
DTAM: Dense Tracking and Mapping in Real-Time

Richard A. Newcombe, Steven J. Lovegrove and Andrew J. Davison

Department of Computing, Imperial College London, UK

[rnewcomb,sl203,ajd]@doc.ic.ac.uk

Abstract

DTAM is a system for real-time camera tracking and recon-

struction which relies not on feature extraction but dense,

every pixel methods. As a single hand-held RGB camera

flies over a static scene, we estimate detailed textured depth

maps at selected keyframes to produce a surface patchwork

with millions of vertices. We use the hundreds of images

available in a video stream to improve the quality of a sim-

ple photometric data term, and minimise a global spatially

regularised energy functional in a novel non-convex opti-

misation framework. Interleaved, we track the camera’s

6DOF motion precisely by frame-rate whole image align-

ment against the entire dense model. Our algorithms are

highly parallelisable throughout and DTAM achieves real-

time performance using current commodity GPU hardware.

We demonstrate that a dense model permits superior track-

ing performance under rapid motion compared to a state of

the art method using features; and also show the additional

usefulness of the dense model for real-time scene interac-

tion in a physics-enhanced augmented reality application.

1. Introduction

Algorithms for real-time SFM (Structure from Motion), a

problem alternatively referred to as Monocular SLAM, have

almost always worked by generating and tracking sparse

feature-based models of the world. However, it is increas-

ingly clear that in both reconstruction and tracking it is pos-

sible to get more complete, accurate and robust results us-

ing dense methods which make use of all of the data in

an image. Methods for high quality dense stereo recon-

struction from multiple images (e.g. [15, 4]) are becoming

real-time capable due to their high parallelisability, allow-

ing them to track the currently dominant GPGPU hardware

curve. Meanwhile, the first live dense reconstruction sys-
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tems working with a hand-held camera have recently ap-

peared (e.g. [9, 13]), but these still rely on feature tracking.

Here we present a new algorithm, DTAM (Dense Tracking

and Mapping), which unlike all previous real-time monoc-

ular SLAM systems both creates a dense 3D surface model

and immediately uses it for dense camera tracking via whole

image registration. As a hand-held camera browses a scene

interactively, a texture-mapped scene model with millions

of vertices is generated. This model is composed of depth

maps built from bundles of frames by dense and sub-pixel

accurate multi-view stereo reconstruction. The reconstruc-

tion framework is targeted at our live setting, where hun-

dreds of narrow-baseline video frames are the input to each

depth map. We gather photometric information sequentially

in a cost volume, and incrementally solve for regularised

depth maps via a novel non-convex optimisation framework

with elements including accelerated exact exhaustive search

to avoid coarse-to-fine warping and the loss of small details,

and an interleaved Newton step to achieve fine accuracy.

Meanwhile, in an interleaved fashion, the camera’s pose is

tracked at frame-rate by whole image alignment against the

dense textured model. This tracking benefits from the pre-

dictive capabilities of a dense model with regard to occlu-

sion handling and multi-scale operation, making it much

more robust and at least as accurate as any feature-based

method; in particular, performance degrades remarkably

gracefully in reaction to motion blur or camera defocus.

The limited processing resources imposed by real-time

operation seemed to preclude dense methods in previous

monocular SLAM systems, and indeed the recent availabil-

ity of powerful commodity GPGPU processors is a ma-

jor enabler of our approach in both the reconstruction and

tracking components. However, we also believe that there

has been a lack of understanding of the power of bring-

ing dense methods fully ‘into the loop’ of tracking and re-

construction. The availability of a dense scene model, all

the time, enables many simplifications of issues with point-

based systems, for instance with regard to multiple scales

and rotations, occlusions or blur due to rapid motion. Also,

our view is that the high quality correspondence required

by both tracking and reconstruction will always be most



robustly and accurately enabled by dense methods, where

matching at every pixel is supported by the totality of data

across an image and model.

2. Method

The overall structure of our algorithm is straightforward.

Given a dense model of the scene, we use dense whole im-

age alignment against that model to track camera motion

at frame-rate. And tightly interleaved with this, given im-

ages from tracked camera poses, we update and expand the

model by building and refining dense textured depth maps.

Once bootstrapped, the system is fully self-supporting and

no feature-based skeleton or tracking is required.

2.1. Preliminaries

We refer to the pose of a camera c with respect to the world

frame of reference w as

Twc =

(

Rwc cw
0T 1

)

, (1)

where Twc ∈ SE(3) is the matrix describing point trans-

fer between the camera’s frame of reference and that of the

world, such that xw = Twcxc. Rwc ∈ SO(3) is the ro-

tation matrix describing directional transfer, and cw is the

location of the optic center of camera c in the frame of

reference w. Our camera has fixed and pre-calibrated in-

trinsic matrix K and all images are pre-warped to remove

radial distortion. We describe perspective projection of a

3D point xc = (x, y, z)⊤ including dehomogenisation by

π(xc) = (x/z, y/z)⊤.

Our dense model is composed of overlapping keyframes. Il-

lustrated in Figure 1, a keyframe r with world-camera frame

transform Trw, contains an inverse depth map ξr : Ω → R

and RGB reference image Ir : Ω → R
3 where Ω ⊂ R

2

is the image domain. For a pixel u := (u, v)⊤ ∈ Ω,

we can back-project an inverse depth value d = ξ(u) to

a 3D point x = π−1(u, d) where π−1(u, d) = 1
d
K−1u̇.

The dot notation is used to define the homogeneous vector

u̇ := (u, v, 1)⊤.

2.2. Dense Mapping

We follow a global energy minimisation framework to es-

timate ξr iteratively from any number of short baseline

frames m ∈ I(r), where our energy is the sum of a photo-

metric error data term and robust spatial regularisation term.

We make each keyframe available for use in pose estimation

after initial solution convergence.

We now define a projective photometric cost volume Cr for

the keyframe as illustrated in Figure 1. A row Cr(u) in

Figure 1. A keyframe r consists of a reference image Ir with pose

Trw and data cost volume Cr . Each pixel of the reference frame

ur has an associated row of entries Cr(u) (shown in red) that

store the average photometric error or cost Cr(u, d) computed

for each inverse depth d ∈ D in the inverse depth range D =
[ξ

min
, ξ

max
]. We use tens to hundreds of video frames indexed as

m ∈ I(r), where I(r) is the set of frames nearby and overlapping

r, to compute the values stored in the cost volume.

the cost volume (called a disparity space image in stereo

matching [14], and generalised more recently in [10] for

any discrete per pixel labelling) stores the accumulated pho-

tometric error as a function of inverse depth d. The aver-

age photometric error Cr(u, d) is computed by projecting a

point in the volume into each of the overlapping images and

summing the L1 norm of the individual photometric errors

obtained:

Cr(u, d) =
1

|I(r)|

∑

m∈I(r)

‖ρr (Im,u, d) ‖1 , (2)

where the photometric error for each overlapping image is:

ρr (Im,u, d) = Ir (u)− Im
(

π
(

KTmrπ
−1 (u, d)

))

. (3)

Under the brightness constancy assumption, we hope for

ρ to be smallest at the inverse depth corresponding to the

true surface. Generally, this does not hold for images cap-

tured over a wide baseline and even for the same viewpoint

when lighting changes significantly. Here, rather than using

a patch-based normalised score, or pre-processing the input

data to increase illumination invariance over wide baselines,

we take the opposite approach and show the advantage of

reconstruction from a large number of video frames taken

from very close viewpoints where very high quality match-

ing is possible. We are particularly interested in real-time

applications where a robot or human is in the reconstruc-

tion loop, and so could purposefully restrict the collection

of images to within a relatively narrow region.

In Figure 2, we show plots for three reference pixels where

the function ρ (Equation 3) has been computed and aver-



Figure 2. Plots for the single pixel photometric functions ρ(u) and the resulting total data cost row C(u) are shown for three example

pixels in the reference frame, chosen in regions of differing discernibility. Pixel (a) is in a textureless region and not well localisable; (b)

is within a strongly textured region where a point feature might be detected; and (c) is in a region of linear repeating texture. While the

individual costs exhibit many local minima, the total cost shows clear a clear minimum in all except nearly homogeneous regions.

aged to form C(u) (Equation 2). It is clear that while an

individual data term ρ can have many minima, the total cost

generally has very few and often a clear minimum. Each

single ρ is a simple two view stereo data term, and as such

has no useful information for scene regions which are oc-

cluded in the second view. As noted in [13], while increas-

ing signal to noise ratio, using many views with a robust L1

norm enables the occlusions to be treated as outliers, while

increasing the chance that a region has at least one useful

non occluding data term.

Shown in Figure 3, an inverse depth map can be extracted

from the cost volume by computing arg mind C(u, d) for

each pixel u in the reference frame. It is clear that the esti-

mates obtained in featureless regions are prone to false min-

ima. Fortunately, the sum of individual photometric errors

in these regions leads to a flatter total cost. We will there-

fore seek an inverse depth map which minimises an energy

functional comprising the photometric error cost as a data

term and a regularisation term that penalises deviation from

a spatially smooth inverse depth map solution.

2.2.1 Regularised Cost

We assume that the inverse depth solution being recon-

structed consists of regions that vary smoothly together with

discontinuities due to occlusion boundaries. We use a regu-

lariser comprising a weighted Huber norm over the gradient

of the inverse depth map, g(u)‖∇ξ(u)‖ǫ. The Huber norm

is a composite of two convex functions:

‖x‖ǫ =

{

‖x‖2
2

2ǫ if ‖x‖2 ≤ ǫ
‖x‖1 −

ǫ
2 otherwise

(4)

Within ‖∇ξr‖2 ≤ ǫ an L2
2 norm is used, promoting smooth

reconstruction, while otherwise the norm is L1 forming the

total variation (TV) regulariser which allows discontinu-

ities to form at depth edges. More specifically, TV allows

discontinuities to form without the need for a threshold-

specific non-convex norm that would depend on the recon-

struction scale which is not available in a monocular setting.

In this case ǫ is set to a very small value≈ 1.0e−4 to reduce

the stair-casing effect obtained by the pure TV regulariser.

As depth discontinuities often coincide with edges in the

reference image, the per pixel weight g(u) we use is:

g(u) = e−α‖∇Ir(u)‖
β
2 , (5)

reducing the regularisation strength where the edge mag-

nitude is high, thereby limiting solution smoothing across

region boundaries. The resulting energy functional there-

fore contains a non-convex photometric error data term and

a convex regulariser:

Eξ =

∫

Ω

{

g(u)‖∇ξ(u)‖ǫ + λC (u, ξ(u))
}

du . (6)

In many optical flow and variational depth map methods,

a convex approximation to the data term can be obtained

by linearising the cost volume and solving the resulting

approximation iteratively within a coarse-to-fine warping

scheme that can lead to loss of reconstruction detail. If the

linearisation is performed directly in image space as in [13],

all images used in the data term must be kept increasing

computational cost as more overlapping images are used.

Instead, following the large displacement optic flow method

of [12] we approximate the energy functional by coupling

the data and regularisation terms through an auxiliary vari-

able α : Ω→ R,

Eξ,α =

∫

Ω

{

g(u)‖∇ξ(u)‖ǫ +
1

2θ
(ξ(u)−α(u))

2

+ λC (u,α(u))
}

du .

(7)

The coupling term Q(u) = 1
2θ (ξ(u) − α(u))

2 serves to

drive the original and auxiliary variables together, enforc-

ing ξ = α as θ → 0, resulting in the original energy

(6). As a function of ξ, the convex sum g(u)‖∇ξ(u)‖ǫ +
Q(u) is a small modification of the TV-L2

2 ROF image

denoising model term [11], and can be efficiently opti-

mised using a primal-dual approach [1][16][3]. Also, al-

though still non-convex in the auxiliary variable α, each



Figure 3. Incremental cost volume construction; we show the current inverse depth map extracted as the current minimum cost for each

pixel row dmin

u
= arg min

d
C(u, d) as 2, 10 and 30 overlapping images are used in the data term (left). Also shown is the regularised

solution that we solve to provide each keyframe inverse depth map (4th from left). In comparison to the nearly 300× 103 points estimated

in our keyframe, we show the ≈ 1000 point features used in the same frame for localisation in PTAM ([6]). Estimating camera pose from

such a fully dense model enables tracking robustness during rapid camera motion.

Q(u) + λC (u,α(u)) is now trivially point-wise optimis-

able and can be solved using an exhaustive search over a

finite range of discretely sampled inverse depth values. The

lack of coarse-to-fine warping means that smaller scene de-

tails can be correctly picked out from their surroundings.

Importantly, the discrete cost volume C, can be computed

by keeping the average cost up to date as each overlapping

frame from Im∈I(r) arrives removing the need to store im-

ages or poses and enabling constant time optimisation for

any number of overlapping images.

2.2.2 Discretisation of the Cost Volume and Solution

The discrete cost volume is implemented as an M ×N ×S
element array, where M × N is the reference image res-

olution and S is the number of points linearly sampling

the inverse depth range between ξmax and ξmin. Linear

sampling in inverse depth leads to a linear sampling along

epipolar lines when computing ρ.

In the next section we will use MN × 1 stacked rasterised

column vector versions of the inverse depth ξ and auxiliary

α variables (see [16] for more details of similar schemes).

d is the vector version of ξ; and a is the vector version ofα.

We will also use g to denote the MN × 1 constant vector

containing the stacked reference image per-pixel weights

computed by Equation 5 for image weighted regularisation.

2.2.3 Solution

We now detail our iterative minimisation solution for (7).

Following [1][16][3], we use duality principles to arrive at

the primal-dual form of g(u)‖∇ξ(u)‖ǫ +Q(u). Using the

vector notation, we replace the weighted Huber regulariser

(4) by its conjugate using the Legendre-Fenchel transform,

‖AGd‖ǫ = arg max
q, ‖q‖2≤1

{

〈AGd,q〉−δq(q)−
ǫ

2
‖q‖22

}

, (8)

where the matrix multiplication Ad computes the 2MN×1
element gradient vector, G = diag(g) is the element-wise

weighting matrix and δq(q) is the indicator function such

that for each element q, δq(q) = 0 if ‖q‖1 ≤ 1 and other-

wise∞.

Replacing the regulariser with the dual form, the saddle-

point problem in primal variable d and dual variable q is

coupled with the data term giving the sum of convex and

non-convex functions we minimise,

arg max
q, ‖q‖2≤1

{arg min
d,a

E (d,a,q)} (9)

E (d,a,q) =
{

〈AGd,q〉+
1

2θ
‖d− a‖22

+λC (a)− δq(q)−
ǫ

2
‖q‖22

}

.

(10)

Fixing the auxillary variable a, the condition of optimality

is met when ∂d,q(E (d,a,q)) = 0. For the dual variable q,

∂E (d,a,q)

∂q
= AGd− ǫq . (11)

Using the divergence theorem, differentiation with respect

to primal variable d can be performed by noting that

〈AGd,q〉 =
〈

A⊤q, Gd
〉

, where A⊤ forms the negative

divergence operator,

∂E (d,a,q)

∂d
= GA⊤q+

1

θ
(d− a) . (12)

For a fixed value d we obtain the solution for each au =
a(u) ∈ D in the remaining non-convex function using a

point-wise search to solve,

arg min
au∈D

Eaux(u, du, au) , (13)

Eaux(u, du, au) =
1

2θ
(du − au)

2
+ λC (u, au) . (14)

The complete optimisation starting at iteration n = 0 be-

gins by setting dual variable q0 = 0 and initialising each

element of the primal variable with the data cost minimum,

d0u = a0u = arg minau∈D C(u, au), iterating:



Figure 4. Accelerated exhaustive search: at each pixel we wish to minimise the total depth energy Eaux(u) (green), which is the sum of

the fixed data energy C(u) (red) and the current convex coupling between primal and auxiliary variables Q(u) (blue). This latter term is a

parabola which gets narrower as optimisation progresses, setting a bound on the region within which a minimum of Eaux(u) can possibly

lie and allowing the search region (unshaded) to get smaller and smaller.

1. Fixing the current value of an perform a semi-implicit

gradient ascent on ∂q = 0 (11) and descent on ∂d = 0
(12) :

qn+1−qn

σq
= AGdn − ǫqn+1

dn+1−dn

σd
= − 1

θn

(

dn+1 − an
)

−GA⊤qn+1,

resulting in the following primal-dual update step,

qn+1 = Πq ((q
n + σqGAdn)/(1 + σqǫ)) ,

dn+1 = (dn+σd(GA⊤qn+1+ 1
θn a

n))/(1+ σd

θn )

where Πq(x) = x/max(1, ‖x‖2) projects the gradient

ascent step back onto the constraint ‖q‖1 ≤ 1.

2. Fixing dn+1, perform a point-wise exhaustive search

for each an+1
u ∈ D (13).

3. If θn > θend update θn+1 = θn (1− βn), n← n+ 1
and goto (1), otherwise end.

In practice, the update steps for qn+1 and dn+1 can be per-

formed efficiently and in parallel on modern GPU hardware

using equivalent in-place computations for operators ∇ and

−∇· in place of the matrix-vector multiplication involving

A and A⊤.

2.2.4 Accelerating the Non-Convex Solution

The exhaustive search over all S samples of Q to solve (13)

ensures global optimality of the iteration (within the sam-

pling limit). We now demonstrate in Figure 4 that there

exists a deterministically decreasing feasible region within

which the global minimum of (14) must exist, considerably

reducing the number of samples that need to be tested.

For a pixel u, the known data cost minimum and maximum

are Cmax
u = C(dmax

u ) and Cmin
u = C(dmin

u ). These are

trivial to maintain when building the cost volume. As both

terms in (14) are positive, we know that the minimum value

of any cost volume row is just Cmin
u . This occurs if the

quadratic component is zero when an+1
u = dn+1

u = dmin
u .

In any case, if we set an+1
u = dn+1

u then we can not exceed

Cmax
u resulting in the energy bound,

Cmin
u +

1

2θn
(

an+1
u − dn+1

u

)2
≤ Cmax

u (15)

Rearranging for an+1
u we find a feasible region either side

of the current fixed point dn+1
u within which the solution of

the optimisation must exist,

an+1
u ∈

[

dn+1
u − rn+1

u , dn+1
u + rn+1

u

]

(16)

rn+1
u = 2θnλ

(

Cmax
u − Cmin

u

)

(17)

As shown in Figure (4), the search region size drastically

decreases after only a small number of iterations, reducing

the number of sample points that need to be tested in the

cost volume to ensure optimally of (13).

2.2.5 Increasing Solution Accuracy

In the large displacement optical flow method of [12] an

increased sampling density of the cost function is used to

achieve sub-pixel flows. Likewise, it is possible to increase

the density of inverse depth samples S to increase surface

reconstruction accuracy and the acceleration method intro-

duced in the previous section would go a long way to mit-

igating the increased computational cost. However, as can

be seen in Figure 4 the sampled point-wise energy Q(u) is

typically well modelled around the discrete minimum with

a parabola. We can therefore achieve sub-sample accuracy

by performing a single Newton step using numerical deriva-

tives of Q(u) around the current discrete minimium an+1
u ,

ân+1
u = an+1

u −
∇Eaux(u, dn+1

u , an+1
u )

∇
2Eaux(u, dn+1

u , an+1
u )

. (18)



(a) (b) (c) (d)

(e)

Figure 5. Example inverse depth map reconstructions obtained from DTAM using a single low sample cost volume with S = 32. (a)

Regularised solution obtained without the sub-sample refinement is shown as a 3D mesh model with Phong shading (inverse depth map

solution shown in inset). (b) Regularised solution with sub-sample refinement using the same cost volume also shown as a 3D mesh model.

(c) The video frame as used in PTAM, with the point model projections of features found in the current frame and used in tracking. (d,e)

Novel wide baseline texture mapped views of the reconstructed scene used for tracking in DTAM.

The refinement step is embedded in the iterative optimisa-

tion scheme by replacing the located an+1
u with the sub-

sample accurate version. It is not possible to perform this

refinement post-optimisation, as at that point the quadratic

coupling energy is large (due to a very small θ), and so

the fitted parabola is a spike situated at the minimum. As

demonstrated in Figure 5 embedding the refinement step in-

side each iteration results in vastly increased reconstruction

quality, and enables detailed reconstructions even for low

sample rates, e.g. S ≤ 64.

2.2.6 Setting Parameter Values and Post Processing

Gradient ascent/descent time-steps σq, σd are set optimally

for the update scheme provided as detailed in [3]. Various

values of β can be used to drive θ towards 0 as iterations in-

crease while ensuring θn+1 < θn (1− βn). Larger values

result in lower quality reconstructions, while smaller values

of β with increased iterations result in higher quality. In our

experiments we have set β = 0.001 while θn ≥ 0.001 else

β = 0.0001 resulting in a faster initial convergence. We

use θ0 = 0.2 and θend = 1.0e − 4. λ should reflect the

data term quality and is set dynamically to 1/(1 + 0.5d̄),
where d̄ is the minimum scene depth predicted by the cur-

rent scene model. For the first key-frame we set λ = 1. This

dynamically altered data term weighting sensibly increases

regularisation power for more distant scene reconstructions

that, assuming similar camera motions for both closer and

further scenes, will have a poorer quality data term.

Finally, we note that optimisation iterations can be inter-

leaved with updating the cost volume average, enabling the

surface (though in a non fully converged state) to be made

available for use in tracking after only a single ρ computa-

tion. For use in tracking, we compute a triangle mesh from

the inverse depth map, culling oblique edges as described in

[9].

2.3. Dense Tracking

Given a dense model consisting of one or more keyframes,

we can synthesise realistic novel views over wide baselines

by projecting the entire model into a virtual camera. Since

such a model is maintained live, we benefit from a fully pre-

dictive surface representation, handling occluded regions

and back faces naturally. We estimate the pose of a live

camera by finding the parameters of motion which generate

a synthetic view which best matches the live video image.

We refine the live camera pose in two stages; first with

a constrained inter-frame rotation estimation, and second

with an accurate 6DOF full pose refinement against the

model. Both are formulated as iterative Lucas-Kanade style

non-linear least-squares problems, iteratively minimising

an every-pixel photometric cost function. To converge to

the global minimum, we must initialise the system within

the convex basin of the true solution. We use a coarse-fine

strategy over a power of two image pyramid for efficiency

and to increase our range of convergence.

2.3.1 Pose Estimation

We first follow the alignment method of [8] between con-

secutive frames to obtain rotational odometry at lower levels

within the pyramid, offering resilience to motion blur since

consecutive images are similarly blurred. This optimisa-

tion is more stable than 6DOF estimation when the number

of pixels considered is low, helping to converge for large

pixel motions, even when the true rotation is not strictly ro-

tational (Figure 6). A similar step is performed before fea-

ture matching in PTAM’s tracker, computing first the inter-

frame 2D image transform and fitting a 3D rotation [7].

The rotation estimate helps inform our current best estimate

of the live camera pose, T̂wl. We project the dense model

in to a virtual camera v at location Twv = T̂wl, with colour



Figure 6. MSE convergence plots over time for an illustrative

tracking step using different combinations of rotation and full pose

iterations. Estimating rotation first can help to avoid local minima.

image Iv and inverse depth image ξv . Assuming that v is

close to the true pose of the live camera, we perform a 2.5D

alignment between Iv and the live image Il to estimate Tlv ,

and hence the true pose Twl = TwvTvl. We parametrise an

update to T̂vl by ψ ∈ R
6 belonging to the Lie Algebra se3

and define a forward-compositional [2] cost function relat-

ing photometric error to changing parameters:

F (ψ) =
1

2

∑

u∈Ω

(

fu (ψ)
)2

=
1

2
‖f(ψ)‖22, (19)

fu(ψ) = Il
(

π
(

KTlv(ψ)π
−1 (u, ξv (u))

))

− Iv (u) (20)

Tlv(ψ) = exp

(

6
∑

i=1

ψigeni
SE(3)

)

. (21)

This cost function does not take into account occluded sur-

faces directly; instead we assume that the optimisation op-

erates over only a narrow baseline from the original model

prediction. We could perform a full prediction setting

Twv = T̂wl at every iteration but find it is not required.

ψ◦ = arg minψ F (ψ) represents a stationary point of

F (ψ) such that ∇F (ψ◦) = 0. We approximate F (ψ)

with F̂ (ψ) = 1
2 f̂(ψ)

⊤f̂(ψ) where f̂(ψ) ≈ f(ψ) is the

Taylor series expansion of f(ψ) about 0 up to first order.

Via the product rule, ∇F̂ (ψ) = ∇f̂(ψ)⊤f̂(ψ) and we

can find the approximate minimiser ψ̂ ≈ ψ◦ by solving

∇f(ψ̂)⊤f̂(ψ̂) = 0. Equivalently, we can solve the overde-

termined linear system ∇f(0)ψ̂ = −f(0) or its normal

equations. We then apply the update T̂lv ← T̂lvT(ψ̂) and

repeat until ψ̂ ≈ 0 marking convergence.

2.3.2 Robustified Tracking

Any observed pixels which do not belong to our model

may have a large impact on tracking quality. We robus-

tify our method by disregarding pixels whose photometric

error falls above some threshold. In each least squares it-

eration, our coarse-fine method ramps down this threshold

as we converge to achieve greater accuracy. This scheme

makes it practical to track densely whilst observing unmod-

elled objects.

Figure 7. Augmented Reality car appears fixed rigidly to the world

as an unmodelled hand is waved in front of the camera. Pixels in

green are used for tracking whilst blue do not exist in the original

prediction and yellow are rejected (hand / monitor / shadow).

Figure 8. DTAM tracking throughout camera defocus.

2.4. Model Initialisation and Management

The system is initialised using a standard point fea-

ture based stereo method, which continues until the first

keyframe is acquired, when we switch to a fully dense track-

ing and mapping pipeline. We are investigating a fully gen-

eral dense initialisation scheme.

A new keyframe is added when the number of pixels in the

previous predicted image without visible surface informa-

tion falls below some threshold. This is possible due to

the fully dense nature of the system and is arguably better

founded than the heuristics used in feature based systems.

3. Evaluation

We have evaluated DTAM in the same desktop setting

where PTAM has been successful. In all experiments, we

have used a Point Grey Flea2 camera, operating at 30Hz

with 640×480 resolution and 24bit RGB colour. The cam-

era has pre-calibrated intrinsics. We run on a commodity

system consisting of an NVIDIA GTX 480 GPU hosted

by an i7 quad-core CPU. We present a qualitative compari-

son of the live running system including extensive tracking

comparisons with PTAM and augmented reality demonstra-

tions in an accompanying video:

http://youtu.be/Df9WhgibCQA.

3.1. Quantitative Tracking Performance

We have evaluated the tracking performance of our system

against the openly available PTAM system, which includes

http://youtu.be/Df9WhgibCQA


Figure 9. Linear velocities for DTAM (blue) and PTAM (red) over a challenging high acceleration back-and-forth trajectory close to a

cup. Areas where PTAM lost tracking and resorted to relocalisation are shown in green. In comparison, DTAM’s relocaliser was disabled.

Notice that DTAM’s linear velocity plot reflects smoother motion estimation.

many state of the art point feature tracking methods (Fig-

ure 9). Our results highlight both DTAM’s local accuracy

and extreme resilience to degraded images and rapid mo-

tion.

3.2. Failure Modes and Future Work

We assume brightness constancy in all stages of reconstruc-

tion and tracking. Although section 2.3.2 describes how

we can handle local illumination changes whilst tracking,

we are not robust to real-world global illumination changes

that can occur. Irani and Anandan [5] showed how a nor-

malised cross correlation measure can be integrated into the

objective function for more robustness to local and global

lighting changes. As an alternative to this, in future work,

we are interested in joint modelling of the dense lighting

and reflectance properties of the scene to enable more accu-

rate photometric cost functions to be used. We see this as

a route forward in attempting to recover a more complete

physically predictive description of a scene.

4. Conclusions

We believe that DTAM represents a significant advance in

real-time geometrical vision, with potential applications in

augmented reality, robotics and other fields. Dense mod-

elling and dense tracking feed back on each other to make

a system with modelling and tracking performance beyond

any point-based method.

References

[1] J.-F. Aujol. Some first-order algorithms for total variation

based image restoration. Journal of Mathematical Imaging

and Vision, 34(3):307–327, 2009. 3, 4

[2] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A uni-

fying framework: Part 1. International Journal of Computer

Vision (IJCV), 56(3):221–255, 2004. 7

[3] A. Chambolle and T. Pock. A first-order primal-dual al-

gorithm for convex problems with applications to imaging.

Journal of Mathematical Imaging and Vision, 40(1):120–

145, 2011. 3, 4, 6

[4] D. Gallup, M. Pollefeys, and J. M. Frahm. 3D reconstruction

using an n-layer heightmap. In Proceedings of the DAGM

Symposium on Pattern Recognition, 2010. 1

[5] M. Irani and P. Anandan. Robust multi-sensor image align-

ment. In Proceedings of the International Conference on

Computer Vision (ICCV), pages 959–966, 1998. 8

[6] G. Klein and D. W. Murray. Parallel tracking and map-

ping for small AR workspaces. In Proceedings of the Inter-

national Symposium on Mixed and Augmented Reality (IS-

MAR), 2007. 4

[7] G. Klein and D. W. Murray. Improving the agility of

keyframe-based SLAM. In Proceedings of the European

Conference on Computer Vision (ECCV), 2008. 6

[8] S. J. Lovegrove and A. J. Davison. Real-time spherical mo-

saicing using whole image alignment. In Proceedings of the

European Conference on Computer Vision (ECCV), 2010. 6

[9] R. A. Newcombe and A. J. Davison. Live dense reconstruc-

tion with a single moving camera. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2010. 1, 6

[10] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and

M. Gelautz. Fast cost-volume filtering for visual correspon-

dence and beyond. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2011.

2

[11] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total vari-

ation based noise removal algorithms. Physica D, 60:259–

268, November 1992. 3

[12] F. Steinbrucker, T. Pock, and D. Cremers. Large displace-

ment optical flow computation without warping. In Pro-

ceedings of the International Conference on Computer Vi-

sion (ICCV), 2009. 3, 5

[13] J. Stuehmer, S. Gumhold, and D. Cremers. Real-time dense

geometry from a handheld camera. In Proceedings of the

DAGM Symposium on Pattern Recognition, 2010. 1, 3

[14] R. Szeliski and D. Scharstein. Sampling the disparity space

image. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 26:419–425, 2004. 2

[15] C. Zach. Fast and high quality fusion of depth maps. In Pro-

ceedings of the International Symposium on 3D Data Pro-

cessing, Visualization and Transmission (3DPVT), 2008. 1

[16] M. Zhu. Fast numerical algorithms for total variation based

image restoration. PhD thesis, University of California at

Los Angeles, 2008. 3, 4


