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Background. Magnetic Resonance (MR) diffusion tensor imaging (DTI) is able to quantify in vivo tissue microstructure properties
and to detect disease related pathology of the central nervous system. Nevertheless, DTI is limited by low spatial resolution
associated with its low signal-to-noise-ratio (SNR). Aim. The aim is to select a DTI sequence for brain clinical studies, optimizing
SNR and resolution. Methods and Results. We applied 6 methods for SNR computation in 26 DTI sequences with different
parameters using 4 healthy volunteers (HV). We choosed two DTI sequences for their high SNR, they differed by voxel size and
b-value. Subsequently, the two selected sequences were acquired from 30 multiple sclerosis (MS) patients with different disability
and lesion load and 18 age matched HV. We observed high concordance between mean diffusivity (MD) and fractional anysotropy
(FA), nonetheless the DTI sequence with smaller voxel size displayed a better correlation with disease progression, despite a slightly
lower SNR. The reliability of corpus callosum (CC) fiber tracking with the chosen DTI sequences was also tested. Conclusion. The
sensitivity of DTI-derived indices to MS-related tissue abnormalities indicates that the optimized sequence may be a powerful tool
in studies aimed at monitoring the disease course and severity.

1. Introduction

Magnetic Resonance (MR) diffusion tensor imaging (DTI)
allows in vivo examination of the tissue microstructure,
obtained by exploiting the properties of water diffusion. The
DT computed for each voxel allowed us to calculate the mag-
nitude of water diffusion, reflected by the mean diffusivity
(MD) and the degree of anisotropy, which is a measure of
tissue organization, expressed as an a-dimensional index,
such as fractional anisotropy (FA) [1]. The pathological
elements of multiple sclerosis (MS) have the potential to alter
the permeability or geometry of structural barriers to water
diffusion in the brain. Consistent with this, several in vivo
DTI studies have reported increased MD and decreased FA
values in T2-visible lesions, normal-appearing (NA) white
matter (WM), and grey matter (GM) from patients with
MS [2]. Combined with fibre tractography techniques, DTI
reveals WM fibers characteristics and connectivity in the
brain noninvasively. In MS, tractographic reconstruction has
to deal with a general FA reduction in normal appearing

white matter (NAWM) and a high FA reduction in lesions
with high structural loss [2–5].

The best acquisition and postprocessing strategies for
DTI sequences in the disease, especially in MS, are still a
matter of debate [2, 6, 7].

The Signal-to-noise ratio (SNR) of an image is a fun-
damental measure of MRI-scanner hardware and software
performances, because it provides a quantitative evaluation
and comparison among signal and noise levels of different
imaging and reconstruction methods, sequence parameters,
radio frequency coils, gradient amplitudes, and slew rates.
Since DT is reconstructed through evaluations of loss of
signal in diffusion-weighted images in comparison with
reference b = 0 s/mm2 images, this technique is vulnerable to
poor SNR values: the background noise level close to the low
diffusion weighted signal would overestimate the signal itself
and consequently underestimate the magnitude of diffusion.
The SNR of the b = 0 s/mm2 images should be at least 20 to
obtain unbiased DTI-derived measures. Many methods for
SNR evaluation in MR images are available and they differ
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for the estimation of the noise variance. They are commonly
subdivided into two classes: single magnitude image methods
derive the noise from a large, uniform background region
[8, 9]; pair of images methods are based on two acquisitions
of the same image [10–13]. The latter methods estimate the
noise in the image obtained as the difference of the two
acquired images, in a region positioned in the background or
in the object of examination. These methods were not used
for diffusion weighted evaluations, but only for conventional
(T1,T2) imaging and validated on phantoms.

Against this background, the first aim of this study is
the optimization of DTI sequence parameters, in order to
produce images with high SNR, with a short acquisition
time and a voxel size appropriate for tractography. The SNR
was computed in brain images obtained with different DTI
sequence parameters.

The second aim is the choice of the DTI sequence giving
the best differentiation between HV and patients with MS.

The third aim is to ascertain whether these sequences
enable us to track the corpus callosum (CC) fibers in MS
patients [14–16].

A preliminary validation of the method will be shown on
a group of MS patients with varying progression levels of the
disease compared with an age-matched group of HV.

2. Material and Methods

2.1. Subjects. To obtain the optimization of SNR parameters,
we performed a preliminary analysis on 4 HV (male/female
= 2/2), mean age (range) = 44.75 (28–61) years).

To obtain the DTI sequence with the best differenti-
ation between HV and MS patients we acquired 18 HV
(male/female = 10/8, mean age (range) = 43.11 (24–50)
years) and 30 MS patients (male/female = 8/22, mean age
(range) = 45.03 (26–68) years, median EDSS (range) = 5.0
(2–8), median (range) disease duration = 13.5 (2–34) years),
of whom 13 with relapsing-remitting (RR) MS and 17 with
secondary progressive (SP) MS.

2.2. MRI Acquisition. MR scans were performed using a 1.5
T Siemens Magnetom Avanto scanner (Erlangen, Germany)
in the Radiology Department of Fondazione Don Gnocchi
ONLUS, IRCCS S. Maria Nascente, Milano (Italy).

Twenty-six DTI sequences with different parameters were
tested on 4 HV for the preliminary analysis. Changed param-
eters were pixel size (from 1.87 to 2.5 mm2), slice thickness
(from 1.9 to 2.8 mm), b-value (900 s/mm2, 1000 s/mm2,
1500 s/mm2, 2000 s/mm2), echo time (TE) (from 83 to
110 ms), and repetition time (TR) (from 6500 ms to
7800 ms).

The following reference sequences were applied on all 48
subjects of the study:

(a) dual-echo turbo spin echo (TSE) (TR = 2650 ms,
TE = 28/113 ms, echo train length (ETL) = 5; flip
angle = 150; 50 interleaved, 2.5 mm-thick axial slices,
matrix size = 256 × 256 and a field of view (FOV) =

250 mm);

(b) three-dimensional (3D) T1-weighted magnetisation-
prepared rapid acquisition gradient echo (MP-
RAGE) (TR = 1900 ms, TE = 3.37 ms, TI = 1100 ms,
flip angle = 15◦, 176 contiguous, axial slices with voxel
size = 1× 1× 1 mm3, matrix size = 256× 256, FOV =

256 mm, slab tick = 187.2 mm).

The following two DTI sequences were also applied, as a
consequence of the previous screening on 4 HV:

(i) (DTI-A): pulsed-gradient spin-echo echo planar
pulse sequence without SENSE (TR = 7000 ms, TE
= 94 ms, 50 axial slices with 2.5 mm slice thick-
ness, acquisition matrix size = 128 × 96; FOV =

320 × 240 mm) with diffusion gradients (b-value =

900 s/mm2) applied in 12 noncollinear directions;

(ii) (DTI-B): pulsed-gradient spin-echo echo planar pul-
se sequence without SENSE (TR = 6500 ms, TE
= 95 ms, 40 axial slices with 2.5 mm slice thick-
ness, acquisition matrix size = 128 × 128; FOV =

240 × 240 mm) with diffusion gradients (b-value =

1000 s/mm2) applied in 12 noncollinear directions.
Two acquisitions for each set of diffusion gradients
were performed, in order to improve SNR. Acquisi-
tion time is compatible with clinical protocols: 3′09′′

for the first sequence (DTI-A) and 2′56′′ for the
second (DTI-B).

The main differences between the first and the second DTI
sequences were b-value (900 s/mm2 versus 1000 s/mm2),
pixel size (2,5 mm × 2,5 mm versus 1,88 mm × 1,88 mm),
and TR (7000 ms versus 6500 ms).

DTI-B had 10 slices less than DTI-A; so it covered 25 mm
less in the craniocaudal direction. Since our clinical aim is
to analyze the microscopic changes of CC due to the MS
pathology, we positioned DTI-B group of slices (slab) with
the same centre and orientation of DTI-A slab, and then
we moved it upward of 12,5 mm (25/2 mm) in the cranial
direction. So, the two DTI had the last slice with the same
position and orientation.

2.3. Methods for SNR Computation. All the 26 sequences
were automatically analyzed with a home-made Matlab
script, which computed SNR with six different methods for
every slice of every volume (two b0 volumes, not diffusion-
weighted, and twenty-four diffusion-weighted volumes) and
plotted SNR-to-slice (Figure 2).

In all of the 6 methods, the signal (S) is evaluated as
the 2D mean intensity in a region of interest (ROI) of
10 × 10 = 100 pixels with maximum uniform brain signal,
automatically extracted for every slice (red ROI, Figure 1(a)).
Instead, for the estimation of noise, single and multiple
images methods were used. Even if the multiple images ones
are relatively insensitive to structured noise such as ghosting,
ringing, and direct current (DC) artifacts, a perfect geomet-
rical alignment of the images and temporal steadiness of the
imaging process are strict requirements. For this reason, cor-
responding volumes of the two subsequent acquisitions were
previously coregistered with statistical parametric mapping
(SPM)5 (http://www.fil.ion.ucl.ac.uk/spm/).
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(a) (b)

Figure 1: ROIs superimposed on 25th slice of the DTI-A 6th diffusion direction (a) and on image obtained by the difference of two
acquisitions of the same image (b). The red ROI is for the evaluation of signal (for all the methods) and for the evaluation of noise standard
deviation in methods 1 and in double image methods 2, 5; the green ROI is for the evaluation of noise in single image methods 3, 4, 6.
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Figure 2: Comparison of DTI-A SNR obtained with method 4 and
method 6. The mean SNR for b /= 0 s/mm2 images is plotted for
every slice.

Method 1—Single ROI for Signal and Noise, Single Image.
The noise was evaluated in the same ROI used for the S (see
above). SNR is computed with (1) [17]:

SNR1 =
S

σ
, (1)

where σ is the 2D standard deviation (SD) of pixel intensity
in the ROI.

Method 2—Single ROI for Signal and Noise, Difference of
Images. The noise was evaluated in the image obtained from
the difference of two subsequent acquired images as the 2D
SD of the intensities in the same ROI used for the signal
S. Noise ROI must be positioned in tissue with sufficiently
high SNR and not in the image background, because the
noise within the ROI in the difference image is assumed to
be Gaussian distributed.

SNR was then computed with (2) [17–21], where the
factor

√
2 is due to the property of the addition of the

variances when two images are added or subtracted:

SNR2 =
√

2S/σ , (2)

where σ is the 2D SD of pixel intensity in the ROI.

Method 3—Noise Estimated on Air (SD), Single Image.
The noise was estimated in a ROI of 20 × 20 = 400
pixels, extracted from background (air) (Figure 1(a)), paying
attention to put it far from ghosting and filter artifacts, visible
as an increased signal near image edges. Since MRI noise in
the air follows Rayleigh distribution, the apparent SD of the
noise underestimates the true SD by approximately 0.655.
Therefore, the SNR was obtained by (3) [9, 20, 22] as

SNR3 =
S

SD(true.noise)
= 0.655

S

SD
(

apparent.noise
) . (3)

Method 4—Noise Estimated on Air (Mean Value), Single
Image. The standard deviation of noise was estimated from
a ROI of 20 × 20 = 400 pixels, extracted from background
(air). Since MR noise in the air follows Rayleigh distribution,
the mean value of the signal in the second ROI (µair) is equal
to the SD of the noise, multiplied for the coefficient

√
π/2.

So, SNR was computed with (4) [17, 20]:

SNR4 =
√

π

2
·

S

µair
. (4)

Method 5—Single ROI for Signal and Noise, Difference of
Images. This method was similar to the method 2. We
considered two images (A and B) obtained from two
subsequent acquisitions of the same slice. The signal was the
mean value of the pixels in a ROI on the first image (A).
Then, we considered a second ROI on the second image (B),
located as the first ROI in the first image. The SD of the noise
was evaluated in the same ROI position and computed as
suggested by Ogura et al. [17] with (5):

σ =
√

τ2
ROIA-ROIB + τ2

ROIB-ROIA + 2 · νROIB-ROIA · νROIA-ROIB,

(5)

where τ was the standard deviation and ν was the mean value
of the pixel in an image obtained as the difference of image A
minus image B (ROIA-ROIB) or vice versa.

Method 6—Estimation of Noise Variance from the Background
Histogram Mode, Single Image. Since MRI noise in the air
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follows Rayleigh distribution, the noise variance can be
estimated by searching for the magnitude (m) value at which
the background histogram attains a maximum (mmaxair):
noise SD was estimated as the mode of the Probability
Density Function histogram [12, 23] in a background ROI
of 20× 20 = 400 pixels and the SNR was computed with (6):

SNR6 =
S

σair
=

S

mmax (air)
. (6)

2.4. Postprocessing of Conventional Imaging. Lesions were
segmented on proton-density(PD)-weighted images, using
the corresponding T2-weighted images to increase confi-
dence in lesion identification. Then, lesion volume (ml) was
calculated and segmented lesions were used for masking
DTI (see Section 2.5), using Jim software package (Jim 5.0,
Xinapse System, Leicester, UK).

3D-T1 MP-RAGE images were automatically segmented
to GM, WM and cerebrospinal fluid (CSF), using SPM5
(http://www.fil.ion.ucl.ac.uk/spm/) and maximum image in-
homogeneity correction [24]. An home-made Matlab script
was used to classify each pixel as GM, WM or CSF, dependent
on which map had the greatest probability at that location:
this produced mutually exclusive masks for each tissue.

2.5. Post Processing of Diffusion Tensor Imaging. DTI data
were corrected for eddy-current distortion by FSL package,
which registered the 12 diffusion-weighted volumes to the
b0-volume, with a Mutual Information- (MI-) based non-
linear transformation. Then diffusion gradient directions
were corrected for scanner settings (i.e., slice angulation,
slice orientation, etc.) and diffusion tensor was determined
for each voxel using the freely available Diffusion Toolkit
software, version 0.4.2 (http://www.trackvis.org/) with linear
least-squares fitting method [25]. The tensors were then
diagonalized, obtaining eigenvectors, eigenvalues, MD, and
FA maps.

ROIs of lesions individuated on T2-images were masked
out from MD and FA maps, in order to estimate NAWM
damage.

GM and WM mutual exclusive masks were superimposed
to MD and FA maps, and the corresponding histograms were
produced. The erosion of the first-line outer voxels from the
mutual exclusive masks excluded the contribution of partial
volume effect from the surrounding CSF to the observed GM
and WM diffusivity changes and WM anisotropy changes.
Average MD was computed for GM and NAWM. Average
FA was derived only for the NAWM, since no preferential
direction of water molecular motion is expected to occur in
the GM, due to the absence of a microstructural anisotropic
organization of this tissue compartment.

2.6. Fiber Tracking. The reliability of fiber tracking with the
2 DTI sequences was tested using Diffusion Toolkit v0.4.2
(http://www.trackvis.org/) and visualized by the freely avail-
able software TrackVis v0.4.2 (http://www.trackvis.org/). The
brute force approach and deterministic streamline-based
fiber tracking were used, with FA-map as masking image and
angle termination of 35◦. For track selection, the one-ROI
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Figure 3: SNR computed with method 4 for images obtained with
two repetitions of 12 DTI gradient directions. DTI-A (b-value =

900 s/mm2, 50 slices) (red) is compared with DTI-B (b-value =

1000 s/mm2, 40 slices) (blue). Note that DTI-B has been obtained
with the last slice (z direction from feet to head) positioned as the
last slice of DTI-A slice group.

approach was used: CC was identified and segmented in the
three mid-sagittal adjacent slices of FA-map [26].

FA and MD histograms were derived for CC fiber tracts
(CC-FA and CC-MD).

2.7. Statistical Analysis. A graphical display allowed to
compare the six methods of SNR estimation and the quality
of the sequences in terms of SNR.

We estimate the intraclass-correlation coefficients bet-
ween the 2 DTI sequences used in the study, regarding the
values of NAWM-FA, NAWM-MD, and GM-MD of all the
48 subjects (HV and MS patients).

Spearman’s correlation coefficient (SCC) was assessed
to estimate the correlation between DTI-derived measures
(NAWM-FA, NAWM-MD, GM-MD, CC-FA, and CC-MD)
and the subjects’ condition (HV, RRMS, SPMS).

3. Results

3.1. Analysis of SNR. As expected, the six SNR evaluation
methods gave different absolute numerical values. Never-
theless, the changes through slices (Figure 2) and through
different volumes were in good agreement, as the ranking of
the performances of the different sequences (Figures 3, 4).

SNRs were plotted for sequences ordered by ascending
voxel size and with the same b-value, TE and TR: this kind of
graphical representation showed clearly the increase of SNR
with the increase of the voxel size. A similar representation
was done for sequences with the same parameters but the b-
value, giving the result of SNR decreasing with the increasing
of the diffusion-sensitivity coefficient, in particular the SNR
estimated on images obtained from sequences with b-value
of 1500 s/mm2 was 20% less than the SNR of sequences with
b-value of 1000 s/mm2. The same analysis confirmed that the
minimum TE feasible for the MR-scanner had to be selected,
as expected, since DTI is T2 weighted.

The sequence with the highest SNR by all methods was
DTI-A, which is characterized by parameters in the range
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Figure 4: SNR computed with method 6 for images obtained with
two repetitions of 12 DTI gradient directions. DTI-A (b-value =

900 s/mm2, 50 slices) (red) is compared with DTI-B (b-value =

1000 s/mm2, 40 slices) (blue). Note that DTI-B has been obtained
with the last slice (z direction from feet to head) positioned as the
last slice of DTI-A slice group.

Table 1: Intraclass correlation coefficient between measures derived
from DTI-A and DTI-B.

DTI-derived metric Intraclass correlation coefficient

GMMD 0.95

NAWMMD 0.99

NAWMFA 0.91

recommended by Pagani et al. [27] for multicentre MS
trials.

Another sequence (DTI-B) was selected for the high SNR
between those of pixel size of about 1 × 1 mm2. DTI-B SNR
is lower than DTI-A SNR, less than 15%.

The SNR comparison of the two selected sequences is
shown in Figures 3 and 4: only two SNR computational
methods are shown (method 4 in Figure 3 and method 6 in
Figure 4), but in both figures it is clear that DTI-A produces
images with higher SNR, with near constant differences
among slices.

3.2. Statistical Comparison of Microstructural Indices of
Fiber Integrity, Derived from Two Sequences. The intraclass-
correlation coefficients ranged from 0.91 to 0.99, showing
high concordance of the parameters derived from DTI-A and
DTI-B (Table 1).

The SCC showed that both DTI sequences separated HV
from RRMS and SPMS patients, but that SCCs between DTI-
B were higher than those between DTI-A (P < .01) and
subjects’ condition as shown in Table 2.

3.3. Fiber Tracking. (i) Tractography algorithm was obtained
with both the selected DTI sequences for all HV (in Figure 5
an example of CC tractography obtained with DTI-A is
shown).

(ii) Tractography algorithm was obtained with both
the selected DTI sequences for 28 of the 30 MS patients

Table 2: Spearman’s Correlation Coefficient between DTI-derived
measures and the subjects’ condition.

DTI-derived metric
Spearman’s Correlation Coefficient

DTI-A DTI-B

GMMD 0.57 0.68

NAWMMD 0.47 0.64

NAWMFA −0.60 −0.70

CC-MD 0.63 0.78

CC-FA −0.80 −0.84

(Figure 6) but failed in two patients with a high number of
lesions in CC.

4. Discussion

In this study we improved the quality of DTI sequences,
looking for a compromise between SNR and spatial res-
olution. SNR values computed with different methods
showed different bias and sensitivity to the noise level: this
observation has to be further investigated. Despite that, at
the aim of the present work, all methods were in accordance
with the whole data set in pointing sequences DTI-A and
DTI-B as the best ones without exception (SNR DTI-A
> SNR DTI-B). These concordant evaluations allowed us
to produce an automatic DTI sequences quality evaluation
and to preliminary select two DTI sequences among 26.
The two selected sequences had the best trade-off between
SNR, voxel size, and diffusion sensing. Even if DTI-B has a
lower SNR compared to DTI-A, the loss of maximum 15%
in SNR was compensated by a higher resolution, which is
a key element in determining tractographic reconstruction
quality [7]. Both DTI sequences chosen through SNR-based
evaluation are feasible for clinical protocols because of the
acceptable acquisition time (about 3′).

The optimum result is the production of CC individual-
based tractography in 28 of 30 patients, with fiber tracts
reconstructed even if they passed through a lesion. Both
focal and diffuse alterations of tissue organization, which
result in a decreased anisotropy and a consequent increase
in uncertainty of the primary eigenvector of the DTI, are
the well-known cause of the failure of tractography in MS
in the previous studies [2, 28]. As previously described
[7], the number of fibers decreases and tractography stops
erroneously when SNR decreases. The improvement of
SNR contributed on making possible the fiber bundles
reconstruction. The high SNR is also fundamental for a
better evaluation of MD and FA. Indeed, both of them are
underestimated when SNR is low [29].

In order to increase SNR, more than one average is usu-
ally acquired, but too many averages amplify coregistration
errors and raise acquisition time and subject movements. In
our DTI protocol we choose to acquire 2 averages (runs) for
every diffusion sequence. In Figure 1(b) the image is shown
obtained by the difference between the first run and the
second run (coregistered to the first one), which reveals that
the ROI for the noise SD estimation (red) is put in a region
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Figure 5: Top and right view of corpus callosum tractography for a 50-year-old healthy male subject.
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Figure 6: (a) Corpus callosum tractography for a 48-year-old relapsing remitting multiple sclerosis patient with lesional load of 16.4 mL.
Lesions are superimposed on tractography and visualized with green blobs. (b) Zoom of posterior tracts which pass through the lesions of
the same patient.

with minimum error due to mismatch of coregistration: the
difference image is uniform and does not have ringing or
border artifacts.

The noise, estimated with different methods, is almost
constant over the slices (Figure 7): for example, the DTI-A
noise computed with method 4 has mean value (range) =

9.2 (8.2–10.2) over an image with mean (range) intensity
of 33.7 (0–585); DTI-B noise computed with method 4 has
mean value (range) = 8.6 (7.7–9.3) over an image with mean
(range) intensity of 40.8 (0–681). Therefore, the SNR slices
dependency (Figures 3 and 4) is mainly due to the mean sig-
nal differences for the various tissues acquired slice by slice.

Besides SNR examinations, even resolution has to be
considered in DTI sequence parameters selection. Indeed,
FA and MD are also influenced by the voxel size, due to
the increment of the radial eigenvalues in a large voxel [30].
Furthermore, tissue with different diffusion properties can
be inside a large voxel, bringing biased diffusion results [29].
This problem is known as partial volume effect and it causes
an altered evaluation of DTI-derived measures, with a higher
influence on FA than MD, due to the increase of the radial
eigenvalues in a large voxel [30]. It is also known that the
presence of crossing fibers within a large voxel influences
the estimation of diffusion properties, since the apparent
principal DT eigenvector is obtained as an average of the two
crossing fibers’ directions with a consequent reduction in the
FA [7, 30].
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Figure 7: Comparison of Noise computed with method 4 for the
two repetitions of 12 DTI gradient directions (b-value = 900 s/mm2,
50 slices) of DTI-A (orange dots) and the two repetitions of 12 DTI
gradient directions (b-value = 1000 s/mm2, 40 slices) of DTI-B (blue
dots).

For the above reasons we included also DTI-B in the
clinical protocol, due to the smaller voxel size, even if DTI-
A had the higher SNR.

Accurate FA and MD estimations improve the reliability
of tractography, which is prone to errors: some of them
are subjective (e.g., how the ROI for tracking selection is
drawn, etc.) and some are intrinsic in the DTI sequence used.



Computational Intelligence and Neuroscience 7

Indeed, bias in the estimation of diffusion tensor eigenvectors
and eigenvalues damaged fiber tracking because it causes
false or missing fibers [28, 30]. Several studies have been
performed to reduce the errors on fiber tracking [30–33], but
these methodologies are still being developed, none are used
routinely, and most of them are time consuming and require
strong computational power.

5. Conclusion

The results about SNR computed with different methods
(Figures 3 and 4) showed that even those methods applied
only on phantoms in previous studies [17, 21], or on mouse
brain [12] or human abdomen [20] conventional MRI, can
be successfully used also for DTI on human brain.

Both our selected DTI sequences were able to quantify
a tissue damage in MS, leading to distinguish between MS
patients and HV and between the different MS phenotypes.
However, the sequence with higher resolution and higher b-
value (DTI-B) achieved a better correlation with the presence
of MS disease. Even if DTI-B sequence has less slices than
DTI-A, it covered the entire CC tracts due to the acquired
slab position. Appropriate positioning of the acquisition slab
should be evaluated in further studies in order to analyze
other fiber bundles.

Finally, the proposed sequence and procedure showed
higher reliability for fiber tracking and were able to discrim-
inate the presence of MS disease even when severe lesional
patterns were observed and may therefore be considered a
potential powerful tool for studies to monitor the disease
course and severity.
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