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Abstract

Despite lots of effort being exerted in designing feature descriptors, it is still challenging to find generalized feature

descriptors, with acceptable discrimination ability, which are able to capture prominent features in various image

processing applications. To address this issue, we propose a computationally feasible discriminative ternary census

transform histogram (DTCTH) for image representation which uses dynamic thresholds to perceive the key properties

of a feature descriptor. The code produced by DTCTH is more stable against intensity fluctuation, and it mainly

captures the discriminative structural properties of an image by suppressing unnecessary background information.

Thus, DTCTH becomes more generalized to be used in different applications with reasonable accuracies. To validate

the generalizability of DTCTH, we have conducted rigorous experiments on five different applications considering nine

benchmark datasets. The experimental results demonstrate that DTCTH performs as high as 28.08% better than the

existing state-of-the-art feature descriptors such as GIST, SIFT, HOG, LBP, CLBP, OC-LBP, LGP, LTP, LAID, and CENTRIST.

Keywords: Discrimination ability, Event classification, Expression recognition, Image classification, Leaf classification,

Noise adaptive, Object recognition, Scene classification, Ternary pattern

1 Introduction

Image classification has recently gained importance

because of its numerous applications in different areas

of image processing and computer vision such as texture

classification [1–4], object tracking and recognition [5–9],

scene classification [5, 7, 10–12], face detection and recog-

nition [13–17], facial expression recognition [17–19], gen-

der classification [17, 20], content-based image retrieval

[21], and many others. These applications can be incorpo-

rated in video surveillance [22], human computer interac-

tion [23], video and image retrieval [24], biometrics [25],

and medical imaging [26–28].

Research works in this domain can be grouped into four

different categories namely low-level, mid-level, high-

level feature representations and classification strategies

[29]. Among these, low-level feature representation plays

a significant role since it is the building block for other

steps. Therefore, many feature descriptors have been

proposed for low-level feature representation. Among

these, gradient [10, 30–32] and local binary pattern (LBP)
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[5, 7, 33] basedmethods are widely explored and proved to

be successful in different applications. However, in most

of the cases, these descriptors solve a particular problem

and fail for general purpose image classification and/or

consume high computational cost. Tomitigate these prob-

lems, in this paper, we intend to develop a computationally

low-cost general purpose feature descriptor that can per-

form well in diversified applications. The major challenge

is that the real world applications are usually affected by

large intra-class and small inter-class variations due to

noise, illumination, photometric, scale, rotation, pose, and

appearance variations [7]. Therefore, it becomes crucial

to design a discriminative and robust feature descriptor

which will address these issues.

Scale invariant feature transform (SIFT), histogram of

oriented gradient (HOG), and GIST are the most com-

monly used gradient based low-level feature descrip-

tors for image classification [9, 10, 30–32, 34]. Several

extensions of SIFT such as speed up robust features

(SURF) [35], gradient location and orientation histogram

(GLOH) [36], and PCA-SIFT [37] have been introduced

for improving classification accuracy and/or reducing

computational complexity. Besides SIFT, HOG obtains

both the properties of SIFT and GLOH [31]. Recently, an
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extension of HOG, namely histogram of second order gra-

dient (HSOG) has been proposed to capture curvature

information [9]. These descriptors usually use the first

derivatives of an image (i.e., gradient direction and mag-

nitude), which can capture local shape properties of the

objects.

Gradient-based methods, such as SIFT first generally

determines the salient points of an image and then cal-

culate the descriptor on those points. The identification

of salient points helps to capture the best discrimina-

tive foreground and discard the unnecessary background

information. However, the identification of salient points

is not directly incorporated to these descriptors. More-

over, in most of the cases, these methods do not con-

sider the impact of human visual perception. Further, the

gradient-based features often fail to distinguish between

two pixels with same gradients even though those gradi-

ents correspond to different local structures [38].

In addition to the gradient-based methods, LBP and

its extensions such as PRICoLBP [8], DDLBP [39], and

OC-LBP [40] have become prominent because of their

simplicity and better accuracy [41]. However, LBP-based

methods that use “0” threshold have several major draw-

backs such as,

1. Small changes in intensities due to noises in uniform

and near-uniform regions often lead to wrong LBP

codes. For example, in Fig. 1b, original intensity “154”

(see Fig. 1a) is changed to “158,” where LBP produces

two different patterns (i.e., “11101000” and

“11101100”) though these two textures are similar.

2. LBP-based techniques fail to differentiate between

the small and large differences in intensities, and

these also fail to separate the foreground and

background which degrades the discriminative

ability. For example, differences between the center

pixel (“170”) and all of its eight neighboring pixels in

Fig. 2a are small and in Fig. 2b are large except one

pixel (i.e., “171”), whereas LBP encodes these two

textures as same pattern (i.e., “11111111”) which is

not desired.

Fig. 1 Noise caused by local intensity fluctuation. a Original texture. b

Texture changed due to local intensity fluctuation

Fig. 2 Example of two different textures which are encoded as same

pattern by LBP, a small and b large differences

In LBP-based methods, all codes are calculated

considering the center pixel and hence it can be

considered as a background pixel in the local scope.

Thus, all of its neighbors similar to it should also be

considered as background pixels. Since the center

pixel is “170,” in Fig. 2b, the intensity “171” should be

considered as a background and all other seven

neighbors as foreground. However, LBP and most of

its variants fail to achieve such discrimination ability.

A similar method to LBP is census transform (CT) [4].

Recently, CENTRIST is proposed for scene classification

which uses CT of the image pixels [7]. However, due to the

use of static threshold, CENTRIST has similar drawbacks

like LBP. In order to address these issues (i.e., to extract

the prominent features from an image and to deal with

the presence of different levels of noises), few dynamic

threshold-based methods are introduced. Local Gradi-

ent Pattern (LGP) is one of those which can adapt with

local intensity fluctuations by considering mean of the

local neighboring differences as a threshold [16]. However,

LGP fails to differentiate between a positive and a nega-

tive change in the local neighborhoods due to providing

same binary code (i.e., “1”) in these two different direc-

tions. This problem can be solved by using ternary pattern

[2, 3] which creates three patterns instead of two. Among

the ternary pattern-based techniques, Local Ternary Pat-

tern (LTP) shows resistance to the noises up to a certain

level since it assumes that noises in an image usually

vary within a fixed threshold (“±5”) [2]. However, such

a fixed threshold will not work for different types of

images [3, 42].

To solve this issue, several dynamic threshold based

methods are proposed such as noise tolerant ternary pat-

tern (NTTP) and local adaptive image descriptor (LAID).

However, the adaptive noise band defined in NTTP is

application specific. Again in LAID, the median of the

local neighboring differences is used as a threshold to

generate the code. However, considering the median as a
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threshold for a general purpose texture description might

not be useful in many cases, because median cannot guar-

antee the proper separation of significant and insignificant

changes since it is determined as the midpoint of data.

Furthermore, despite the use of median as a threshold,

it may have similar drawbacks like LBP, i.e., there might

be a case when it will fail to adapt with intensity fluc-

tuation (e.g., produces two different codes “01100011”

and “01100111” for the texture in Fig. 1) and cannot dis-

criminate between small and large intensity changes (e.g.,

produces same code “01100110” for two different textures

in Fig. 2).

The incorporation of a non-zero threshold with LBP

and its variants usually helps to reduce the effect of noise,

suppress the background, and highlight the foreground.

The benefit of such a threshold can further be realized

by taking Weber’s constant [43] into account. As per the

Weber’s law, it is not possible for human to distinguish

the difference of intensities below the Weber’s constant

with naked eyes. Unfortunately, it is not easy to deter-

mine such a non-zero threshold that satisfies all of these

issues. Hence, the desirable properties of a better thresh-

old is that it will be able to (i) distinguish foreground

and background, (ii) adapt with noise and other light-

ing conditions, and (iii) consistent with human visual

perception.

In this paper, we introduce a new feature descrip-

tor namely discriminative ternary census transform his-

togram (DTCTH) for general purpose image description.

The threshold is determined for DTCTH in such a way

so that it holds all the desirable properties and can be

calculated in linear time. Further, a spatial pyramid rep-

resentation is used with DTCTH for capturing the global

structure of an image. The major contributions of this

paper are summarized as follows.

1. We propose a dynamic threshold to produce stable

code against intensity fluctuation.

2. The threshold can be calculated in linear time while

it preserves all the desirable properties as mentioned

above by utilizing only the center pixel. This

threshold also helps to separate foreground and

background of an image and complies with human

visual perception.

3. The proposed DTCTH captures highly

discriminative features by suppressing the fine

details. Besides, the ternary code is generated to

enhance the discrimination ability. We also

incorporate a spatial pyramid representation which

helps to boost the accuracy.

4. We show the generalizability of DTCTH in case of

five different applications such as object, scene,

event, leaf, and facial expression classification using

nine standard datasets.

The rest of the paper is organized as follows. Section 2

briefly discusses existing state of the art low-level fea-

ture descriptors. Section 3 describes the use of these

feature descriptors in different applications. The proposed

method is described in Section 4. Section 5 presents a

rigorous comparative experimental evaluation on five dif-

ferent applications. Section 6 concludes the paper with

future research scope.

2 Background

A large number of techniques such as GIST, SIFT,

HOG, LBP, CLBP, LGP, LTP, LAID, and CENTRIST

have been proposed for image classification. These tech-

niques capture texture patterns of an image. In this

section, a brief description on all of these techniques are

highlighted.

2.1 GIST

GIST descriptor is initially proposed in [10] where a low-

dimensional representation of the scene is developed. The

authors propose a set of perceptual dimensions (e.g., natu-

ralness, openness, roughness, expansion, ruggedness) that

represent the dominant spatial structure of a scene. The

image is divided into small grids (e.g., 4 × 4 pixels), for

which orientation histograms are extracted using 32 dif-

ferent Gabor filters at 4 scales and 8 orientations. Then

the feature values within each grid are averaged. The

final GIST descriptor is represented by combining the 16

averaged values of all scale and orientations, which results

in 16 × 32 = 512 dimensions.

2.2 Scale invariant feature transform (SIFT)

Lowe et al. propose SIFT descriptor which consists of

four major steps such as scale-space peak selection, key-

point localization, orientation assignment, and keypoint

descriptor [30]. Firstly, potential interest points are identi-

fied in image over scale and space. This is implemented by

constructing a Gaussian pyramid and searching for local

peaks in a series of difference-of-Gaussian (DoG) images.

Secondly, keypoints are localized to sub-pixel accurately

by eliminating inconsistencies. Thirdly, the dominant ori-

entations for each keypoint are identified based on the

local image patch. Finally, a local image descriptor is pro-

duced for each keypoint, using the image gradients in the

local neighborhood. In the representation of the descrip-

tor, gradient locations are quantized into small location

grids (e.g., 4 × 4 pixels), and the gradient directions are

quantized into several (e.g., 8) orientations. SIFT descrip-

tor is represented by combining histograms from all these

small location grids (e.g., 4 × 4 × 8 = 128 dimen-

sions). To obtain illumination invariance, the descriptor

is normalized by the square root of the sum of squared

components.
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2.3 Histogram of oriented gradient (HOG)

Dalal and Triggs introduce HOG descriptor which takes

weighted votes depending on the gradient L2-norm for

an orientated histogram channel [31]. HOG descriptor

consists of several steps. The image is divided into small

connected regions (e.g., 8 × 8 pixels) named as cells, and

a histogram of gradient orientations is computed (e.g.,

using 1D centered derivative mask [−1, 0,+1]) for the pix-

els within each cell. Each cell is quantized into angular

bins based on the gradient orientation. The pixels in each

cell are used as a weighted gradient to the correspond-

ing angular bin. The frequencies of histogram are also

normalized using L2-norm to adapt with the variation of

illumination. The final HOG descriptor is represented by

combining these histograms.

2.4 Local binary pattern (LBP)

Ojala et al. first explore original LBP operator which

thresholds n × n (e.g., 3 × 3) neighborhood of every pixel

of an image with the center pixel value and considers the

result as a binary number [1]. Each of the image pixel is

then labeled with the corresponding decimal value of that

binary number. The basic LBP is calculated using Eq. 1.

LBPn,r(xc, yc) =
∑

n−1
l=0 q( pl − pc)2

l,

Where q(d) =

{

1, if d ≥ 0

0, otherwise

(1)

Here, n and r are the total number and the radius of

the neighboring pixels. (xc, yc) is the coordinate of the

center pixel c, pl, and pc are the intensities of the lth

neighboring and the center pixel (c) respectively. d is the

difference between the neighboring and the center pixel.

LBP codes can represent spatial micro-structures such as

edge, corner, and line-end. Figure 3 presents some of these

patterns.

LBP has 256 codes when eight neighbors are consid-

ered, which can be reduced to 59 codes by taking uniform

patterns. The uniform patterns are calculated by Eq. 2.

U(LBPn,r(xc, yc)) = |q(pn−1 − pc) − q(p0 − pc)|

+
∑

n−1
l=1 |q(pl − pc) − q(pl−1 − pc)|

(2)

Fig. 3 Example of micro-structures encoded by LBP-based methods

2.5 Completed local binary pattern (CLBP)

Guo et al. [44] propose CLBP which consists of three

components namely CLBP_S, CLBP_M, and CLBP_C.

CLBP_S considers only the sign value of the differences

between a pixel and its neighbors which is exactly same

as LBP. CLBP_M uses the magnitudes of the differences

between a pixel and its neighbors, and CLBP_C produces

code by comparing the center pixel’s intensity with the

average image intensity. CLBP_M is generated following

Eq. 3.

CLBP_Mn,r(xc, yc) =
∑

n−1
l=0 q(pl − pc)2

l,

Where q(d) =

{

1, if d ≥ T

0, otherwise

(3)

Here, T is the mean of all |pl − pc| in the whole image.

The CLBP_C is coded as Eq. 4.

CLBP_C(xc, yc) = q(pc), q(d) =

{

1, if d ≥ TI

0, otherwise
(4)

Here, TI is the average intensity of the whole image.

These three operators (i.e., CLBP_C, CLBP_S, and

CLBP_M) can be combined in twoways. The first way is to

build a joint 3D histogram (CLBP_S/M/C), and the second

one is to build a 2D joint histogram by combining CLBP_C

with either CLBP_S (i.e., CLBP_S/C) or CLBP_M (i.e.,

CLBP_M/C). Then this 2D histogram is converted into a

1D histogram. Finally, CLBP_M_S/C or CLBP_S_M/C can

be generated by concatenating CLBP_M with CLBP_S/C

or CLBP_S with CLBP_M/C.

2.6 Local gradient pattern (LGP)

LGP is proposed by Jun et al. [16] where n× n (e.g., 3× 3)

neighborhood of a pixel is considered, and the neighbor

having gradient greater than or equal to the average of gra-

dients of eight neighboring pixels, is set to a binary value

of “1”, otherwise is assigned a binary value of “0”, which is

defined by Eq. 5.

LGPn,r(xc, yc) =
∑

n−1
l=0 q(gl − gµ)2l,

Where q(d) =

{

1, if d ≥ 0

0, otherwise

(5)

Here, neighboring pixel and mean gradients are calcu-

lated as, gl = |pl − pc| and gµ = 1
n

∑ n−1
l=0 gl respectively

where pl and pc are the neighboring and the center pixel’s

intensities.

2.7 Local ternary pattern (LTP)

Inspired by LBP, Tan and Triggs [2] introduce LTP oper-

ator. The key difference from LBP is the use of three bits

to tackle intensity fluctuation instead of two bits in LBP.
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Thus, LTP produces a ternary code which is calculated

using Eq. 6.

LTPn,r(xc, yc) =
∑

n−1
l=0 q(pl − pc)3

l,

Where q(d) =

⎧

⎨

⎩

+1, if d ≥ 5

−1, if d ≤ −5

0, otherwise

(6)

Here, (xc, yc) is the coordinate of the center pixel c. pc
and pl are the intensities of c and lth neighboring pixels

respectively. To reduce the size of the feature vector, a LTP

code is usually split into two binary codes (i.e., upper and

lower pattern) and these two types of codes are used for

building two histograms separately. Finally, these two his-

tograms are concatenated to represent the feature vector

of an image.

2.8 Local adaptive image descriptor (LAID)

LAID is a recently proposed variant of LTP which uses

a dynamic threshold to produce a ternary code. LAID

operator is defined by Eq. 7.

LAIDn,r(xc, yc) =
∑

n−1
l=0 q(pl − pc)3

l,

Where q(d) =

⎧

⎨

⎩

+1, if d ≥ T

−1, if d ≤ −T

0, otherwise

(7)

Here, (xc, yc) is the coordinate of the center pixel c. pc
and pl are the intensities of c and lth neighboring pixels

respectively. T is a dynamic threshold which is deter-

mined by taking the median of |pl − pc|. Like LTP, a LAID

code is split into two binary codes to reduce the size of the

feature vector.

2.9 CENsus TRansform hISTogram (CENTRIST)

CENTRIST is a visual feature descriptor for scene and

object classification which performs a census transform

(CT) of an image and replaces the image with its CT values

[7]. CT is a non-parametric local transformation designed

for establishing relationships between local patches [4],

which is calculated like LBP. CENTRIST does not use

interpolation of corner pixels which is used in LBP. This

is the only difference between LBP and CT calculation.

The histogram of CT values has been computed to rep-

resent the visual descriptor. As CT only encodes the local

structures of an image, CENTRIST uses the overlapped

spatial pyramid to capture the global structures of an

image in large scale. Finally, histograms of all blocks are

concatenated to form the feature vector for classification.

3 Literature review

Till date, SIFT [30] is one of the most successful descrip-

tors in different image processing applications such as

scene and object classification. However, one of its major

drawbacks is computational cost. Tola et al. propose

DAISY descriptor which achieves computational gain by

convolving orientation maps using Gaussian kernel [45].

They have used circular regions instead of regular grids

where the radius is proportional to the standard devia-

tion of the Gaussian kernel. Comparing different types

of spatial pooling scheme, Brown et al. conclude that

DAISY style pooling shows better accuracy while keep-

ing lower computational cost [46]. Histogram of second

order gradient (HSOG) adopts DAISY pooling, which at

first computes a set of first order gradient maps (OGM),

then second order gradient is calculated over all OGMs

[9], resulted in the increase of both computational cost

and accuracy.

SIFT and its variants can capture salient features using

key-point descriptors [47], while HOG and its variants

use magnitude as weight to deteremine the significance

level of saliency in a particular direction. These processes

can differentiate background and foreground information

implicitly. However, in both cases, the computational cost

could have been reduced, if the basic descriptor itself

were able to identify the salient regions. Besides, most

of these methods do not consider human visual percep-

tion to distinguish between background and foreground

information. Moreover, a gradient-based method may fail

to differentiate two different textures having the same

gradient direction [38].

LBP and its variants [2, 13, 14, 17–20, 41] can cap-

ture local microstructures exploring different types of

thresholds. These methods are commonly used for differ-

ent applications such as face detection [15, 16], human

detection [38], object, scene, event [48], face [13, 14], gen-

der [20], and facial expression recognition [18, 49] for

their convincing accuracy and lower computational cost.

In most of the cases, an image is divided into several

blocks where LBP-like codes are calculated and then his-

togram of these codes are calculated for each of these

blocks. Finally, these histograms are concatenated to form

the final feature vector. A similar but effective variant of

this process is described in [18] where Shan et al. use

LBP for facial expression recognition adopting boosted

SVM. However, the basic LBP only uses sign informa-

tion. Recently, CLBP is proposed which combines the sign

and magnitude to extract more useful information [44]

because the combination of sign and magnitude compo-

nents can provide better clues, which are not evident if

only a single component is considered individually [21].

Zhu et al. [40] propose orthogonal combination of local

binary pattern (OC-LBP) which reduces the dimensional-

ity of the basic LBP from 2P to 4 × P. Due to considering

four orthogonal neighbors for each OC-LBP code, this

method fails to capture prominent textures even com-

pared to LBP. However, the classification performance is

boosted by incorporating bag of features with dictionary

learning which increases computational cost. A recent
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variant of LBP is local direction number pattern (LDN)

[50], which performs well in face and expression recogni-

tion. LDN encodes the structure of a local neighborhood

by analyzing its directional information. Consequently,

LDN computes the edge responses in the neighborhood in

eight different directions with a compass mask which also

introduce extra computational burden.

Recently, Ren et al. have proposed data-driven LBP

(DDLBP) for low-level image representation, which is for-

mulated as a point selection problem, that is solved by

maximal joint mutual information criterion [39]. This

problem is converted into a binary quadratic program-

ming problem and solved efficiently via the branch and

bound algorithm. Hussain et al. address that existing

local pattern descriptors using hand-specified coding lim-

its those to small spatial supports and coarse gray-level

comparisons and introduce local quantized pattern (LQP)

which uses lookup table-based vector quantization to

code larger or deeper patterns [51]. LQP inherits some of

the flexibility and power of visual-word representations,

without sacrificing the speed and simplicity of existing

local patterns.

Inspired by the LBP and its variants, several ternary

pattern-based methods such as LTP [2], NTTP [3], and

LAID [42] are also introduced. In NTTP [3], the authors

define an adaptive noise band to handle the influence

of noise and use two types of thresholds for two differ-

ent types of intensity regions. For low-intensity region, a

constant threshold “τ ” is used. However, defining the low-

intensity region is not trivial. Again, τ needs to be set

for a particular application and can vary from application

to application. Such a setup might work for a particular

application and thus it is necessary to find a proper thresh-

old that can be used in general. LAID [42] is a recently

explored local ternary pattern for texture classification

which uses median of the local neighboring differences as

a threshold. However, it may be affected by the non-linear

property of median. For example, the median of [0, 1, 1, 2,

3, 4, 17, 18] is 2 or 3, as a result small differences (e.g., 3, 4)

and large differences (e.g., 17, 18) will get the same code

which is not expected. Such a scenario (also the oppo-

site scenario [1, 2, 15, 16, 17, 17, 18, 19]) may commonly

occur in many applications and thus results in inconsis-

tent code. Hence, LAID may perform well for a particular

application but might not be applicable in general.

Different from LBP, Gabor wavelet feature [52, 53] is

one of the major approaches in terms of generality and

performance in facial expression recognition. Gu et al.

exploit Gabor feature for facial expression recognition

which extends the radial encoding strategy for Gabor fea-

tures based on retinotopic mapping that helps to obtain

salient local features for facial expression representation

[53]. Another feature descriptor using wavelet theory is

distinctive efficient robust features (DERF) which utilizes

exponential scale distribution, exponential grid structure,

and circularly symmetric function difference of Gaussian

as convolutional kernel [54]. DERF outperforms SIFT,

HOG, and DAISY. However, Gabor-based methods and

DERF are quite expensive in terms of computational cost.

On top of the basic features, there are few approaches

which are used for mid- or high-level image representa-

tion [55–58]. Among these, Li et al. propose a high-level

image representation named as object bank (OB) which

describes an image as a scale-invariant response map of

a large number of pre-trained generic object detectors

[55]. Deformable part-based model (DPM) is introduced

by Pandey and Lazebnik which uses latent SVM for classi-

fying object and scene categories [56]. Besides these, Yang

et al. propose spatial pyramid co-occurrence (SPCK++),

which calculates spatial co-occurrences of visual words

in a hierarchical spatial partitioning [57]. SPCK++ cap-

tures both the absolute and relative structure of an image

by combining local co-occurrences with global partition-

ing. Image-to-class (I2C) distance is first used in NBNN

[59] for image classification, which needs higher compu-

tational cost for nearest neighbor search in the testing

phase. Recently, Wang et al. improve the discrimination of

I2C distance especially for small number of local features

by learning per-class Mahalanobis metrics [58].

For high-level representation, sparse coding-based

approaches have shown better performance in image clas-

sification which usually adopt SIFT for low-level fea-

ture extraction. One of the first successful techniques is

ScSPM [60] which uses sparse coding instead of vector

quantization of SIFT descriptors. This technique adopts

spatial max pooling (MP) of ScSPM features in regular

SIFT grids for final feature representation. ScSPM per-

forms better than both linear SPM kernel (LSPM) on his-

tograms and traditional nonlinear SPM kernels with linear

SVM (LSVM) because the pooling of sparse codes quan-

tizes only the essential features which is linearly separable

by SVM. However, ScSPM solves L1-norm optimization

problem which is computationally expensive [61]. More-

over, it is non-consistent to encode similar descriptors

[61, 62]. Several modifications have been proposed for

these problems [61–63]. For instance, Wang et al. propose

a modification of ScSPM by considering locality con-

straints in linear coding (LLC) to project each descriptor

into its local-coordinate system where projected coordi-

nates are amalgamated by MP [62]. Moreover, ScSPM,

LLC, and most of the other sparse coding-based methods

suffer from a severe drawback, which is the quantization

of similar local features into different visual words [63]. To

mitigate this problem, Oliveira et al. introduce sparse spa-

tial coding (SSC) for image classification which combines

a sparse coding dictionary learning, a spatial constraint

coding, and an online classification stage [63]. The authors

represent the final feature vector by adopting MP in SSC
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features. Most of the sparse coding techniques [60, 62]

are adopted on local features independently which con-

sider the global similarity by constraint sparsity. However,

dense local features share some local contextual infor-

mation which is discarded by the existing sparse coding-

based techniques and become less reliable when adopting

spatial pooling [61]. To address this problem, a locality-

constrained and spatially regularized (LCSR) coding is

proposed by considering local spatial context of an image

into the usual coding strategies which preserves locality

constraints both in the feature space and spatial domain

of the image [61]. The information loss in the feature

quantization through pooling is still found, though several

coding methods are introduced to address this problem.

Wang et al. use linear distance coding (LDC) to alleviate

this problem, which is a complementary technique to the

traditional sparse coding schemes [64]. In their approach,

local features of an image are transformed into discrim-

inative distance vectors and then encodes these distance

vectors into sparse codes to capture the salient features of

the image.

Motivated by the sparse coding-based approaches, Gao

et al. propose kernel sparse representation for image

classification which performs sparse coding in a high-

dimensional feature space mapped by implicit mapping

function [65]. Afterwards, by combining these features

with SPM, the authors propose Kernel Sparse Represen-

tation Spatial Pyramid Matching (KSRSPM). Besides this

approach, Gao et al. [66] explore another sparse coding-

based approach (LScSPM) by considering the instable

sparse code produced by different sparse coding tech-

niques [60, 62]. The authors use Laplacian sparse cod-

ing framework to address this issue. To reduce the high

computational cost of dense kernel descriptors, efficient

match kernel (EMK) is introduced which maps local fea-

tures to a low-dimensional feature space and average the

resulting vectors to form a set-level feature [67].

Apart from sparse coding-based methods, several

approaches use soft-assignment coding [12, 68]. For

example, Gemert et al. [12] introduce soft-assignment of

codewords using kernel density estimation which assigns

local features to all the visual codewords [68]. Compar-

ing with other existing coding schemes, soft-assignment

coding is simple and has low computational cost. How-

ever, the major drawback is that it cannot produce com-

parable result with other coding schemes [68]. Liu et

al. address that the inferiority of soft-assignment coding

is because of its negligence to the underlying manifold

structure of local features and propose a localized soft-

assignment coding (LSA) [68]. They use mix-order max

pooling (MMP) instead of general MP which helps to

boost the performance.

Along with the aforementioned supervised learning

techniques, several unsupervised learning techniques are

also used in computer vision. For example, Bosch et al.

[34] introduce a semi-supervised learning (SP-pLSA) by

combining the unsupervised probabilistic latent seman-

tic analysis (pLSA) [69] and a discriminative classifier for

image classification. Here, pLSA is applied to the images

which are represented by the frequency of visual words

where color SIFT is used as a basic descriptor. Recently,

deep learning-based unsupervised technique of feature

learning is adopted that does not require manual inter-

vention. This approach has gained popularity because of

its better accuracy. Using multiple levels of representa-

tion and abstraction, it helps a machine to understand

about data (e.g., images, sound, and text) more accurately.

In deep learning frameworks, first, unsupervised feature

learning is performed on a large image dataset and then

the weights of the deep network is adjusted. Eventually, a

model is built that can later be used to solve a particular

problem which is known as fine tuning. Among the exist-

ing popular models, AlexNet [70], Places-CNN [71], and

VGG_S [72] are widely used because they cover diversi-

fied applications. Despite the gain of popularity of deep

learning, it is very computation intensive and requires

expensive hardware and large set of training data. Further-

more, a well-defined network structure is also required to

solve a particular set of problems which is challenging and

usually fix up empirically.

The mid- or high-level feature representation aims to

capture strong spatial layouts, encodes salient textures,

and makes those working with linear classifier [56, 60, 62].

To achieve the aforementioned properties, these methods

incorporate different steps such as generative part models

[59, 73], discriminative codebook learning [68, 74], sparse

coding [60, 62, 66], and/or spatial pooling [62]. The incor-

poration of these steps lead to increase in computational

cost. However, if it is possible to incorporate these issues

to the basic feature descriptor, it may reduce the huge

computational cost of the mid-/high-level representation.

Apart from these levels (low, mid, and high) of rep-

resentations, classifiers also play an important role in

classification accuracies, such as SVM with different ker-

nels (e.g., linear, polynomial and RBF kernel) are used

for classification in various applications [7, 17, 18, 50].

In general, although RBF kernel produces better results

in many applications, its computational cost is high. A

fast and effective classification is thus necessary which

can be achieved in two ways such as by selecting rele-

vant features where nonlinear relationship of features is

already incorporated and then use LSVM, or by intro-

ducing a low-cost nonlinear kernel of SVM. Maji et al.

[75] introduce a fast non-linear kernel of SVM namely

histogram intersection kernel which achieves better clas-

sification accuracy in many applications [76]. Zhang et

al. propose a hybrid classification technique (SVM-KNN)

which selects features using k nearest neighbors [77] and
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classify using DAGSVM [78] classifier. SVM-KNNhas low

computational cost and performs well when the test image

is similar to one of the training images. However, this tech-

nique fails to generalize much beyond the labeled images

because of calculating image-to-image distance. Recently,

to perform fast and better classification, Jianxin Wu [79]

introduces PmSVM, which solves a dual SVM formulation

using a coordinate descent approach. PmSVM approxi-

mates the gradient using polynomial regression instead of

the kernel function and feature mapping.

From the above discussion, it can be seen that most

of the existing techniques attempt to capture the salient

textures that are stable against different lighting condi-

tions, noises, intensity fluctuations which help to clearly

represent necessary foreground information. For this pur-

pose, these approaches either include preprocessing such

as keypoint identification before generating descriptor

or postprocessing such as different costly high-level rep-

resentations. However, the computational cost of these

approaches can be reduced if it is possible to identify the

prominent features using only the basic low-level descrip-

tors. Therefore, it is desirable to come up with a mecha-

nism that can identify prominent features in a low-level

descriptor.

4 Proposedmethod

In this paper, we propose a new feature descriptor named

as discriminative ternary census transform histogram

(DTCTH) for image representation which holds most of

the key properties of a feature descriptor. The overall

process of the construction of descriptor is described in

the following subsections.

4.1 Desired properties

A feature descriptor for image classification should have

the following essential properties.

1. Discrimination ability : A feature descriptor should

have higher discrimination ability. If it has the

capability to encode only the class-specific

information by suppressing the unnecessary

background, it will perform well in image

classification. Figure 4 presents several images with

corresponding Sobel images from different object,

scene, and expression classes. All of these images

contain respective class-specific information which is

clearly visualized from their Sobel images. This

class-specific information needs to be encoded for

better image classification. Therefore, our goal is to

encode only this class-specific information by

discarding the unnecessary background details.

2. Illumination invariance : A good feature descriptor

should be able to adapt with illumination changes

because illumination of same image can vary due to

different reasons. Among the existing low-level

feature descriptors, CENTRIST-based methods have

this property and if we follow the basic CENTRIST

structure, our proposed descriptor will have the same

property.

3. Generalizability : It is expected that a descriptor has

reasonable accuracy for different types of

applications. This can be achieved when a descriptor

is capable to encode class-specific features and

suppress unnecessary background information for

the respective applications. We will design our

descriptor such a way that it will have this property.

4. Incorporation of visual perception : In general, a

person cannot distinguish a change in an image if the

change is below the Weber’s constant [43]. So, it is

reasonable to conclude that the changes below this

constant is not necessary to capture. Thus, a

descriptor should have the capability to capture only

those changes that is important for human vision.

5. Stable code : Producing stable code (i.e., same code)

against intensity fluctuation is another essential

property for a feature descriptor. It is obvious that

intensity of an image might be changed for several

reasons. Let δ = pl – pc, where pc is the intensity of a

target pixel c and pl is the intensity of its l
th

neighbor. If the difference of intensities | δ |, of the

two pixel is large, those two pixels should be

considered differently and vice versa. Hence, the

range of δ has to be set in such a way so that the two

pixels get the same or different codes in two different

situations. At this point, we define two terms certain
and uncertain state for a code (C ) using Eq. 8.

C =

{

certain state, if | δ |≥ T

uncertain state, otherwise
(8)

Here, T is a threshold that might be static or

dynamic. Defining certain and uncertain states have

several advantageous properties. For example, in this

case, we can achieve discriminative and stable code

because of considering the certain and uncertain

states separately. Apart from that, we can get three

groups (G ) of codes using Eq. 9. Group one (g1) and

group three (g3) belong to certain state, while group

two (g2) remains in uncertain state.

G =

⎧

⎨

⎩

g1, if δ ≥ T

g2, if − T < δ < T

g3, if δ ≤ −T

(9)

Again T should be dynamic because a static threshold

might fail in case of different types of images.
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Fig. 4 Sample images with corresponding Sobel images from different categories of object, scene, and expression (first row original images and

second row Sobel images). a Object classes. b Leaf and expression classes. c Scene classes

4.2 Discriminative ternary census transform histogram

(DTCTH)

The overall process of DTCTH calculation is shown in

Fig. 5. For producing different codes for certain and

uncertain changes of intensities in an image, we con-

sider ternary coding scheme, namely discriminative cen-

sus transform (DCT) which is calculated using Eq. 10.

DCTn,r(xc, yc) =
∑

n−1
l=0 q(pl − pc)3

l,

Where q(d) =

⎧

⎨

⎩

+1, if d ≥ T

−1, if d ≤ −T

0, otherwise

(10)

Here, T is a dynamic threshold, n and r are the total

number of neighbors and the radius of the neighboring

pixels respectively, and (xc, yc) is the coordinate of the

center pixel. pc and pl are the intensities of the center

pixel c and lth neighboring pixel. For simplicity and com-

putational efficiency, the ternary pattern is divided into

two census transformed images namely upper (DCT_UP)

and lower (DCT_LP) pattern which are calculated using

Eqs. 11 and 12. Figure 6 shows a pictorial example of DCT

calculation. Afterwards, two separate histograms such as

H_DCTUP and H_DCTLP of these two binary patterns

are calculated using Eqs. 13 and 14. The final feature

vector is represented by concatenating these histograms.

DCT_UPn,r(xc, yc) =
∑

n−1
l=0 q(pl − pc)2

l,

Where q(d) =

{

1, if d ≥ T

0, otherwise

(11)

DCT_LPn,r(xc, yc) =
∑

n−1
l=0 q(pl − pc)2

l,

Where q(d) =

{

1, if d ≤ −T

0, otherwise

(12)

H_DCTUPk =
∑

h−1
i=0

∑

w−1
j=0 δkDCT_UPn,r(i,j)

,

Where δkp =

{

1, if p = k

0, otherwise

(13)

H_DCTLPk =
∑

h−1
i=0

∑

w−1
j=0 δkDCT_LPn,r(i,j),

Where δkp =

{

1, if p = k

0, otherwise

(14)

Here,DCT_UPn,r(i, j) andDCT_LPn,r(i, j) are the upper

and lower DCT codes of coordinate (i, j). k is the kth bin
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Fig. 5 Overall process of DTCTH calculation. a Input image. b DTCTH codes in overlapping SPM. c Final feature histogram

of the histogram. h and w are the height and width of the

image block. Kronecker delta δkp is a piecewise function

of p and k. As DCT encodes only local micro-structures

of spatial location, spatial pyramid representation (SPM)

which is used in CENTRIST, is adopted to capture the

global structures of an image.

4.3 Determining the value of T

During the calculation of DTCTH, for every pixel of an

image, we have eight different values that are obtained

by calculating the differences (| δ |) from its neighbors.

We want to partition these values into two groups using

a threshold such that the variance is maximized between

the groups and is minimized within the group. The pur-

pose of this partitioning is that the group with lower

values can be considered as background where the group

with higher values as foreground, in the local scope. A

solution of this partitioning problem can be found using

Jenks natural breaks optimization method [80, 81]. How-

ever, such an optimization is very time consuming as we

have to apply the method for each pixel of an image to

generate the respective code. Furthermore, Jenks natu-

ral breaks optimization is not designed to comply with

Weber’s constant though the combination of these two is

expected to increase the accuracy. Under these circum-

stances, after exhaustive empirical analysis (on 109 sam-

ples), we set the value of T to the square root of the center

pixel in a local ternary pattern. We have found that such

a choice of T brings about the closest possible similarity

which is around 84.90%, to the aforementioned optimiza-

tion problem considering Weber’s constant. Thus, we can

conclude that taking the square root of the center pixel is

a very close approximation of the desired threshold with

much low computational cost.

For validating the value of T, we have performed rig-

orous experiment on four different applications with

Fig. 6 An example of DCT calculation (T = 3)
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four datasets using different values of T. The dataset

includes Caltech-101 [73] (102 classes and 9,145 images)

for object classification, UIUC Sport Event [33] (8 classes

and 1586 images) for event classification, OT scene [10]

(8 classes and 2688 images) for scene classification, and

Cohn Kanade [82] (6 classes and 960 images) for expres-

sion recognition. We consider both the fixed and dynamic

thresholds to determine the value of T. From the experi-

ments, we observe that the accuracy is decreased for the

values greater than 20, and hence, we consider the val-

ues up to 25, both in fixed and dynamic cases. The mean

and median of the differences among the neighboring

pixels and the center pixel, SQRT, and cube root of the

center pixel are also considered. Figure 7a shows the

accuracy of different fixed thresholds and square root

threshold, and Fig. 7b illustrates the accuracy of different

dynamic thresholds, as mentioned earlier. From Fig. 7, it

is found that T is defined as SQRT of center pixel and

performs best for all applications. Using McNemar’s test,

we observe that the proposed SQRT threshold resulted in

significantly fewer mis-classifications than other thresh-

olds (maximum P value, P = 0.001 and minimum P value,

P = 3.83932E − 28).

4.4 Properties of DTCTH

DTCTH encodes micro-structures such as line, edge, and

corners which are stable against intensity fluctuation and

monotonic illumination variation. Some of these proper-

ties are described in the following.

DTCTH captures more relevant part of an image that

are necessary for recognizing an object/scene. To under-

stand this, let us consider Fig. 4 which includes examples

from three different applications. Now, if we only have the

Sobel images where all fine details are suppressed and only

the class-specific information is retained then it will help

a classifier to achieve better accuracy. Likewise, if we ana-

lyze the images in Fig. 8, we can easily find that DTCTH

suppresses most of the background information keeping

the necessary details compared to the others. As the pro-

posed technique have this property, it is more generalized

compared to other descriptors.

DTCTH features are more robust to noise, and it pro-

duces stable code by adapting the intensity fluctuations

in local neighborhood. For example, CENTRIST and LBP

fail to produce the same code in case of intensity fluctua-

tion (see Fig. 1), whereas DTCTH is successful in this case

(i.e., “00000000”). Furthermore, we add white Gaussian

noise to the original images as shown in Fig. 9 to test

the robustness to noise of DTCTH. Now, if we compare

the coded images with or without noises for DTCTH

and CENTRIST, we can easily find that DTCTH is more

robust to noise and thus can capture the face specific

feature by eliminating the details.

Besides these, for certain intensity changes in positive

and negative directions, DTCTH produces two different

codes for these two directions which is desired because

from this type of representation, we can get more detailed

information about the local micro-structure of an image.

For example, in Fig. 10, DTCTH produces three different

codes for aforementioned three groups of codes following

Eq. 9 such as uncertain state (i.e., 0 for 71 and 69), intensity

changes in positive direction (i.e., 1 for 80, 81 and 79), and

negative direction (i.e., −1 for 61, 60, and 60) in certain

regions by considering 70 as the center pixel.

To understand the effect of human visual perception

in case of DTCTH, we require a reference value to mea-

sure the change in intensity. Since DTCTH uses the center

pixel for calculating code, we use the same reference point

for measuring Weber’s constant. For example, in Fig. 10,

the Weber’s constant for the neighboring pixels 71 and 69

a b

Fig. 7 Demonstration of object recognition, scene classification, event classification, and expression recognition accuracy using different thresholds.

a Accuracy of different constant thresholds. b Accuracy of different dynamic thresholds (i.e., percentage of the center pixel as threshold). All the

results are generated considering ternary pattern in CENTRIST framework. Noteworthy, L (threshold used in LGP [16]),M (median threshold used in

LAID [42]), S (SQRT of center pixel), and C (cube root of center pixel)
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Fig. 8 Coded image by DTCTH, LTP, and CENTRIST for corresponding images in Fig. 4. a Object classes. b Leaf and expression classes. c Scene classes

(first row—DTCTH-coded image, second row—LTP-coded image, and third row—CENTRIST-coded image)

with the center pixel 70 is 0.01, which is below theWeber’s

constant for human visual perception [43]. Hence, these

two neighbors are coded as “0.” Similarly, 79 and 61 have

the Weber’s constant of 0.13; hence, these two pixels are

coded as “1” and “-1” due to the changes in two different

directions which is expected. From Fig. 11, it is under-

standable that the smooth regions (e.g., cheek area) are

coded similarly and the codes for +ve and −ve directions

contain complementary information (e.g., eyebrow and

mouth regions).

5 Experimental evaluation

In this section, we evaluate the performance of DTCTHby

comparing with the other state-of-the-art methods over

nine datasets that belong to five different applications

such as object, scene, event, leaf, and facial expression

classification. Application wise descriptions of the experi-

ments are discussed in the following.

Table 1 presents the overview of these nine datasets

along with the number of training and testing samples

used in the experiments, which is also described in the

respective datasets. For the experiments, all images are

resized to at most 300× 300 pixels. Except the expression

recognition, the dataset is split into five random parti-

tions and experiments are performed five times. That is,

we have performed fivefold cross validation and report

the average accuracies in the respective tables. In case of

expression recognition, the experiments are run ten times

with person independent splits by following the standard

protocol, and the average accuracies are reported in the



Rahman et al. EURASIP Journal on Image and Video Processing  (2017) 2017:30 Page 13 of 24

Fig. 9 Noise resistance of CENTRIST vs. DTCTH. a Image without noise.

b Noisy image (middle one is CENTRIST-coded image, right one is

DTCTH-coded image)

tables. The datasets description, followed by the proper

comparison with state-of-the-art methods, are described

in details in the following subsections. In this paper, we

also provide results of some of the deep learning-based

techniques for completeness, though these techniques are

not directly comparable to DTCTH.

For implementing DTCTH, few parameters are related

to the basic descriptor (DTCTH) and its classifier (SVM).

The major parameters for DTCTH are its radius (r) and

its number of neighbors (n). From the literature, we have

found that the best accuracies (with reasonable feature

vector length) are produced using r = 1 or r = 2 and

Fig. 10 Illustrative example of the certain and uncertain regions in an

image

n = 8 in most of the applications [13]. For SVM, dif-

ferent types of kernels such as linear, RBF, polynomial,

sigmoid, and histogram intersection (HI) can be used.

For first four kernels, we use LibSVM package1. To find

out how DTCTH behaves with these parameters, we use

three datasets namely Caltech 101, UIUC Sports Event,

and Scene 15. The results with these parameters’ settings

for these datasets are summarized in Table 2 which shows

that DTCTH works well in most of the cases when n = 8

neighbors at radius r = 2 is considered with HI kernel.

In this work, we mainly adopt the CENTRIST frame-

work2, keeping all the parameters same as described in

CENTRIST [7]. Thus, for fair comparison, we consider

eight neighbors at radius one from the center pixel-like

CENTRIST in all the experiments, although considera-

tion of other parameter setting may produce better result.

Following CENTRIST, we also avoid corner points inter-

polation and remove two DCT bins (i.e., 0 and 255)

while calculating DCT histograms. Afterwards, we take

the square root of DTCTH histogram and perform L1

normalization of those descriptors. For classification, we

use SVM classifier with linear kernel (c = 2−5, g =

2−7) [83] and histogram intersection (HI) kernel [75]. We

use the aforementioned parameter settings unless other-

wise stated. To reflect a brief description of a particular

method, we mainly consider the following representa-

tion for Tables 3–11. Firstly, we give the basic descriptor

name followed by mid-/high-level representation in the

parentheses, then the classifier name and publication year.

5.1 Object classification

We have considered two well-known and most chal-

lenging object datasets named as Caltech-101 [73] and

Caltech-256 [11] to evaluate the object recognition per-

formance of the proposed descriptor. These two datasets

are described below followed by the obtained results from

the experiments.

5.1.1 Caltech-101

Caltech-101 contains 9144 images of 101 categories and

an additional background category, making a total num-

ber of 102 categories, with significant variance in shape

[73]. The number of images per category varies from 31

to 800. As suggested by the original dataset [73] and many

other researchers [5–7, 60], we have partitioned the whole

dataset into 5, 10, 15, 20, 25, and 30 training images per

class and rest for testing to measure the performance

unless otherwise stated.

To compute DTCTH code, it only compares its pixel

values with a specific value (square root of the center

pixel) and performs better than SIFT, DAISY, and HSOG

techniques. DTCTH achieves 78.56% accurate object clas-

sification rate by considering only the low-level feature

representation, which demonstrates the improvement of
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Fig. 11 DTCTH-coded image. a Input image. b Upper code. c Lower code

performance over existing state-of-the-art methods such

as SSC [63], ScSPM [60], LSPM [60], LLC [62], LCSR [61],

and LDC [64], even though most of these methods use

different high-level representations. A recent state-of-the-

art method namely Gaussian of local descriptors (GOLD)

[85] that achieves 80.92% accuracy using 30 training and

only 50 testing samples. It uses dense color SIFT as a basic

descriptor and focuses on high-level representation. The

result is comparable when we use DTCTH with r = 2.

However, the computational cost of this method is much

higher compared to us. Colored SIFT (CSIFT) [86] is

another recent state-of-the-art low-level descriptor that

also uses LLC as a high-level representation. However,

this method produces inferior result (69.18%) compared

to DTCTH.

Apart from the aforementioned techniques, other well-

known descriptors such as GIST [10], CENTRIST [7], LTP

[2], and LGP [16] are used in different applications and

compared with DTCTH. For the sake of fair comparison,

the results of CENTRIST, LTP, and LGP are generated

using same parameter settings that we have used. The

result of GIST descriptor is generated using the stan-

dard setup, which is 32 Gabor filters in 4 scales and 8

orientations. All of these low-level feature descriptors pro-

duce inferior results in comparison with DTCTH (see

Table 3). It is observed from this table that PmSVM [79]

performs (72.18%) slightly better than DTCTH (71.84%)

considering 15 training images. It is noteworthy that they

have used different classifier than ours and considered

only 20 sample images for testing.

5.1.2 Caltech-256

Caltech-256 is a very challenging dataset which contains

30,607 images of 256 categories and an additional clutter

category [11]. Each class has at least 80 images which show

higher variability in object size, location, and pose than

that in Caltech-101. We have evaluated our algorithm in

different settings such as considering 15, 30, 45, and 60

training images per class and using the rest as test data

unless otherwise stated.

Table 4 presents the experimental results of DTCTH as

well as existing state-of-the-art methods in the literature

on Caltech-256 dataset which shows that the proposed

DTCTH performs better compared to other basic fea-

ture descriptors including GIST [10], CENTRIST [7], LTP

[2], and LGP [16]. Besides Borji et al. [88] perform a

Table 1 Different benchmark datasets with proper training samples

Applications Object classification Event classification Scene classification Leaf classification Facial expression classification

Databases Caltech-256 Caltech-101 UIUC sports event OT scene Scene 15 Indoor 67 Swedish leaf Cohn Kanade (CK) CK+

Classes 257 102 8 8 15 67 15 6/7 7

Total samples 30,608 9145 1586 2688 4485 5620 1125 960/1280 981

Training images/class 60 30 70 100 100 80 25 Person independent

Test images/class Rest Rest 60 Rest Rest 20 Rest 10-fold cross-validation
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Table 2 Effect of different SVM and DTCTH parameters on UIUC

Sports Event, Caltech 101, and Scene 15 datasets

Techniques UIUC sports event Caltech 101 Scene 15

Linear kernel

DTCTH8,1 85.16±0.96 72.26±1.67 82.66±0.50

DTCTH8,2 84.73±1.01 76.08±0.41 82.87±0.49

Polynomial kernel

DTCTH8,1 83.69±0.97 68.64±0.53 80.92±0.12

DTCTH8,2 84.02±1.15 73.21±0.58 82.62±0.56

RBF kernel

DTCTH8,1 75.74±1.54 58.72±1.16 72.95±0.62

DTCTH8,2 75.83±1.17 63.96±1.36 73.73±0.65

Sigmoid kernel

DTCTH8,1 67.95±1.94 52.59±1.41 68.16±1.88

DTCTH8,2 70.47±1.58 56.88±1.31 69.59±1.08

Histogram intersection kernel

DTCTH8,1 88.18±0.84 78.56±0.91 83.63±0.21

DTCTH8,2 87.75±0.57 80.36±0.24 83.92±0.43

Here, we consider 70 training and 60 test images for UIUC Sports Event, 30 training

and remaining test images for Caltech 101, and 100 training and remaining test

images for Scene 15

comparative evaluation of different existing techniques

such as SIFT [88], HOG [88], HOG pyramid [88], LBP

[88], and LBP pyramid [88] on this dataset, all of which

produce inferior results compared to DTCTH. More-

over, DTCTH achieves more than 11 and 17% accuracy

improvements over CENTRIST and GIST respectively by

considering HI kernel.

Furthermore, DTCTH performs better than differ-

ent sparse and soft-assignment coding-based approaches

including ScSPM [60], KSRSPM [65], LScSPM [66], EMK

[67], LSA [68], SSC [63], and LDC [64] except LLC [62].

This LLC shows slightly better result (47.68%) compared

to DTCTH (45.61%) with the cost of high-level represen-

tation. It is noteworthy that such high-level representation

is computationally expensive. In contrast, the proposed

DTCTH achieves comparable accuracy with much lower

computation. A recent state-of-the-art low-level descrip-

tor is reversal invariant descriptor enhancement (RIDE)

[89] which improves the performance of basic SIFT using

a high-level representation that uses improved fisher vec-

tor (IFV) [90]. This IFV helps to boost up of the perfor-

mance and achieves 60.25% accuracy.

5.2 Scene classification

We have implemented DTCTH for both indoor and out-

door scene classification. For this purpose, three datasets

such as MIT Indoor 67 [91] for indoor, OT scene [10] for

outdoor, and Scene 15 [5] for both indoor and outdoor

scene classification are used. The description of these

three datasets are discussed below followed by the experi-

mental results.

MIT Indoor 67. This dataset holds 15,620 images of

67 indoor scene categories [91]. There are at least 100

images in each category. We randomly choose 80 images

from each category for training and remaining images for

testing the system.

OT scene. Oliva and Torralba at first used OT scene

dataset for scene classification [10]. It consists of 2688

images from 8 scene classes. In the experiments, 100

images are randomly selected to train the system and the

other images are used for testing purpose.

Scene 15. Scene 15 dataset contains 4485 images of 15

scene categories [5]. Each category has between 200 and

400 images. We randomly select 100 images from each

category as training data and use the remaining images as

test data.

In general, indoor scene classification is comparatively

challenging than outdoor scene classification because

indoor scenes contain large inter-class similarity. There-

fore, the performance of all the methods are generally

lower for indoor scene (e.g., MIT Indoor 67) compared

to the outdoor scene (e.g., OT scene) datasets. Several

state-of-the-art low-level feature descriptors such as PRI-

CoLBP [8], CENTRIST [7], GIST [10], SIFT [30], HOG

[31], HSOG [9], CS-LBP [87], LTP [2], and LGP [16] are

explored for both indoor and outdoor scene classifica-

tion. Recently, CENTRIST has been extended to multiple

channels (mCENTRIST) [6], which shows better result

(44.60%) in indoor scene classification than CENTRIST

(35.12%). They have also showed that multi-channel GIST

(mGIST) andmulti-channel SIFT (mSIFT) perform better

than original GIST and SIFT respectively. DTCTHobtains

better accuracy than all of these approaches in all the

datasets (see Tables 5, 6 and 7).

Besides these basic features, there are other methods

such as NBNN [59], PmSVM [79], pLSA [69], SP-pLSA

[34], Bag-of-Phrase (BoP) [95], and DAISY [45] which are

also used for scene classification. To this end, DTCTH

achieves better results in the respective datasets thanmost

of these approaches. In few cases, such as SP-pLSA shows

slightly better results (83.7%) considering color SIFT for

Scene 15 dataset compared to DTCTH (83.63%). How-

ever, DTCTH achieves higher accuracy (89.18%) com-

pared to SP-pLSA (87.80%) in OT scene dataset. BoP

uses histogram mining with discriminative learning tech-

nique and achieves 86.78% accuracy in Scene 15 dataset.

RIDE achieves 64.93% accuracy onMIT Indoor 67 dataset

by adopting IFV which is computationally expensive as

described earlier [89]. In OT scene dataset, DTCTH

achieves the highest correct classification rate (89.18%). In

this dataset, comparing with GIST which is designed for

scene classification, DTCTH increases the performance
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Table 3 Object classification rate (%) in Caltech-101

Techniques 5 10 15 20 25 30

Places-CNN, 2014 [71] – – – – – 65.18

ImageNet-CNN, 2014 [71] – – – – – 87.22

Hybride-CNN, 2014 [71] – – – – – 84.79

Dense color SIFT (SP-pLSA) SVM, 2008 [34] – – 59.80 (50)* - - 67.70 (50)*

SIFT (ML + CORR) KNN, 2008 [84] – – 61.00 – – 69.60

SIFT (ML + PMK) KNN, 2008 [84] – – 52.20 – – 62.10

Dense SIFT (KC) SVM with HI, 2008 [12] – – – – - 64.14 (50)*

Dense SIFT (LSPM + MP) LSVM, 2009 [60] – – 53.23 – – 58.81

Dense SIFT (ScSPM + MP) LSVM, 2009 [60] – – 67.00 – – 73.20

Dense SIFT (LLC + MP) LSVM, 2010 [62] 51.15 59.77 65.43 67.74 70.16 73.44

Dense SIFT (LSA + MMP) LSVM, 2011 [68] – – – – – 74.21

Dense SIFT (LDC + LLC/LSA + MP) LSVM,

2013 [64] – – – – – 74.47

Dense SIFT (LCSR + MP) LSVM, 2012 [61] – – – – – 73.23

Dense color SIFT (GOLD) LSVM, 2015 [85] – – 73.39 – – 80.92

(at most 50)* (at most 50)*

Dense SIFT (SSC + MP) OCL, 2012 [63] 55.64 65.52 69.98 73.99 75.49 77.59

HSOG (LLC + MP) SVM, 2014 [9] – – 60.46 (15)* – – 67.97 (15)*

CSIFT (LLC + MP) LSVM, 2015 [86] 46.48 56.97 62.09 65.45 68.17 69.18

Dense SIFT (BoF) SVM, 2004 [9, 30] – – 62.48 (15)* – – 69.89 (15)*

CS − LBP2,8,0.01 (BoF) SVM, 2009 [9, 87] - - 58.50 (15)* – – 66.86 (15)*

DAISY (BoF) SVM, 2010 [9, 45] - - 58.63 (15)* – – 67.01 (15)*

SIFT (SPM) SVM, 2006 [5] – – 56.40 (50)* – – 64.60

Dense SIFT (SPM) SVM, 2007 [11] 44.20 54.50 59.00 63.30 65.80 67.60

Dense SIFT + NBNN, 2008 [59] – – 65.00 (20)* – – 70.40

Geometric blur + SVM-KNN, 2006 [77] 46.60 55.80 59.05 62.00 – 66.23

Dense SIFT (BoF) PmSVM-χ2 , 2012 [79] – – 72.08 (20)* – – –

Dense SIFT (BoF) PmSVM-HI, 2012 [79] – – 72.18 (20)* – – –

LGP (SPM) LSVM, 2013 39.86 50.11 57.84 60.03 62.96 66.52

OC-LBP (BoF) LSVM, 2013 47.10 56.34 62.43 64.70 67.63 70.87

LAID (SPM) LSVM, 2013 39.03 48.35 54.11 57.83 60.84 63.87

CLBP_S/M/C (SPM) LSVM, 2010 32.06 40.03 45.59 49.40 52.56 55.35

LTP (SPM) LSVM, 2010 41.04 51.23 59.69 61.17 64.57 67.85

GIST + LSVM, 2001 40.16 47.87 52.5 56.25 58.88 61.70

CENTRIST (SPM) LSVM, 2011 39.46 49.72 55.84 59.47 62.25 65.23

Proposed (DTCTH + LSVM) 46.98 57.00 63.66 65.83 68.69 72.26

Proposed (DTCTH + HI) 56.74 65.97 71.84 74.80 76.85 78.56

*Different number of test images used for the experiment rather than standard settings

over 18 and 20% by considering linear and HI kernel

respectively. DTCTH provides 83.63% accuracy in Scene

15 dataset which also demonstrates 2 and 28% improve-

ments over CENTRIST and GIST respectively. Further-

more, DTCTH outperforms object bank, DPM, SPCK++,

and NBNN in the respective datasets.

Considering high-level image representation, sparse

and soft-assignment coding-based approaches are well-

known. Among these approaches, ScSPM [60], LLC [62],

SSC [63], LSA [68], LCSR [61] and LDC [64] have

gained popularity for scene classification. Most of these

approaches use two steps for feature representation such
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Table 5 Scene classification rate (%) in MIT Indoor 67

Techniques Accuracy

CNN-SVM, 2014 [92] 58.4

Places-CNN, 2014 [71] 68.24

ImageNet-CNN, 2014 [71] 56.79

Hybride-CNN, 2014 [71] 70.80

Dense SIFT (LSA + MMP) LSVM,

2011 [68] 44.19

dense SIFT (LLC + MP) LSVM,

2010 [62] 43.78

dense SIFT (LDC + LLC/LSA + MP)

LSVM, 2013 [64] 46.69

Dense SIFT (SSC + MP) OCL, 2012 [63] 44.35

Object Bank + LSVM, 2010 [55] 37.60

Dense SIFT (BoF) SVM with HI,

2014 [93] 45.86

DPM, 2011 [56] 30.40

CENTRIST (BoF) PmSVM-HI, 2012 [79] 47.15

CENTRIST (BoF) PmSVM-χ2 , 2012 [79] 46.20

PRICoLBP + SVM with χ2 , 2014 [8] 43.4

HOG, 2005 [56] 22.8

SPM, 2006 [8], 34.4

MM-scene, 2010 [94] 28.00

mCENTRIST (SPM) LSVM, 2014 [6] 44.6±1.2

mSIFT (SPM) LSVM, 2014 [6] 39.7±1.6

mGIST (SPM) LSVM, 2014 [6] 31.5±1.6

LGP (SPM) LSVM, 2013 34.24±1.12

OC-LBP (BoF) LSVM, 2013 36.99±2.34

LAID (SPM) LSVM, 2013 32.78±1.47

CLBP_S/M/C (SPM) LSVM, 2010 30.45±1.70

LTP (SPM) LSVM, 2010 35.87±1.23

GIST + LSVM, 2001 26.5±1.41

CENTRIST (SPM) LSVM, 2011 35.12±0.99

Proposed (DTCTH + LSVM) 43.33±0.72

Proposed (DTCTH + HI) 46.22±1.02

as feature encoding and pooling (e.g., average, max)

steps. Boureau et al. [96] perform a comparative exper-

imental analysis which shows that sparse coding with

MP achieves better result than other combinations in

Scene 15. Among all of these approaches, only LDC [64]

achieves slightly better classification accuracy (46.69%)

than DTCTH (46.22%) in MIT indoor 67, but this method

produces inferior results compared to DTCTH inCaltech-

101 (4.09% inferior), Caltech-256 (7.36% inferior), and

Scene 15 (1.13% inferior) datasets.

Table 6 Scene classification rate (%) in OT scene

Techniques Accuracy

Dense color SIFT (pLSA) KNN, 2006 [69] 86.65

Dense color SIFT (pLSA) SVM, 2008 [34] 82.50

Dense color SIFT (SP-pLSA) SVM,

2008 [34] 87.80

HSOG (LLC + MP) SVM, 2014 [9] 86.30 *

dense SIFT (BoF) SVM, 2004 [9, 30] 84.10 *

HOG (BoF) SVM, 2005 [9, 31] 82.40 *

DAISY (BoF) SVM, 2010 [9, 45] 85.70 *

CS − LBP2,8,0.01 (BoF) SVM, 2009 [9, 87] 83.40 *

Dense color SIFT (SPM) SVM, 2008 [34] 87.10

LGP (SPM) LSVM, 2013 84.52

OC-LBP (BoF) LSVM, 2013 84.67

LAID (SPM) LSVM, 2013 84.25

CLBP_S/M/C (SPM) LSVM, 2010 79.34

LTP (SPM) LSVM, 2010 85.60

GIST + LSVM, 2001 69.03

CENTRIST (SPM) LSVM, 2011 84.01

Proposed (DTCTH + LSVM) 87.88±0.51

Proposed (DTCTH + HI) 89.18±0.81

*Half of the images for training and another half for testing

5.3 Event classification

The description of the dataset followed by experimental

results are discussed in the following.

UIUC Sports Event. This dataset consists of 1579 images

of 8 sports event categories [33]. The number of images in

each class ranges from 137 to 250. We have followed the

experimental settings described in [77] which is, randomly

selecting 70 images as the training and other 60 for testing.

DTCTH (88.18%) outperforms all the low-level descrip-

tors (as described before) even mCENTRIST [6] (86.50%)

that uses color information for this dataset (see Table 8).

It also shows better result compared to many high-level

representation (see Table 8) with few exceptions such as

BoP (91.74%) that uses saliency map and mining strategy

to boost-up its performance [95].

5.4 Leaf classification

For leaf classification, we use Swedish leaf dataset [97].

The dataset description followed by experimental results

are discussed in the following.

Swedish leaf. This dataset consists of 15 species of leaves

with 75 images per species [97]. The dataset has two prop-

erties such as the leaf images are manually aligned well

and in a good shape. Following the standard protocol dis-

cussed in [8], 25 randomly selected images from each

species are used for training and the rest for testing.
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Table 7 Scene classification rate (%) in Scene 15

Techniques Accuracy

Places-CNN [71] 90.19

ImageNet-CNN [71] 84.23

Hybride-CNN [71] 91.59

SIFT (SPM + pLSA) SVM, 2006 [5] 81.40 ± 0.50

Dense color SIFT (pLSA) SVM, 2008 [34] 72.70

Dense color SIFT (SP-pLSA) SVM, 2008 [34] 83.70

Dense SIFT (KC) SVM with HI, 2008 [12] 77.10

Dense SIFT (LSPM + MP) LSVM,

2009 [60] 65.32 ± 1.02

Dense SIFT (ScSPM + MP) LSVM,

2009 [60] 80.28 ± 0.93

Dense SIFT (Sparse Code) LSVM,

2010 [96] 84.10 ± 0.50

Dense SIFT (LLC + MP) LSVM,

2010 [62, 64] 79.81 ± 0.35

Dense SIFT (LSA + MMP) LSVM,

2011 [68] 82.70 ± 0.39

SIFT (BOVW + SPCK++) SVM,

2011 [57] 82.51 ± 0.43

Dense SIFT (LDC + LLC/LSA + MP)

LSVM, 2013 [64] 82.50 ± 0.47

Dense SIFT (LCSR + MP) LSVM,

2012 [61] 82.67 ± 0.51

Object bank + LSVM, 2010 [55] 80.90

Dense SIFT + I2CDML, 2010 [58] 77.00 ± 0.60

Dense SIFT (SPM) I2CDML, 2010 [58] 81.20 ± 0.52

Dense SIFT + NBNN, 2008 [58, 59] 72.30 ± 0.93

PRICoLBP + SVM with χ2 , 2014 [8] 82.04

Dense SIFT (BoF) SVM with HI,

2014 [93] 82.06

LGP (SPM) LSVM, 2013 78.22 ± 0.56

OC-LBP (BoF) LSVM, 2013 77.22 ± 0.40

LAID (SPM) LSVM, 2013 81.18 ± 0.60

CLBP_S/M/C (SPM) LSVM, 2010 76.47 ± 0.15

LTP (SPM) LSVM, 2010 80.25 ± 0.31

GIST + LSVM, 2001 55.55 ± 0.67

CENTRIST (SPM) LSVM, 2011 81.45 ± 0.23

Proposed (DTCTH + LSVM) 82.66 ± 0.50

Proposed (DTCTH + HI) 83.63 ± 0.21

Table 9 presents the experimental results of DTCTH

as well as the existing techniques in literature on this

dataset, which shows that DTCTH achieves 99.52% accu-

racy. Several techniques are used in this dataset for

Table 8 Event classification rate (%) in UIUC Sports Event

Techniques Accuracy

Places-CNN, 2014 [71] 94.12

ImageNet-CNN, 2014 [71] 94.42

Hybride-CNN, 2014 [71] 94.22

Dense SIFT (KSRSPM) LSVM, 2010 [65] 84.92 ± 0.78

Dense SIFT (ScSPM + MP) LSVM,

2009 [60] 82.74 ± 1.46

Dense SIFT (LSA + MMP) LSVM,

2011 [68] 82.29 ± 1.84

Dense SIFT (LLC + MP) LSVM,

2010 [62] 81.41 ± 1.84

Dense SIFT (LCSR + MP) LSVM,

2012 [61] 87.23 ± 1.14

Dense SIFT + I2CDML, 2010 [58] 78.5 ± 1.63

Dense SIFT (SPM) I2CDML, 2010 [58] 79.7 ± 1.83

Dense SIFT + NBNN, 2008 [58, 59] 67.6 ± 1.1

Dense SIFT (BoF) SVM with HI,

2014 [30, 93] 85.12

LQP + SVM with RBF, 2012 [39, 51] 78.9

DDLBP + Max Relevance +

SVM with RBF, 2014 [39] 83.5

DDLBP + mRMR + SVM with RBF,

2014 [39] 83.5

DDLBP + MJMI + SVM with RBF,

2014 [39] 84.0

mGIST (SPM) LSVM, 2014 [6] 76.2 ± 1.9

mSIFT (SPM) LSVM, 2014 [6] 84.2 ± 0.7

mCENTRIST (SPM) LSVM, 2014 [6] 86.5 ± 0.6

LGP (SPM) LSVM, 2013 78.42 ± 0.94

OC-LBP (BoF) LSVM, 2013 81.15 ± 2.18

LAID (SPM) LSVM, 2013 78.50 ± 0.65

CLBP_S/M/C (SPM) LSVM, 2010 78.88 ± 0.92

LTP (SPM) LSVM, 2010 82.43 ± 1.17

GIST + LSVM, 2001 69.95 ± 0.98

CENTRIST (SPM) LSVM, 2011 79.50 ± 0.95

Proposed (DTCTH + LSVM) 85.16 ± 0.96

Proposed (DTCTH + HI) 88.18 ± 0.84

shape and leaf classification. DTCTH outperforms all of

these approaches by considering gray-scale image as input

which is provided in Table 9.

5.5 Facial expression recognition

We also evaluate the performance of DTCTH in expres-

sion recognition. Most of the facial expression recognition
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Table 9 Leaf classification rate (%) in Swedish leaf

Techniques Accuracy Input

Soderkvist, 2001 [97] 82.40 Contour

SC + DP, 2007 [98] 88.12 Contour

IDSC + DP, 2007 [98] 94.13 Contour

SPTC + DP, 2007 [98] 95.33 Gray-scale

Shape-Tree, 2007 [99] 96.28 Contour

CENTRIST, 2011 [7, 8] 90.61 Contour

SLPA, 2013 [100] 96.33 Gray-scale

PRICoLBP + SVM

with χ2 , 2014 [8] 99.38 Gray-scale

LGP (SPM) LSVM, 2013 98.08 Gray-scale

OC-LBP (BoF) LSVM,

2013 99.36 Gray-scale

LAID (SPM) LSVM,

2013 99.33 Gray-scale

CLBP_S/M/C (SPM) LSVM,

2010 98.53 Gray-scale

LTP (SPM) LSVM, 2010 98.20 Gray-scale

GIST + LSVM, 2001 96.08 Gray-scale

CENTRIST (SPM) LSVM,

2011 97.44 Gray-scale

Proposed (DTCTH + LSVM) 99.49 Gray-scale

Proposed (DTCTH + HI) 99.52 Gray-scale

systems attempt to recognize a set of expressions like

anger, disgust, fear, joy, sadness, and surprise. This 6-class

expression set can also be extended to a 7-class expression

set including a neutral expression. In this work, our aim

is to recognize both 6-class and 7-class expressions. For

this purpose, we have performed experiments on Cohn

Kanade (CK) [82] and CK+ [103] datasets, where person

independent 10-fold cross-validation testing is consid-

ered. More specifically, the whole dataset is divided into

ten person independent groups of roughly equal number

of subjects. Nine groups are used to train the classifier, and

the remaining group is used as the test data. The datasets

description along with experimental results are discussed

in the following.

CK and CK+ Dataset. The CK dataset consists of 100

university students who were between 18 and 30 years

old at the time of their inclusion. Among them, 65% are

female. In the experimental setup, 320 image sequences

are selected from 96 subjects, each of which is labeled as

one of the six basic expressions. For 6-class expression

recognition, the three most expressive image frames are

taken from each sequence that results in 960 expression

images. In order to build the neutral expression set, the

first frame (i.e., neutral expression) from all 320 sequences

Table 10 Expression recognition rate (%) in CK

Techniques
CK

6-class expression 7-class expression

Ranzato et al. [101] – 90.10

LBP, 2006 [13] 92.60 ± 2.90 88.90 ± 3.50

LBP + Template Matching,

2009 [18] 84.50 ± 5.20 79.10 ± 4.60

Geometric feature + TAN,

2003 [102] – 73.20

LBP + SVM, 2009 [18] 91.50 ± 3.10 88.10 ± 3.80

Boosted-LBP, 2009 [18] 89.80 ± 4.70 85.00 ± 4.50

Boosted-LBP + SVM,

2009 [18] 95.00 ± 3.20 91.10 ± 4.00

Gabor + SVM, 2003 [52] – 84.80

Gabor, 2009 [18] 89.40 ± 3.00 86.60 ± 4.10

LDN + LSVM, 2013 [50] 98.40 ± 1.40 92.30 ± 3.00

LGP (SPM) LSVM, 2013 93.36 ± 3.76 88.97 ± 4.18

OC-LBP (BoF) LSVM, 2013 84.84 ± 5.29 78.17 ± 5.50

LAID (SPM) LSVM, 2013 89.13 ± 5.41 84.21 ± 4.73

CLBP_S/M/C (SPM) LSVM,

2010 85.44 ± 4.92 78.59 ± 5.78

LTP (SPM) LSVM, 2010 91.18 ± 8.68 88.79 ± 2.31

CENTRIST (SPM) LSVM,

2011 89.84 ± 7.90 86.69 ± 2.04

Proposed (DTCTH + LSVM) 98.98 ± 1.29 92.75 ± 5.43

Proposed (DTCTH + HI) 97.76 ± 2.43 93.89 ± 2.63

Table 11 7-class expression recognition rate (%) in CK+

Techniques Accuracy

AUDN, 2013 [104] 92.05

SPTS, 2006 [69] 50.40

CAPP, 2006 [69] 66.70

SPTS + CAPP, 2006 [69] 83.30

LDN + LSVM, 2013 [50] 89.30

NABP + Adaboost, 2015 [17] 92.17

LBP + Adaboost, 2006 [17] 88.67

LTP + Adaboost, 2010 [17] 89.65

LGP + Adaboost, 2013 [17] 83.10

HOG + Adaboost, 2005 [17] 89.69

OC-LBP + BoF + LSVM, 2013 84.20 ± 4.90

LAID (SPM) LSVM, 2013 92.76

CLBP_S/M/C (SPM) LSVM, 2010 87.47

CENTRIST (SPM) LSVM, 2011 88.70 ± 4.37

Proposed (DTCTH + LSVM) 93.99 ± 5.83

Proposed (DTCTH + HI) 93.82 ± 5.52
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Table 12 Confusion matrix of DTCTH in case of 6-class

expression recognition on CK

Anger Disgust Fear Sadness Happy Surprise

Anger 99.22 0.0 0.78 0.0 0.0 0.0

Disgust 0.0 100.0 0.0 0.0 0.0 0.0

Fear 0.0 0.0 97.22 0.0 2.78 0.0

Sadness 0.83 0.0 0.0 98.33 0.0 0.83

Happy 0.43 0.0 0.85 0.0 98.72 0.0

Surprise 0.0 0.0 0.0 0.0 0.0 100.0

are selected to make the 7-class expression dataset (1280

images). Furthermore, the extended CK (CK+) is used,

which includes 593 sequences for seven basic expressions

including happiness, sadness, surprise, anger, disgust, fear,

and contempt. In the experiments, we select the most

expressive three image frames from 327 sequences of 118

subjects.

DTCTH achieves better performance (98.98%) with

lower computational cost on CK dataset than LBP [13],

boosted LBP [18], NABP [17], LGP [16], LTP [2], HOG

[31], LDN [50], and CENTRIST [7] which are presented in

Tables 10 and 11. DTCTH also achieves better accuracies

than computationally costly Gabor features [52] (89.40%)

on this dataset.

Table 12 demonstrates the confusion matrix of 6 differ-

ent expressions in CK dataset. From this matrix, it can be

seen that DTCTH performs better in all the basic expres-

sions. Anger, sadness, and fear show comparatively lower

performance than other expressions which is generally

happened in expression recognition in CK dataset (see

Table 13). However, other existing approaches provide

inferior results in these expressions than DTCTH.

Table 11 presents the results on CK+ dataset which

shows that DTCTH (93.99%) outperforms existing state-

of-the-art approaches such as LDN, NABP, LTP, LBP,

LGP, HOG, and CENTRIST. It is noteworthy to men-

tion here that DTCTH outperforms even deep learning

based methods described in [101] and [104] on both CK

and CK+ datasets. Besides this, Table 14 demonstrates

Table 13 Confusion matrix of DTCTH in case of 7-class

expression recognition on CK

Anger Disgust Fear Sadness Happy Neutral Surprise

Anger 86.67 0.0 1.90 1.9 0.0 9.52 0.0

Disgust 0.77 95.38 0.0 0.0 0.0 3.85 0.0

Fear 0.56 0.0 95.0 0.0 0.56 3.89 0.0

Sadness 1.67 0.0 0.0 93.9 0.0 3.89 0.56

Happy 0.42 0.0 0.0 0.0 99.2 0.42 0.0

Neutral 2.71 0.21 1.67 0.21 0.63 94.58 0.0

Surprise 0.0 0.0 0.0 0.0 0.0 0.0 100

Table 14 Confusion matrix of DTCTH in case of 7-class

expression recognition on CK+

Anger Contempt Disgust Fear Sadness Happy Surprise

Anger 96.3 2.22 0.74 0.0 0.74 0.0 0.0

Contempt 9.26 87.04 0.0 0.0 0.0 0.0 0.0

Disgust 0.56 0.0 99.44 0.0 0.0 0.0 0.0

Fear 0.0 0.0 1.33 90.67 0.0 8.0 0.0

Sadness 11.9 1.19 0.0 0.0 85.7 0.0 1.19

Happy 0.0 0.0 0.0 0.97 0.0 99.03 0.0

Surprise 0.0 0.0 0.40 0.0 0.0 0.0 99.6

the confusion matrix of seven different expressions in

CK+ dataset. From this matrix, it can be concluded that

DTCTH achieves better accuracy in challenging expres-

sions such as contempt, sadness, fear, and anger, though

most of the existing techniques provide poor performance

in these expressions.

6 Conclusions

In this paper, a low-level feature representation tech-

nique namely discriminative ternary census transform

histogram (DTCTH) is proposed where we have shown

the requirements of a low-level descriptor and intro-

duced a way to achieve those. Rigorous experiments on

five different applications including nine different datasets

demonstrate that DTCTH has more discrimination ability

than other existing state-of-the-art low-level descriptors.

Our approach outperforms other methods that include

several high-level representations for different applica-

tions. This is because DTCTH has the ability to capture

the prominent features that are stable in the presence of

noise and different lighting conditions.

For calculating the threshold of DTCTH, we describe

a way that combines Jenks’ and Weber’s law. We also

provide a low-cost approximation that we have found

empirically. Further research can be carried out on this

issue to obtain a better approximation. Moreover, the

incorporation of color information and high-level feature

representation like sparse coding and pooling might fur-

ther boost the performance of this descriptor which will

be addressed in the future.
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