
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 10, OCTOBER 2005 1267

DTI Segmentation Using an Information Theoretic
Tensor Dissimilarity Measure

Zhizhou Wang, Member, IEEE, and Baba C. Vemuri*, Fellow, IEEE

Abstract—In recent years, diffusion tensor imaging (DTI) has be-
come a popular in vivo diagnostic imaging technique in Radiolog-
ical sciences. In order for this imaging technique to be more effec-
tive, proper image analysis techniques suited for analyzing these
high dimensional data need to be developed.

In this paper, we present a novel definition of tensor “distance”
grounded in concepts from information theory and incorporate
it in the segmentation of DTI. In a DTI, the symmetric positive
definite (SPD) diffusion tensor at each voxel can be interpreted
as the covariance matrix of a local Gaussian distribution. Thus, a
natural measure of dissimilarity between SPD tensors would be
the Kullback-Leibler (KL) divergence or its relative. We propose
the square root of the J-divergence (symmetrized KL) between
two Gaussian distributions corresponding to the diffusion tensors
being compared and this leads to a novel closed form expression
for the “distance” as well as the mean value of a DTI. Unlike the
traditional Frobenius norm-based tensor distance, our “distance”
is affine invariant, a desirable property in segmentation and many
other applications. We then incorporate this new tensor “distance”
in a region based active contour model for DTI segmentation.
Synthetic and real data experiments are shown to depict the
performance of the proposed model.

Index Terms—Diffusion tensor MRI, image segmentation,
Kullback-Leibler divergence, J-divergence, Mumford-Shah func-
tional, active contour.

I. INTRODUCTION

I
N [8], Basser et al. presented their seminal work on diffusion
tensor magnetic resonance imaging (DT-MRI). Since this

new MRI modality can be used to quantify anisotropic properties
of the imaged tissue by characterizing the water diffusion
through the same, it has became a powerful technique to
investigate the tissue microstructure in vivo, e.g., white matter
connectivity in the brain or in the spinal cord. Investigating the
tissue microstructure and changes therein (due to pathology)
is achieved via DTI analysis. This in general includes a broad
spectrum of interesting problems namely, optimal DT-MR
imaging protocol design, DTI restoration, DTI segmentation,
DTI registration, DTI visualization and fiber track mapping.
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In DT-MRI, what is measured is the diffusion weighted echo
intensity image (DWI) . It can be related to the diffusion
tensor through the Stejskal-Tanner equation [8] given by

(1)

where is the diffusion weighting of the -th diffusion en-
coding magnetic gradient, “:” denotes the generalized inner
product for matrices. Given several noncollinear diffusion
weighted intensity measurements, can be estimated via
multivariate regression techniques.

One key factor in DTI analysis is a proper choice of diffusion
tensor distance that measures the similarity or dissimilarity be-
tween the tensors and is particularly important in the aforemen-
tioned tasks. In the following, we will present a brief overview
of different tensor distance measures used in DTI analysis and
various techniques currently in vogue in using tensor-based in-
formation for segmenting DTI.

In general, any kind of matrix norm can be used to mea-
sure the distance between two 2-tensors. One such example is
the tensor Euclidean distance obtained by using the Frobenius

norm. Due to its simplicity, tensor Euclidean distance has been
used extensively in DTI restoration [11], [12], [32]. Alexander
et al. [2] considered a number of tensor similarity measures
for matching diffusion tensor images and concluded empirically
that the Euclidean difference measure yields the best results.
Though not many sophisticated tensor distances have been pro-
posed in DTI analysis, there are quite a few in the context of
machine learning. Miller et al. [22] proposed an interesting mea-
sure on transformation groups to design an invariant kernel for
nonparametric density estimation. What is most closely related
to our present work was proposed by Tsuda et al. [29]. They
introduced information geometry in the space of positive defi-
nite matrices to derive a Kullback-Leibler divergence between
them and then used it in an “em” (not the well-known expec-
tation-maximization) algorithm to approximate an incomplete
kernel.

In the context of DTI segmentation, in [33], Wiegell et al. ap-
plied the K-means clustering (involves tensor Frobenius norm)
technique for segmentation of thalamic nuclei from DTI. Simul-
taneously, Zhukov et al. [35] proposed a level set segmentation
method to segment scalar anisotropic images derived from the
diffusion tensor. The fact that such scalar fields are used implies
that they have ignored the direction information contained in the
DTI. Thus, this method will fail if two homogeneous regions of
DTI have the same anisotropy property but are oriented in a to-
tally different direction.
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Prior to our published work in [31], the only published work

on the segmentation of matrix-valued images was reported in

Feddern et al. [13]. In their work [13], Feddern et al. extended

thegeodesicactivecontoursmodelforapplicationtotensorfields,

specifically to the structure tensor field computed from gray scale

images. The stopping criterion in this case is chosen as a de-

creasing function of the trace of the sum of the structure tensors

formed from individual elements of the given tensor in the tensor

field. This amounts to taking the Frobenius norm of the tensors in

the tensorfieldformedbythegradientmagnitudeof the individual

channels/components of the given tensor. This scheme is a gra-

dient based active contour(snake) whose performance is lacking

in absence of significant gradient in the data. Moreover, the norm

used here is not invariant to affine transformations of the input

coordinates on which the original tensor field is defined. Affine

invariance is a desirable property for the segmentation scheme

when dealing with data sets obtained from different hardware.

In [31], we applied a region-based active contour model for

tensor field segmentation by incorporating a tensor distance

based on matrix Frobenius norm. Simultaneously, Rousson et

al. [25] extended the classical surface evolution segmentation

model by incorporating region statistics defined on the tensor

fields for DTI segmentation. In both works [25], [31], different

components in the diffusion tensor is treated in the same way.

However, the diffusion tensor is actually the covariance matrix

of a local diffusion process and different components have

different importance/weight. The importance of this fact in DTI

segmentation was first recognized by Wang and Vemuri in [30].

Specifically, they proposed an information theoretic “distance”
for rank 2 tensors and incorporated it in a region-based active

contour model to segment tensor fields. Soon after, Lenglet

et al. [16], [17] extended the concepts presented in [30] for

probability density field segmentation in a Bayesian framework

with application to DTI segmentation.

In this paper, we tackle the DTI segmentation problem using

a region-based active contour model by incorporating an infor-

mation theoretic tensor dissimilarity measure. This paper is a

significant extension of our preliminary work reported in [30].

Geometric active contour models have long been used in scalar

and vector-valued image segmentation [9], [15], [18]–[20]. Our

work is based on the active contour models derived from the

Mumford-Shah functional [23], and can be viewed as a signif-

icant extension of the work on active contours without edges,

by Chan and Vese [10] and the work on curve evolution imple-

mentation of the Mumford-Shah functional by Tsai et al. [28] to

diffusion tensor images. Our key contributions are: 1) the defi-

nition of a new affine invariant discriminant of tensors based on

information theory; 2) a theorem and its proof that allows for

the computation of the mean value of an SPD tensor field—re-

quired in the piecewise constant version of the region-based ac-

tive contour model—in closed form and facilitates the efficient

segmentation of the DTI; 3) Derivation of an analytic expres-

sion for the derivatives of the energy function in the piecewise

smooth region-based segmentation case; and 4) extension of the

popular region-based active contour model in level-set form to

handle matrix-valued images, e.g., DTI.

The remainder of this paper is organized as follows: in

Section II, the new definition of tensor distance is introduced

and its properties are discussed in detail. Then, in Section III-A,

the piecewise constant region-based active contour model

for DTI segmentation is discussed. We present the associ-

ated Euler-Lagrange equation, the curve evolution equation,

the level set formulation and the implementation details. In

Section III-B, we present the piecewise smooth region-based

active contour model for DTI segmentation. Section IV contains

experiments on application of our model to synthetic tensor

fields as well as real DTIs and Section V the conclusion.

II. A NEW TENSOR DISTANCE AND ITS PROPERTIES

We now present the definition and properties of our new “dis-

tance” measure between diffusion tensors.

A. Definitions

Given a diffusion tensor , the displacement of water

molecules starts from a given location at time is a random

variable with the following probability density:

(2)

where is the size of the square matrix . Note that the mean

of and the covariance matrix of is

[26]. It follows that a natural distance between diffusion tensors

can be derived from an information theoretical distance measure

between Gaussian distributions. The first choice could be the

Kullback-Leibler (KL) divergence given as

(3)

for a pair of probability density functions and .

However, KL divergence is not symmetric and the most fre-

quently used way to symmetrize it is the J-divergence given by

(4)

We propose a novel definition of diffusion tensor “distance”
as the square root of the J-divergence of the corresponding

Gaussian distributions, i.e.,

(5)

For , and given as in (2), it is known

that [34]

where is the matrix trace operator.

Thus, (5) has a very nice closed form given by

(6)

We use the quotation marks on the distance here because,

what we have defined in (6) is not a true distance since it violates

the triangle inequality. We could use the Rao’s distance [6] be-

tween the Gaussian distributions and to

define a true distance between the tensors and . However,
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Rao’s distance between tensors will pose a computational diffi-

culty for DTI segmentation in that it does not yield a closed form

expression for the tensor field mean value and this will cause

the computational cost to increase steeply. Moreover, there is a

close relationship between our tensor “distance” and the afore-

mentioned Rao’s distance between infinitesimally close tensors.

We will now proceed to derive this relationship. Following the

notation given in Lenglet et al. [17], let be a Riemannian

Manifold, where consists of a family of probability density

functions parameterized by is the Fisher or the in-

formation metric [4]. Now, for two nearby distributions ,

and on , the squared geodesic distance between

them can be approximated by

(7)

similarly we have

(8)

Using the Taylor expansion of the KL-divergence between

and as in [17], we have

(9)

Similarly

(10)

Thus we have

(11)

So, the J-divergence between two nearby distributions approxi-

mates half of the squared geodesic distance between them. This

holds true for the special case of Gaussian distributions and thus

our “distance” approximates the Rao’s distance between two

infinitesimally close tensors (up to a constant scaling factor)

and it is also computationally efficient for the purpose of DTI

segmentation.

B. Affine Invariant Property

When an affine transformation is applied to the coordinate

system on which the DTI is defined, the diffusion tensors will

also be transformed. For a transformation given by ,

the transformation of the displacement of a water molecule is

given by . Since the the distribution of is a Gaussian

with zero mean and covariance matrix , the transformed dis-

placement will have a Gaussian distribution with zero mean

and covariance matrix given by, . It follows that the

tensor field is transformed as: .

The tensor “distance” we defined earlier is invariant to affine

transformations, i.e., . The

diffusion tensors actually undergo a congruent transformation

however, this is simply an outcome of the affine transforma-

tion of the coordinate system on which they are defined. Thus,

the above invariance is still referred to as “affine” invariance

and its importance in DTI segmentation will be illustrated in

Section III-A. It is apparent that the tensor Euclidean distance

based on matrix Frobenius norm commonly used in published

work [2], [11], [12], [32] is not invariant under scaling as well

as affine transformations.

C. Mean Value of an SPD Tensor Field

We now develop a theorem that allows us to compute the

mean value of an symmetric positive definite (SPD) tensor field.

This is essential for the piece-wise constant region-based active

contour model used in the DTI segmentation algorithm, where

the constant is the mean value taken over the region.

Theorem 1: The mean value of an SPD tensor field can be

defined as

(12)

where is the set of all symmetric positive definite ma-

trices of size . This mean value can be computed analytically

as

(13)

where and .

Proof: Let , we have

For a small perturbation in the neighborhood

represented by , where is a small enough positive
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number, is symmetric matrix, we have

, thus

Thus at the critical point, we need

(14)

This is actually equivalent to and can be solved in

closed form [5] yielding the desired result in (13).

It is not hard to show that: 1) the inverse and the square root

of an SPD matrix are SPD matrices; 2) if and are two

SPD matrices, then is an SPD matrix. Since and

are both SPD matrices, we can show that the following hold:

a) and are SPD matrices; b) and

are SPD matrices; c) is an SPD matrix; and d)

is an SPD matrix. As is

also an SPD matrix, it is indeed a solution to the minimization

equation (12).

In general, and (13) cannot be simplified further,

therefore, one needs to resort to matrix diagonalization methods

for computation.

III. THE REGION-BASED DTI SEGMENTATION MODEL

Given a noisy DTI on a domain , our model for

DTI segmentation is posed as a minimization of the following

variational principle based on the Mumford-Shah functional

[23]

(15)

where the curve is the boundary between segmented regions

and is a piecewise smooth approximation of with disconti-

nuities only along . The first term measures the difference be-

tween the approximation and the original DTI , the second

term measures the lack of smoothness of the field using the

Dirichlet integral [14] and the third term is the arclength of

the curve . and are control parameters that can be used to

balance the importance of various terms in the functional mini-

mization to yield the desired result.

We now proceed to give more details on the second term in the

above variational principle. Let be the Riemannian manifold

of SPD matrices of size equipped with a metric induced

by the Rao’s distance for SPD matrices, the dimension of is

—the total number of independent components in

SPD matrices. An SPD tensor field, e.g., a slice of a

DTI, is a map from to , thus is a point on and

can have a small neighborhood of on with local coordinate

. We can now define

(16)

where is the dimension of the domain . Equation (15) can be

easily modified to accommodate segmentation in where the

curve is replaced with a surface and the implementation in

three dimensions is similar to that in two dimensions.

A. The Piecewise Constant DTI Segmentation Model

As in [23], (15) can be simplified to separate piecewise con-

stant regions when goes to zero. In particular, in the same

spirit as the active contour without edges by Chan and Vese [10]

for scalar value image segmentation, we consider the following

binary segmentation model for DTI

(17)

where is the mean value of DTI in the region enclosed by

the curve and is the mean value of the DTI for the rest of

the domain denoted by .

We incorporate our new tensor “distance” in the above active

contour model to achieve DTI segmentation. It can be proved

that our model yields affine invariant segmentation when .

When is small enough, this model will still exhibit close to

affine invariant segmentation. Using a tensor distance based on

the Frobenius norm in (17), however, will not yield an affine

invariant segmentation. A detailed proof is beyond the scope of

this paper, we will instead present an experiment (subsequently)

to support this statement. For a discussion on affine invariant

segmentation of scalar-valued images, see [7].

1) Curve Evolution Equation: In the variational principle

(17), and are just variables and they can be solved di-

rectly as

The Euler Lagrange equation for the variational principle (17)

with fixed and is

where and is the curvature and the outward normal of the

curve , respectively. The above equations can be solved iter-

atively. At each iteration, and can be computed analyti-

cally according to (13), and we have the following equation for

updating the segmentation boundary :

(18)
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2) Level Set Formulation: Let be the signed distance func-

tion of and choose it to be negative inside and positive

outside , then the curve evolution equation (18) can be refor-

mulated within a levelset framework as

(19)

3) Implementation and Numerical Methods: We developed

a modified version of the Chan and Vese [10] implementation of

the piecewise constant region-based scalar image segmentation

model. As in [10], we solve the system iteratively where each

iteration involves a two stage implementation. In the first stage,

the embedding function is evolved according to (19) for a fixed

and . In the second stage, the mean values and are

computed for a fixed . Summarizing, we have the procedure

given in Algorithm 1.

The key to the computation of and is the com-

putation of the square root of an SPD matrix. We use the

matrix diagonalization to achieve this. A real symmetric ma-

trix can be diagonalized yielding , where

is an orthogonal matrix and

is a diagonal matrix. Then the polynomial form of is

, where . Note that

in (13), , instead it has to

be computed as in Algorith 2.

Equation (19) can be solved using a simple explicit Euler

scheme. We can assume the spatial grid size to be 1, then using

finite differences on the partial derivatives leads to

In this case, we have the following update equation at iteration

:

(20)

where the curvature of can be computed as

The time complexity to update the signed distance function

according to (20) on the whole domain is , which

leads to poor performance when the the domain is large. How-

ever, the efficiency can be dramatically improved by using the

narrow band method [1], [21] around the zero level set as we

are only interested in the evolving zero level set. In addition,

has to remain as a signed distance function and this can be

done by reinitializing within a narrow band of the zero level

set [27]. Finally, one can apply other numerical methods like

the multi-grid scheme [28] to boost the speed. The solution is

achieved when the change of the signed distance function in the

narrow band is below certain threshold. Our current algorithm

with explicit Euler scheme in conjunction with the narrow band

method yields segmentation results within 3–5 s for the two-di-

mensional (2-D) synthetic data examples and within 2–10 min

for the three-dimensional (3-D) real DTI examples on a 1-GHz

Pentium-3 CPU, which is reasonably fast considering the huge

amount of tensor field data processed.

B. The Piecewise Smooth DTI Segmentation Model

For certain regions in the DTI data sets, the piecewise con-

stant assumption does not hold. In such cases, one has to employ

the full power of the piecewise smooth model (15). In particular,

we design a two-stage scheme following the curve evolution im-

plementation of the Mumford-Shah functional proposed by Tsai

et al. [28]. We start with a smoothing stage by fixing the curve

and smooth within each disconnected regions while preserving

the discontinuity across the curve that separate these regions.

Then we freeze the piecewise smooth DTI computed previously

and allow the curve to move in accordance with the governing

evolution equation described in the following.

1) Piecewise Smooth DTI Approximation: When the curve

is not allowed to evolve, (15) is reduced to the following

energy functional:

(21)

As the Rao’s distance between tensors at two nearby

locations is given by

Equation (16) leads to

(22)

The tensor “distance” we defined approximates Rao’s dis-

tance (up to a constant factor) between infinitesimally close ten-

sors and is computationally very attractive, hence, we use it in-
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stead of the Rao’s distance in the above equation. We can as-

sume and discretize equation (21) as

(23)

where is a collection of neighboring pixels that will

not cut across the boundary.

We now have a function whose variables are all the indepen-

dent components of the discretized DTI and we can therefore

compute the gradient of this function with respect to the dis-

crete DTI. Though this can be done directly using simple mul-

tivariate calculus by treating all the independent components of

the DTI as components of a huge vector, the form of the gradient

is tedious and is difficult to understand. In order to get a com-

pact formulation, we resort to the derivative of a matrix function

defined as , where

(24)

In (24), matrix has value 1 at location and 0 elsewhere.

Given a perturbation on , the variation of can

be computed as follows:

(25)

where uses a 4-neighborhood system in 2-D and

8-neighborhood system in 3-D, and

Let , we have from the above (25)

then from (24), we have the gradient of as

(26)

So, a necessary condition for the minimizer of the discrete

variational principle (23) is given by

(27)

Equation (27) is difficult to solve directly, since and

depend on . Currently, we use the gradient descent

method based on (26) to compute the piecewise smooth approx-

imation numerically.

2) Curve Evolution Equation and Level Set Formulation:

Once a piecewise smoothed DTI is computed from previous

step, we fix the the DTI and let the curve evolve to minimize

the following energy functional:

(28)

The corresponding curve evolution equation for the above en-

ergy functional is given by

(29)

Again to facilitate computation, we have

(30)

The level set form of (30) is given by

(31)

where is the signed distance function of and the data de-

pendent speed is given by

3) Implementation and Numerical Methods: Similar to the

Algorithm 1 and also as in Tsai et al. [28], we have the two-stage

implementation as in Algorithm 3. The major difference here

lies in the discontinuity preserving smoothing. Currently, we

use gradient descent (due to its simplicity) with adaptive step

size directly based on (26) to solve and . As we have

a simple analytical form of the gradient, it is plausible to apply

more sophisticated and efficient numerical techniques like the
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Fig. 1. Synthetic tensor fields with two regions. (a) Two homogeneous regions
differ only in the orientations, (b) two homogeneous regions differ only in scale,
(c) is (a) with additive noise, and (d) is (b) with additive noise.

implicit Euler with preconditioned conjugate gradient and this

will be the focus of our future research.

IV. EXPERIMENTAL RESULTS

In this section, we present application of our DTI segmenta-

tion algorithm to several datasets. The first one is the applica-

tion to 2-D synthetic data sets, the second one depicts the affine

invariant segmentation using our model, the third one is appli-

cation to single slices of real DTIs estimated from DWIs and the

last one is the application to 3-D real DTIs. In the experiments

below, we use the piecewise constant model in (17) unless spec-

ified otherwise.

A. Synthetic Tensor Field Segmentation

The experiments with synthetic datasets are first used to

demonstrate that full tensor information must be used in

achieving quality segmentation for tensor fields. For this pur-

pose, we create two synthetic tensor fields on a 128 128

lattice, each is a SPD matrix valued image and has two

homogeneous regions of different values. In the first tensor

field, the two regions differ only in the orientations of the tensor

field while the two regions differ only in scale in the second

tensor field.

These two datasets are visualized as ellipses as shown in

Fig. 1(a) and (b), respectively. Each ellipse is constructed by

using eigenvectors of the corresponding tensor as axes, and then

Fig. 2. Segmentation of synthetic tensor fields. Top to bottom: Segmentations
of Fig. 1(a)–(d), respectively. Left to right are the initial, intermediate, and final
steps of the segmentation procedure.

scaled by the corresponding eigenvalues. As the two regions in

the first tensor field have same scalar anisotropic properties of

tensors, they cannot be separated using the method given in [35].

Similarly, the second tensor field cannot be segmented using

only the dominant eigenvectors of the tensors. However, our

proposed model can yield high quality segmentation results with

an arbitrary initialization for both cases as shown in Fig. 2(a)–(f)

where the evolving boundary is shown as black curves. It is evi-

dent that one has to use the full information contained in tensors

for segmentation purpose as opposed to using either scalar maps

or eigen vectors computed from the tensors. In addition, since

our model is a region-based segmentation method, it is more

resistant to noise than the gradient-based snakes. This follows

from the well known fact that gradient-based snakes use local

gradient information—which can be very noise sensitive—in

segmenting the desired shapes. Fig. 2 third row and last row de-

pict the segmentation process for synthetic noisy tensor fields

shown in Fig. 1(c) and (d), and the results are as expected. In

order to generate noisy tensor fields, we add Gaussian noise to

the tensors at each location , i.e., the noisy tensor

field is given by

where s are independent Gaussian noises. As we need the

noisy tensor field to be an SPD tensor field, we enforce this

by setting and regenerating the tensor if it is not
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Fig. 3. Comparison of tensor field segmentation. Top to bottom: Original
tensor field, result using tensor Euclidean distance and result using our new
tensor “distance.”

positive definite. This method of generation of the noisy tensor

field is realistic as discussed in Pajevic et al. [24].

B. Affine Invariant Segmentation

When the curve smoothing term in the piecewise constant

Mumford-Shah model using our tensor “distance” is zero, we

have an affine invariant segmentation model. Using tensor

distance based on Frobenius norm, however, does not have

such a nice property. We now demonstrate an example in Fig. 3

to support this statement. Fig. 3(a) shows a tensor field of

size 128 128, it contains two regions where the region on

the left has vertical orientation while the one on the right

has a horizontal orientation and there is a smooth transition

between these two regions. This is an example where there

is no “edge” between two regions and Mumford-Shah based

segmentation models are particularly effective in such cases.

Though there is no agreement on what the groundtruth is

here, we could still assess the performance of segmentation

models. This is done by checking whether a model can yield

affine invariant segmentation. Let be the segmentation of the

original data, is the transformed segmentation and

be the segmentation of the transformed data. A model is affine

invariant if , when the original data undergoes an

affine transformation.

Fig. 3(b) and (c) shows the transformed tensor fields obtained

by applying two distinct affine transformations to the tensor field

in Fig. 3(a). The segmentation results using a model based on

tensor Euclidean (Frobenius norm based) distance in (17) are

shown in Fig. 3(d)–(f). Fig. 3(d) shows the segmentation result

of the original tensor field in (a) where the line in black separates

the two regions. Fig. 3(e) shows the resulting boundary from

segmenting the transformed tensor field in (b) in gray while the

line in black is the transformed result from Fig. 3(d). Fig. 3(f) is

Fig. 4. A slice of the DTI of a normal rat spinal cord. Top row: viewed channel
by channel as gray scale images. Bottom row: viewed using ellipsoids.

similar to Fig. 3(e) except that the transformation is a different

one. We can see there is a big difference between the black line

and the gray line in both Fig. 3(e) and Fig. 3(f) which shows

that using tensor distance based on matrix Frobenius norm in

piecewise constant Mumford-Shah is not affine invariant. On

the contrary, our proposed method is affine invariant as shown

in Fig. 3(g)–(i). The organization of Fig. 3(g)–(i) is the same as

that of Fig. 3(d)–(f). We can see that the gray line coincides with

the black line in (h) and (i) which means that the segmentation

is affine invariant. We use so that the curve smoothing

term is negligible in all the above results.

C. Single Slice DTI Segmentation

Fig. 4 shows a slice of the DTI estimated from the DWIs

of a normal rat spinal cord where the diffusion tensors in the

white matter have similar orientations. Each of the six inde-

pendent components of the individual symmetric positive defi-

nite diffusion tensors in the DTI is shown as a scalar image in

the top row. The arrangements of the components from left to

right are— , and . The off diag-

onal terms have been greatly enhanced by brightness and con-

trast factors for better visualization. An ellipsoid visualization

of same slice as the top row is shown in the bottom row in Fig. 4.

Each ellipsoid’s axes correspond to the eigenvector directions of

the 3 3 diffusion tensor and are scaled by the corresponding

eigenvalues. For example, diffusion tensors in free water region

are shown as large round ellipsoids (almost spherical). Fig. 5 de-

picts the segmentation process of the gray and white matter in a

normal rat spinal cord with the evolving segmentation boundary

curve in black superimposed on the ellipsoid visualization of the

DTI.
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Fig. 5. Segmentation of the slice of DTI shown in Fig. 4 (a)–(d) are initial,
intermediate, and final steps in separating the gray and white matter inside the
rat spinal cord.

Fig. 6. A slice of the DTI of a normal rat brain. Top row: viewed channel by
channel as gray scale images. Bottom row: viewed using ellipsoids.

Similarly, Fig. 6 shows a slice of DTI of a normal rat brain

and Fig. 7 demonstrates the segmentation of the corpus cal-

losum using the piecewise constant DTI segmentation model.

Though the majority of the corpus callosum is captured in the

final step, the horns of the corpus callosum are not captured well.

This problem is readily remedied by further applying the piece-

wise smooth DTI segmentation model [see (15)]. Starting from

Fig. 7. Segmentation of the corpus callosum from a slice of DTI shown in
Fig. 6 (a)–(d) are initial, intermediate, and final steps of the segmentation
procedure.

Fig. 8. Segmentation of corpus callosum from a the slice of the DTI in Fig. 6
using piecewise smooth model. (a) Initial and (b) final steps of the segmentation
procedure.

the segmentation result of the piecewise constant model, piece-

wise smooth model achieved a significant refinement as shown

in Fig. 8.

D. DTI Segmentation in 3-D

Now we demonstrate segmentation results for two 3-D

DTI data sets. Fig. 9 depicts the results of applying the seg-

mentation algorithm to a normal rat spinal cord DTI of size

108 108 10. Fig. 9(a)–(d) clearly depicts the surface evo-

lution in 3-D and Fig. 9(e)–(h) depicts the intersection of the

propagating surface in (a)–(d) with a slice of the compo-

nent of the DTI. The separation of the gray and the white matter

(where diffusion tensors have similar orientations) inside the

normal rat spinal cord is achieved with ease.

Similarly, Fig. 10(a)–(h) depicts the segmentation proce-

dure of the corpus callosum in a normal rat brain DTI of size

114 108 12. The effectiveness of our algorithm is again

evident, since the dominant part of the corpus callosum is well

separated from the rest of the volume. Note that in all the real

data experiments, we exclude the free water regions (using
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Fig. 9. Segmentation of the 3-D DTI of a normal rat spinal cord. (a)–(d) Initial,
intermediate and final steps in separating the gray and white matter inside the rat
spinal cord. (e)–(h) A 2-D slice of the corresponding evolving surface in (a)–(d)
superimposed on the D component.

Fig. 10. Segmentation of the corpus callosum from the 3-D DTI of a normal
rat brain. (a)–(d): initial, intermediate and final steps of the segmentation
procedure. (e)–(h): a 2-D slice of the corresponding evolving 3-D surface in
(a)–(d) superimposed on the D component.

simple thresholding on the apparent diffusion coefficient values

and removing small disconnected regions) which are not of

interest in the biological context.

V. CONCLUSION

In this paper, we presented a novel DTI segmentation method

by incorporating an information theory-based tensor discrimi-

nant into the region based active contour models [10], [23], [28].

The particular tensor “distance” we employed naturally follows

from the physical phenomena of diffusion interpreted using con-

cepts of information theory. In addition, it has a simple form that

makes our DTI segmentation model in both the piecewise con-

stant and the piecewise smooth case computationally efficient.

Specifically, we provided a new theorem that allows for the com-

putation of the mean of an SPD tensor field in closed form and

also an analytical form of gradient for piecewise smooth tensor

field approximation. Moreover, our tensor “distance” is affine

invariant and can lead to affine invariant tensor field segmen-

tation, a property that the tensor Euclidean distance based on

matrix Frobenius norm—prevalent in current literature—does

not possess.

We applied our segmentation model to real as well as syn-

thetic data sets yielding promising results. There maybe situa-

tions where our segmentation model may be challenged and we

envision the use of shape priors in such situations to assist our

DTI segmentation model to achieve the desired results.
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