposed DSRN can obtain better or competitive results
with much less training datasets, which proves that our DSRN
is a more general model for scene text detection task.

Some detection samples of DSRN are visualized in Figure
7. The proposed method can perform well in most situations,
handling the large variance of text scale and arbitrary ori-
entation in scene text detection. However, it fails to detect
text lines with large character spacing (top of Figure 7 (d)).
Furthermore, our method performs not well in curved text
detection (bottom of Figure 7(d)), as few curved samples are

in training set.

5.5 Rationality of High Performance and Fast
Speed

DSRN is proposed to detect multi-size texts automatically.
The huge increase in accuracy and efficiency is mainly
due to three aspects. 1) We develop a Scale Relationship
module to learn the contextual scale information and to
obtain uniform activation of multi-size text instances, which
essentially improves the quality of convolutional feature
maps. 2) We propose a new loss function called Recall Loss,
which effectively reduces miss-detected text instances by up-
weighting the weight of poor-classified examples. 3) The
direct regression approach and light network make our model
efficient.

6 Conclusion

In this paper, we have presented a novel end-to-end method
for scene text detection. The main idea is mapping multi-
scale features onto a scale invariant space, which obtains
uniform activation of multi-size text instances and effective-
ly handles the problem of large variance of text scale in
scene text detection without setting complex hand-crafted
hyperparameters. Another improvement is that we propose
a new loss function called Recall Loss, which reduces miss-
detected text instances by up-weighting the poor-classified
examples. The experiments on benchmarks reveal that our
model achieves the state-of-art performance with impressive
speed. Furthermore, we also analyze the reasons of our high
performance and fast speed. As for future work, we will
further improve the performance by combining our detection
framework with a recognition branch.
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