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Abstract—The security of public key validation protocols for web-based

applications has recently attracted attention because of weaknesses in

the certificate authority model, and consequent attacks.

Recent proposals using public logs have succeeded in making

certificate management more transparent and verifiable. However, those

proposals involve a fixed set of authorities. This means an oligopoly is

created. Another problem with current log-based system is their heavy

reliance on trusted parties that monitor the logs.

We propose a distributed transparent key infrastructure (DTKI),

which greatly reduces the oligopoly of service providers and allows

verification of the behaviour of trusted parties. In addition, this paper

formalises the public log data structure and provides a formal analysis

of the security that DTKI guarantees.

Index Terms—PKI, SSL, TLS, key distribution, certificate, transparency,

trust, formal verification.

1 INTRODUCTION

The security of web-based applications such as e-commerce
and web-mail depends on the ability of a user’s browser to
obtain authentic copies of the public keys for the application
website. For example, suppose a user wishes to log in
to her bank account through her web browser. The web
session will be secured by the public key of the bank. If
the user’s web browser accepts an inauthentic public key
for the bank, then the traffic (including log-in credentials)
can be intercepted and manipulated by an attacker.

The authenticity of keys is assured at present by certifi-
cate authorities (CAs). In the given example, the browser
is presented with a public key certificate for the bank,
which is intended to be unforgeable evidence that the given
public key is the correct one for the bank. The certificate
is digitally signed by a CA. The user’s browser is pre-
configured to accept certificates from certain known CAs. A
typical installation of Firefox has about 100 root certificates
in its database.

Unfortunately, numerous problems with the current CA
model have been identified. Firstly, CAs must be assumed
to be trustworthy. If a CA is dishonest or compromised, it
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may issue certificates asserting the authenticity of fake keys;
those keys could be created by an attacker or by the CA
itself. Secondly, the assumption of honesty does not scale
up very well. As already mentioned, a browser typically
has hundreds of CAs registered in it, and the user cannot be
expected to have evaluated the trustworthiness and security
of all of them. This fact has been exploited by attackers [1],
[2], [3], [4], [5], [6]. In 2011, two CAs were compromised:
Comodo [7] and DigiNotar [8]. In both cases, certificates for
high-profile sites were illegitimately obtained, and in the
second case, reportedly used in a man in the middle (MITM)
attack [9].

Proposed solutions

Several interesting solutions have been proposed to address
these problems. For a comprehensive survey, see [10].

Key pinning mitigates the problem of untrustworthy
CAs, by defining in the client browser the parameters con-
cerning the set of CAs that are considered entitled to certify
the key for a given domain [11], [12]. However, scalability is
a challenge for key pinning.

Crowd-sourcing techniques have been proposed in order
to detect untrustworthy CAs, by enabling a browser to
obtain warnings if the received certificates are different from
those that other people are being offered [13], [14], [15],
[16], [17], [18], [19], [20]. Crowd-sourcing techniques have
solved some CA-based problems. However, the technique
cannot distinguish between attacks and authentic certificate
updates, and may also suffer from an initial unavailability
period.

Solutions for revocation management of certificates have
also been proposed; they mostly involve periodically push-
ing revocation lists to browsers, in order to remove the
need for on-the-fly revocation checking [21], [22]. However,
these solutions create a window during which the browser’s
revocation lists are out of date until the next push.

More recently, solutions involving public append-only
logs have been proposed. We consider the leading proposals
here.
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Public log-based systems: Sovereign Keys (SK) [23]
aims to get rid of browser certificate warnings, by allowing
domain owners to establish a long term (“sovereign”) key
and by providing a mechanism by which a browser can
hard-fail if it doesn’t succeed in establishing security via that
key. The sovereign key is used to cross-sign operational TLS
[24], [25] keys, and it is stored in an append-only log on a
“time-line server”, which is abundantly mirrored. However,
in SK, internet users and domain owners have to trust
mirrors of time-line servers, as SK does not enable mirrors
to provide efficient verifiable proofs that the received certifi-
cate is indeed included in the append-only log.

Certificate transparency (CT) [26] is a technique proposed
by Google that aims to efficiently detect fake public key
certificates issued by corrupted certificate authorities, by
making certificate issuance transparent. They improved the
idea of SK by using append-only Merkle tree to organise the
append-only log. This enables the log maintainer to provide
two types of verifiable cryptographic proofs: (a) a proof that
the log contains a given certificate, and (b) a proof that a
snapshot of the log is an extension of another snapshot (i.e.,
only appends have taken place between the two snapshots).
The time and size for proof generation and verification are
logarithmic in the number of certificates recorded in the log.
Domain owners can obtain the proof that their certificates
are recorded in the log, and provide the proof together
with the certificate to their clients, so the clients can get a
guarantee that the received certificate is recorded in the log.

Accountable key infrastructure (AKI) [27] also uses public
logs to make certificate management more transparent. By
using a data structure that is based on lexicographic order-
ing rather than chronological ordering, they solve the prob-
lem of key revocations in the log. In addition, AKI uses the
“checks-and-balances” idea that allows parties to monitor
each other’s misbehaviour. So AKI limits the requirement to
trust any party. Moreover, AKI prevents attacks that use fake
certificates rather than merely detecting such attacks (as in
CT). However, as a result, AKI needs a strong assumption —
namely, CAs, public log maintainers, and validators do not
collude together — and heavily relies on third parties called
validators to ensure that the log is maintained without
improper modifications.

Certificate issuance and revocation transparency (CIRT) [28]
is a proposal for managing certificates for end-to-end en-
crypted email. It proposes an idea to address the revocation
problem left open by CT, and the trusted party problem
of AKI. It collects ideas from both CT and AKI to pro-
vide transparent key revocation, and reduces reliance on
trusted parties by designing the monitoring role so that it
can be distributed among user browsers. However, CIRT
can only detect attacks that use fake certificates; it cannot
prevent them. In addition, since CIRT was proposed for
email applications, it does not support the multiplicity of
log maintainers that would be required for web certificates.

Attack Resilient Public-Key Infrastructure (ARPKI) [29] is
an improvement on AKI. In ARPKI, a client can designate n
service providers (e.g. CAs and log maintainers), and only
needs to contact one CA to register her certificate. Each of
the designated service providers will monitor the behaviour

of other designated service providers. As a result, ARPKI
prevents attacks even when n − 1 service providers are
colluding together, whereas in AKI, an adversary who suc-
cessfully compromises two out of three designated service
providers can successfully launch attacks [29]. In addition,
the security property of ARPKI is proved by using a protocol
verification tool called Tamarin prover [30]. The weakness
of ARPKI is that all n designated service providers have to
be involved in all the processes (i.e. certificate registration,
confirmation, and update), which would cause considerable
extra latencies and the delay of client connections.

In public log-based systems, efforts have been made to
integrate revocation management with the certificate auditing.
CT introduced revocation transparency (RT) [31] to deal
with certificate revocation management; and in AKI and
ARPKI, the public log only stores currently valid certificates
(revoked certificates are purged from the log). However,
the revocation checking processes in both RT and A(RP)KI
are linear in the number of issued certificates making it
inefficient. CIRT allows efficient proofs of non-revocation,
but it does not scale to multiple logs which are required for
web certificates.

Remaining problems

A foundational issue is the problem of oligopoly. The present-
day certificate authority model requires that the set of global
certificate authorities is fixed and known to every browser,
which implies an oligopoly. Currently, the majority of CAs
in browsers are organisations based in the USA, and it
is hard to become a browser-accepted CA because of the
strong trust assumption that it implies. This means that
a Russian bank operating in Russia and serving Russian
citizens living in Russia has to use an American CA for
their public key. This cannot be considered satisfactory in
the presence of mutual distrust between nations regarding
cybersecurity and citizen surveillance, and also trade sanc-
tions which may prevent the USA offering services (such as
CA services) to certain other countries.

None of the previously discussed public log-based sys-
tems address this issue. In each of those solutions, the set
of log maintainers (and where applicable, time-line servers,
validators, etc.) is assumed to be known by the browsers,
and this puts a high threshold on the requirements to
become a log maintainer (or validator, etc.). Moreover,
none of them solve the problem that a multiplicity of log
maintainers reduces the usefulness of transparency, since
a domain owner has to check each log maintainer to see
if it has mis-issued certificates. This can’t work if there is
a large number of log maintainers operating in different
geographical regions, each one of which has to be checked
by every domain owner.

A second issue is the requirement of trusted parties.
Currently, all existing proposals have to rely on some sort
of trusted parties or at least assume that not all parties
are colluding together. However, a strong adversary (e.g.
a government agency) might be able to control all service
providers (used by a given client) in a system.

A third foundational issue of a different nature is that
of analysis and correctness. SK, CT, AKI and CIRT are
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large and complex protocols involving sophisticated data
structures, but none of them have been subjected to rigorous
analysis. It is well-known that security protocols are notori-
ously difficult to get right, and the only way to avoid this
is with systematic verification. For example, attacks on AKI
and CIRT have been identified in [29] and in the appendix
of our technical report [32], respectively. The flaws may be
easily fixed, but only once they have been identified. It is
therefore imperative to verify this kind of complex protocol.
ARPKI is the first formally verified log-based PKI system.
However, they used several abstractions during modelling
in the Tamarin prover. For example, they represent the
underlying log structure (a Merkle tree) as a list. However,
in systems like CIRT and this paper with more complex data
structures, it is important to have a formalised data structure
and its properties to prove the security claim. The formali-
sation of complex data structures and their properties in the
log-based PKI systems is a remaining problem.

The last problem is the management of certificate re-
vocation. As explained previously, existing solutions for
managing certificate revocation (e.g. CRL, OCSP, RT) are still
unsatisfactory.

This paper

We propose a new public log-based architecture for man-
aging web certificates, called Distributed Transparent Key
Infrastructure (DTKI), with the following contributions.

• We identify anti-oligopoly as an important property
for web certificate management which has hitherto
not received attention.

• Compared to its predecessors, DTKI is the first sys-
tem to have all desired features — it minimises the
presence of oligopoly, prevents attacks that use fake
certificates, provides a way to manage certificate
revocation, verifies output from trusted parties, and
is secure even if all service providers (e.g. CAs and
log maintainers) collude together (see Section 5 for
our security statement). A comparison of the prop-
erties of different log-based systems can be found in
Section 6.

• We provide formal machine-checked verification of
its core security property using the Tamarin prover.
In addition, we formalise the data structures needed
for transparent public logs, and provide rigorous
proofs of their properties.

2 OVERVIEW OF DTKI

Distributed Transparent Key Infrastructure (DTKI) is an
infrastructure for managing keys and certificates on the
web in a way which is transparent, minimises oligopoly, and
allows verification of the behaviour of trusted parties. In
DTKI, we mainly have the following agents:

Certificate log maintainers (CLM): A CLM maintains a
database of all valid and invalid (e.g. expired or revoked)
certificates for a particular set of domains for which it is
responsible. It commits to digests of its log, and provides
efficient proofs of presence and absence of certificates in the
log. CLMs behave transparently and their actions can be
verified.

A mapping log maintainer (MLM): To minimise oligopoly,
DTKI does not fix the set of certificate logs. The MLM main-
tains association between certificate logs and the domains
they are responsible for. It also commits to digests of the
log, and provides efficient proof of current association, and
behaves transparently. Clients of the MLM are not required
to blindly trust the MLM, because they can efficiently verify
the obtained associations.

The MLM has a strategic role of determining the au-
thorised CLMs, and the mapping log to be maintained
rarely changes; therefore it can be easily governed by an
international panel. In practice, ICANN is a possible party
to be given the responsibility to run the MLM.

Users and their browsers: They query the MLM, and ob-
tain and verify the proofs about the mapping of top-level
domains (TLDs) to CLMs. They query CLMs and obtain and
verify proofs about certificates.

Mirrors: Mirrors are servers that maintain a full copy
of the mapping log and certificate logs respectively down-
loaded from the MLM and corresponding CLMs, and the
corresponding digest of the log signed by the log maintainer.
In other words, mirrors are distributed copies of logs. Any-
one (e.g. ISPs, CLMs, CAs, domain owners) can be a mirror.
Unlike in SK, mirrors are not required to be trusted in DTKI,
because they give a proof for every association that they
send to their clients. The proof is associated to the digest of
the MLM.

Certificate authorities (CA): They check the identity of do-
main owners, and create certificates for the domain owners’
keys. However, in contrast with today’s CAs, the ability of
CAs in DTKI is limited since the issuance of a certificate
from a CA is not enough to convince web browsers to accept
the certificate (proof of presence in the relevant CLM is also
needed).

In DTKI, each domain owner has two types of certificate,
namely TLS certificate and master certificate. Domain own-
ers can have different TLS certificates but can only have one
master certificate. A TLS certificate contains the public key
of a domain server for a TLS connection, whereas the master
certificate contains a public key, called “master verification
key”. The corresponding secret key of the master certificate
is called “master signing key”. Similar to the “sovereign
key” in SK [23], the master signing key is only used to
validate a TLS certificate (of the same subject) by issuing
a signature on it. This limits the ability of certificate au-
thorities since without having a valid signature (issued by
using the master signing key), the TLS certificate will not be
accepted. Hence, the TLS secret key is the one for daily use;
and the master signing key is rarely used. It will only be
used for validating a new certificate, or revoking an existing
certificate. We assume that domain owners can take care of
their master signing key, as a master signing key can be kept
offline, and is rarely used.

After a domain owner obtains a master certificate or a
TLS certificate from a CA, he needs to make a registration
request to the corresponding CLM to publish the certificate
into the log. To do so, the domain owner signs the certificate
using the master signing key, and submits the signed certifi-
cate to a CLM determined (typically based on the top-level
domain) by the MLM. The CLM checks the signature, and
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accepts the certificate by adding it to the certificate log if
the signature is valid. The process of revoking a certificate
is handled similarly to the process of registering a certificate
in the log.

When establishing a secure connection with a domain
server, the browser receives a corresponding certificate and
proofs from a mirror of the MLM and a CLM, and verifies
the certificate, the proof that the certificate is valid and
recorded in the certificate log, and proof that this certificate
log is authorised to manage certificates for the domain.
Users and their browsers should only accept a certificate
if the certificate is issued by a CA, and validated by the
domain owner, and current in the certificate log.

Fake master certificates or TLS certificates can be easily
detected by the domain owner, because the attacker will
have had to insert such fake certificates into the log (in
order to be accepted by browsers), and is thus visible to
the domain owner.

Rather than relying solely on trusted monitors to verify
the healthiness of logs and the relations between logs,
DTKI uses a crowdsourcing-like way to ensure the integrity
of the log and the relations between mapping log and a
certificate log, and between certificate logs. In particular, the
monitoring work in DTKI can be broken into independent
little pieces, and thus can be done by distributing the pieces
to users’ browsers. In this way, users’ browsers can perform
randomly-chosen pieces of the monitoring role in the back-
ground (e.g. once a day). Thus, web users can collectively
monitor the integrity of the logs. We envisage parameters in
browsers allowing users to control how that works.

To avoid the case that attackers create a “bubble” (i.e.
an isolated environment) around a victim, we share the
same assumption as other existing protocols (e.g. CT and
CIRT) – we assume that gossip protocols [33] are used to
disseminate digests of the log. So, users of logs can detect
if a log maintainer shows different versions of the log to
different sets of users. Since log maintainers sign and time-
stamp their digests, a log maintainer that issues inconsistent
digests can be held accountable.

3 THE PUBLIC LOG

DTKI uses append-only logs to record all requests processed
by the log maintainer, and allows log maintainers to effi-
ciently generate some proofs that can be efficiently verified.
These proofs mainly include that some data (e.g. a certificate
or a revocation request) has or has not been added to the log;
and that a log is extended from a previous version.

So, the log maintainer’s behaviour is transparent to the
public, and the public is not required to blindly trust log
maintainers. Public log data structures have been widely
studied [34], [35], [36], [37], [23], [26], [28]. To the best of our
knowledge, no single data structure can provide all proofs
required by DTKI. We adopt and extend the idea of CIRT
log structure [28] which makes use of two data structures to
provide all the kinds of proofs needed for DTKI.

This section presents the intuition of two abstract data
structures encapsulating the desired properties, then in-
troduces how to use the data structures to construct our
public logs in a concrete manner by extending the CIRT data
structure. The formalisation of our abstract data structures,

Function Output

Chronological Data Structure

digest given input a sequence S of data, it outputs
the digest of sequence S of data organised
by using chronological data structure

VerifPoPc given input (digest(S), d, p), it outputs a
boolean value indicating the verification
result of the proof p that some data d is
included in a set S

VerifPoEc given input ((dg′, N ′), (dg,N), p), it outputs
a boolean value indicating the verification
result of the proof p that a sequence of data
represented by its digest dg and size N is
extended from another sequence of data
represented by digest dg′ and size N ′

Ordered Data Structure

digestO given input a sequence S of data, it outputs
the digest of sequence S of data organised
by using ordered data structure

VerifPoPO

(resp.
VerifPoAbsO)

given input (digest
o
(S), d, p), it outputs a

boolean value indicating the verification
result of the proof p that some data d is
(resp. is not) included in a set S

VerifPoAddO
(resp.
VerifPoDO)

given input (d, dg, dg′, p), it outputs a
boolean value indicating the verification
result of the proof p that dg′ is the digest
obtained after adding data d into (resp.
deleting data d from) the sequence of data
represented by digest dg

VerifPoMO given input (d, d′, dg, dg′, p), it outputs a
boolean value indicating the verification
result of the proof p that dg′ is the digest
obtained after replacing d with d′ in the
sequence of data represented by dg

Table 1: Some functions supported by the data structures, of
size N . The full list of operations and functions supported
by the data structures, and the detailed properties of the
data structures, are formalised in our technical report.

log structures, and their properties, and our detailed im-
plementation, are presented in our technical report [32]. We
also present some examples of the data structures there.

3.1 Data structures

Our log makes use of two data structures, namely chrono-
logical data structure and ordered data structure, to provide
all the proofs required by DTKI. We use the notion of digest
to represent a unique set of data, such that the size of a
digest is a constant. For example, a digest could be the hash
value of a set of data.

A chronological data structure is an append-only data
structure, i.e. only the operation of adding some data is
allowed. With a chronological data structure, for a given
sequence S of data of size N and with digest dg, we have
d ∈ S for some data d, if and only if there exists a proof
p of size O(log(N)), called the proof of presence of d in S,
such that p can be efficiently verified by using VerifPoPc

(see Table 1); and for all sequence S′ with digest dg′ and
size N ′ < N , we have that S′ is a prefix of S, if and only
if there exists a proof p′ of size O(log(N)), called the proof
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of extension of S from S′, such that p′ can be efficiently
verified by using VerifPoEc (see Table 1).

In this way, to verify that some data is included in a
sequence of data stored in a chronological data structure
(of size N ), the verifier only needs to download the corre-
sponding digest, and the corresponding proof of presence
(with size O(log(N))). The verification of proof of extension
is similarly efficient. Possible implementations are append-
only Merkle tree [34] and append-only skip list, as proposed
in [26] and [36], respectively.

With the append-only property, the chronological data
structure enables one to prove that a version of the data
structure is an extension of a previous version. This is useful
for our public log since it enables users to verify the history
of a log maintainer’s behaviours.

Unfortunately, the chronological data structure does not
provide all desired features. For example, it is very ineffi-
cient to verify that some data (e.g. a revocation request) is
not in the chronological data structure (the cost is O(N),
where N is the size of the data structure). To provide
missing features, we need to use the ordered data structure.

An ordered data structure is a data structure allowing
one to insert, delete, and modify stored data. In addition,
with an ordered data structure, for a given sequence S of
data of size N and with digest dg, we have d ∈ S (resp.
d /∈ S) for some data d, if and only if there exists a proof p of
size O(log(N)), called the proof of presence (resp. absence)
of d in (resp. not in) S, such that p can be efficiently verified
by using VerifPoPO (resp. VerifPoAbsO) (see Table 1).

Possible implementations of ordered data structure are
Merkle tree which is organised as a binary search tree (as
proposed in [28]), and authenticated dictionaries [35].

With an ordered data structure, however, the size of
proof that the current version of the data is extended from a
previous version is O(N). As the chronological data struc-
ture and the ordered data structure have complementary
properties, we use the combination of them to organise our
log.

3.2 Mapping log

To minimise oligopoly, DTKI uses multiple certificate logs,
and does not fix the set of certificate logs and the mapping
between domains and certificate logs. A mapping log is used
to record associations between domain names and certificate
log maintainers, and can provide efficient proofs regarding
the current association. It would be rather inefficient to
explicitly associate each domain name to a certificate log,
due to the large number of domains. To efficiently manage
the association, we use a class of simple regular expressions
to present a group of domain names, and record the asso-
ciations between regular expressions and certificate logs in
the mapping log. For example, the mapping might include
(*\.org, Clog1) and ([a-h].*\.com, Clog1) to mean that certifi-
cate log maintainer Clog1 deals with domains ending .org
and domains starting with letters from a to h ending .com.
In our technical report [32], we have formally defined some
constraints on the regular expressions we use, the relations
between them, and how to use random verification to verify
that no overlap between regular expressions exists.

Intuitively, as presented in Figure 1, the mapping log
is organised by using a chronological data structure, and
stores received requests1 together with the request time, and
four digests of different ordered data structures representing
the status of the log. Each entry is of the form

h(req, t, dgs, dgbl, dgr, dgi)

In the formula, req is the request received by the mapping
log at time t; dgs2 stores information about CLMs (e.g.
the certificate of the CLM, and the current digest of the
certificate log clog); dgbl stores the identity of blacklisted
certificate log maintainers; dgr stores the mapping from a
regular expression to the identity of CLMs, and dgi stores
the mapping from the identity of CLMs to a set of regular
expressions.

In more detail, each entry of the mapping log contains
digests after processing the request req (received by the
mapping log maintainer at time t) on the digest stored in
the previous record. Each of the notations is explained as
follows:

• req can be add(rgx, id), del(rgx, id), new(cert),
mod(cert, signsk(cert

′), signsk′(n, dg, t)), bl(id), and
end, respectively corresponding to a request to add
a mapping (rgx, id) of regular expression rgx and
identity id of a clog, to delete a mapping (rgx, id),
to add a certificate cert of a new clog, to change the
certificate of a clog from cert to cert′, to blacklist id
of an existing clog, and to close the update request;
where sk and sk′ are signing keys associated to the
certificate cert and cert′, respectively; cert and cert′

share the same subject, and n and dg are the size
and the digest of the corresponding clog at time t,
respectively;

• dgs is the digest of an ordered data struc-
ture storing the identity information of the form
(cert, signsk(n, dg, t)) for the currently active certifi-
cate logs, where cert is the certificate for the signing
key sk of the certificate log, and n and dg are respec-
tively the size and digest of the certificate log at time
t. Data are ordered by the domain name in cert.

• dgbl is the digest of an ordered data structure storing
the domain names of blacklisted certificate logs. Data
are ordered by the stored domain names.

• dgr is the digest of an ordered data structure storing
elements of the form (rgx, id), which represents the
mapping from regular expression rgx to the identity
id of a clog, data are ordered by rgx;

• dgi is the digest of an ordered data structure storing
elements of the form (id, dgirgx), which represents
the mapping from identity id of a clog to a digest
dgirgx of ordered data structure storing a set of
regular expressions, data are ordered by id.

The requests are used for modifying mappings or the
existing set of certificate log maintainers. When a request

1. The request includes adding, removing, and modifying a certifi-
cate log and/or a mapping.

2. We simplified the description here: we should say the ordered data
structure represented by dgs stores the information, rather than the
digest dgs stores it. We will use this simplification through the paper.
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del(rgx, id) has been processed, the maintainer of certificate
log with identity id needs to remove all certificates whose
subject is an instance of regular expression rgx; when a
request add(rgx, id) has been processed, the maintainer
of certificate log with identity id needs to download all
certificates whose subject is an instance of rgx from the
previous authorised log maintainer, and adds them into his
log. These requests require certificate logs to synchronise
with the mapping log; see Section 3.4.

Figure 1: A figure representation of the format of each record
in the mapping log.

3.3 Certificate logs

The mapping log determines which certificate log is used
for a domain. The certificates for the domain are stored in
that certificate log.

A certificate log mainly stores certificates for domains
according to the mappings presented in the mapping log.
In particular, a certificate log is also organised by using a
chronological data structure, and each entry of the log is of
the form

h(req,N, dgrgx)

where req is the received request and is processed at the
time such that the mapping log is of size N ; dgrgx represents
an ordered data structure storing a set of mappings from
regular expressions to the information associated to the
corresponding domains, such that the domain name is an
instance of the regular expression. The stored information of
a domain includes the identity and the master certificate of
the domain, and two digests dga and dgrv each presents an
ordered data structure storing a set of active TLS certificates
and a set of expired or revoked TLS certificates, respectively.

Elements in a record (as shown in 2) of a certificate log
are detailed as follows.

• req can be reg(signsk(cert, t, ‘reg’)),
rev(signsk(cert, t, ‘rev’)), upadd(h(id), h), and
updel(h(id), h), corresponding to a request to
register and revoke a certificate cert at an agreed
time t such that (cert, t, ‘reg’) or is additionally
signed by the master key sk, and update the
certificate log by adding and by deleting certificates

of identity id according to the changes of mlog,
respectively. ‘reg’ and ‘rev’ are constant, and h is
some value and we will explain it later.

• N is the size of mlog at the time req is processed;
• dgrgx is the digest of an ordered data structure stor-

ing a set of elements of the form (rgx, dgid), repre-
sents the status of the certificate log after processing
the request req, and stores all the regular expressions
rgx that the certificate log is associated to. dgid is
the digest of an ordered data structure storing a set
of elements of the form (h(id), h(cert, dga, dgrv)). It
represents all domains associated to rgx. id is an
instance of rgx and is the subject of master certificate
cert. dga and dgrv are digests of two ordered data
structures each of which respectively stores a set of
active and revoked TLS certificates. In addition, data
in the structure represented by dgrgx and dgid are
ordered by rgx and h(id), respectively; data in the
structure represented by dga and dgrv are ordered
by the subject of TLS certificates.

Note that requests upadd(h(id), h) and updel(h(id), h)
are made according to the mapping log. Even though these
modifications are not requested by domain owners, it is
important to record them in the certificate log to ensure
the transparency of the log maintainer’s behaviour. Request
upadd(h(id), h) states that the certificate log maintainer is
authorised to manage certificates for the domain name id
from now on, and the current status of certificates for id
is represented by h, where h = h(cert, dga, dgrv) for some
certificate cert and some digest dga and dgrv representing
the active and revoked certificates of id. h is the value
obtained from the certificate log that is previously autho-
rised to manage certificates for domain id. Similarly, request
updel(h(id), h) indicates that the certificate log cannot man-
age certificates for domain id any more according to the
request in the mapping log.

Figure 2: A figure representation of the format of each record
in the certificate log.
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3.4 Synchronising the mapping log and certificate logs

The mapping log periodically (e.g. every day) publishes a
signature signsk(t, dg,N), called signed Mlog time-stamp, on a
time t indicating the publishing time, and the digest dg and
size N of the mapping log. Mirrors of the mapping log need
to download this signed data, and update their copy of the
mapping log when it is updated. A signed Mlog time-stamp
is only valid during the issue period (e.g. the day of issue).
Note that mirrors can provide the same set of proofs as the
mapping log maintainer, because the mirror has the copy
of the entire mapping log; but mirrors are not required to
be trusted, they do not need to sign anything, and a mirror
which changed the log by itself will not be able to convince
other users to accept it since the mirror cannot forge the
signed Mlog time-stamp.

When a mapping log maintainer needs to update the
mapping log, he requests all certificate log maintainers to
perform the required update, and expects to receive the
digest and size of all certificate logs once they are updated.
After the mapping log maintainer receives these confirma-
tions from all certificate log maintainers, he publishes the
series of update requests in the mapping log, and appends
an extra constant request end after them in the log to indicate
that the update is done.

Log maintainers only answer requests according to their
newly updated log if the mapping log maintainer has pub-
lished the update requests in the mapping log. If in the log
update period, some user sends requests to the mapping
log maintainer or certificate log maintainers, then they give
answers to the user according to their log before the update
started.

We say that the mapping log and certificate logs are syn-
chronised, if certificate logs have completed the log update
according to the request in the mapping log. Note that a
mis-behaving certificate log maintainer (e.g. one recorded
fake certificates in his log, or did not correctly update his
log according to the request of the mapping log) can be
terminated by the mapping log maintainer by putting the
certificate log maintainer’s identity into the blacklist, which
is organised as an ordered data structure represented by dgbl

(as presented in 3.2).

4 DISTRIBUTED TRANSPARENT KEY INFRASTRUC-

TURE

Distributed transparent key infrastructure (DTKI) contains
three main phases, namely certificate publication, certificate
verification, and log verification. In the certificate publi-
cation phase, domain owners can upload new certificates
and revoke existing certificates in the certificate log they
are assigned to; in the certificate verification phase, one can
verify the validity of a certificate; and in the log verification
phase, one can verify whether a log behaves correctly.

We present DTKI using the scenario that a TLS user Alice
wants to securely communicate with a domain owner Bob
who maintains the domain example.com.

4.1 Certificate insertion and revocation

To publish or revoke certificates in the certificate log, the
domain owner Bob needs to know which certificate log is

currently authorised to record certificates for his domain.
This can be done by communicating with a mirror of the
mapping log. We detail the protocol for requesting the
mapping for Bob’s domain.

4.1.1 Request mappings

Upon receiving the request, the mirror locates the certificate
of the authorised CLM, and generates the proofs that

a) the CLM is authorised for the domain; and
b) the certificate is the current valid certificate for the CLM.

Loosely speaking, proof a) is the proof that the mapping
from regular expression rgx to identity id is present in the
digest dgr (as presented in the mapping log structure), such
that example.com is an instance of rgx, and id is the identity
of the CLM; proof b) is the proof that the certificate with
subject id is present in dgs; additionally, a proof that both
dgs and dgr are present in the latest record of the mapping
log is needed. All proofs should be linked to the latest
digest signed by the MLM. If Bob has previously observed
a version of the mlog, then a proof that the current mlog is
an extension of the version that Bob observed will also be
provided.

Bob accepts the response if all proofs are valid. He then
stores the verified data in his cache for future connection
until the signed digest is expired.

In more detail, after a mirror receives a request from Bob,
the mirror obtains the data of the latest element of its copy of
the mapping log, denoted h = h(req, t, dgs, dgbl, dgr, dgi),
and generates the proof of its presence in the digest (denoted
dgmlog) of its log of size N . Then, it generates the proof of
presence of the element (cert, signsk(n, dg, t)) in the digest
dgs for some signsk(n, dg, t), proving that the certificate
log maintainer whose cert belongs to is still active. More-
over, it generates the proof of presence of some element
(rgx, id) in the digest dgr where id is the subject of cert
and example.com is an instance of the regular expression
rgx, proving that id is authorised to store the certificates
of example.com. The mirror then sends to Bob the hash
h, the signature signsk(n, dg, t), the regular expression rgx,
the three generated proofs of presence, and the latest signed
Mlog time-stamp containing the time tmlog , and digest dgmlog

and size Nmlog of the mapping log.
Bob first verifies the received signed Mlog time-stamp with

the public key of the mapping log maintainer embedded in
the browser, and verifies whether tMlog is valid or not. Then
Bob checks that example.com is an instance of rgx, and
verifies the three different proofs of presence. If all checks
hold, then Bob sends the signed Mlog time-stamp contain-
ing (t′Mlog, dg

′

mlog, N
′

mlog) that he stored during a previous
connection, and expects to receive a proof of extension of
(dg′mlog, N

′

mlog) into (dgmlog, Nmlog). If the received proof
of extension is valid, then Bob stores the current signed Mlog
time-stamp, and believes that the certificate log with identity
id, certificate cert, and size that should be no smaller than
n, is currently authorised for managing certificates for his
domain.

4.1.2 Insert and revoke certificates

The first time Bob wants to publish a certificate for his
domain, he needs to generate a pair of master signing key,
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denoted skm, and verification key. The latter is sent to a
certificate authority, which verifies Bob’s identity and issues
a master certificate certm for Bob. After Bob receives his
master certificate, he checks the correctness of the informa-
tion in the certificate. The TLS certificate can be obtained in
the same way.

To publish the master certificate, Bob signs the certifi-
cate together with the current time t by using the master
signing key skm, and sends it together with the request
AddReq to the authorised certificate log maintainer whose
signing key is denoted skclog . The certificate log maintainer
checks whether there exists a valid master certificate for
example.com; if there is one, then the log maintainer aborts
the conversation. Otherwise, the log maintainer verifies the
validity of time t and the signature.

If they are all valid, the log maintainer updates the log,
generates the proof of presence that the master certificate for
Bob is included in the log, and sends the signed proof and
the updated digest of the log back to Bob. If the signature
and the proof are valid, and the size of the log is no smaller
than what the mirror says, then Bob accepts and stores the
response as an evidence of successful certificate publication.
If Bob has previously observed a version of the clog, then
a proof that the current clog is an extension of the version
that Bob observed is also required.

Figure 3 presents the detailed process to publish
the master certificate certm. After a log maintainer re-
ceives and verifies the request from Bob, the log main-
tainer updates the log, generates the proof of pres-
ence of (h(id), h(certm, dga, dgrv)) in dgid, (rgx, dgid) in
dgrgx, and h(reg(signskm

(certm, t, ‘reg’)), Nmlog, dg
rgx) is

the last element in the data structure represented by
dgclog , where id is the subject of certm and an instance
of rgx; reg(signskm

(certm, t, ‘reg’)) is the register request
to adding certm into the certificate log with digest dgclog
at time t. The log maintainer then issues a signature on
(dgclog, N, h), where N is the size of the certificate log, and
h = h((rgx, dgid), dgrgx, P ), where P is the sequence of
the generated proofs, and sends the signature σ2 together
with (dgclog, N, rgx, dgid, dgrgx, dga, dgrv, P ) to Bob. If the
signature and the proof are valid, and N is no smaller
than the size n contained in the signed Mlog time-stamp that
Bob received from the mirror, then Bob stores the signed
(dgclog, N, h), sends the previous stored (dg′clog, N

′) to the
certificate log maintainer, and expects to receive a proof
of extension of (dg′clog, N

′) into (dgclog, N). If the received
proof of extension is valid, then Bob believes that he has
successfully published the new certificate.

Note that it is important to send (dg′clog, N
′) after receiv-

ing (dgclog, N), because otherwise the log maintainer could
learn the digest that Bob has, then give a pair (dg′′clog, N

′′) of
digest and size of the log such that N ′ < N ′′ < N . This may
open a window to attackers who wants to convince Bob to
use a certificate which was valid in dg′′clog but revoked in
dgclog .

In addition, if Bob has run the request mapping protocol
more than once, and has obtained a digest that is different
from his local copy of the corresponding certificate log, then
he should ask the CLM to prove that one of the digests is an
extension of the other.

The process of adding a TLS certificate is similar to the

process of adding a master certificate, but the log maintainer
needs to verify that the TLS certificate is signed by the valid
master signing key corresponding to the master certificate
in the log.

To revoke a (master or TLS) certificate, the domain owner
can perform a process similar to the process of adding a new
certificate. For a revocation request with signskm

(cert, t),
the log maintainer needs to check that signskm

(cert, t′) is
already in the log and t > t′. This ensures that the same
master key is used for the revocation.

4.2 Certificate verification

Figure 3: The protocol presenting how domain owner Bob
communicates with certificate log (clog) maintainer to pub-
lish a master certificate certm.

When Alice wants to securely communicate with
example.com, she sends the connection request to Bob, and
expects to receive a master certificate certm and a signed
TLS certificate signskm

(cert, t) from him. To verify the re-
ceived certificates, Alice checks whether the certificates are
expired. If both of them are still in the validity time period,
Alice requests (as described in 4.1.1) the corresponding map-
ping from a mirror to find out the authorised certificate log
for example.com, and communicates with the (mirror of)
authorised certificate log maintainer to verify the received
certificate.

Note that this verification requests extra communication
round trips, but it gives a higher security guarantee. An
alternative way is that Bob provides both certificates and
proofs, and Alice verifies the received proofs directly.

Figure 4 presents the detailed process of verifying a
certificate. After Alice learns the identity of the authorised
certificate log, she sends the verification request V erifReq
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with her local time tA and the received certificate to the
certificate log maintainer. The time tA is used to prevent
replay attacks, and will later be used for accountability.
The certificate log maintainer checks whether tA is in
an acceptable time range (e.g. tA is in the same day as
his local time). If it is, then he locates the corresponding
(rgx, dgid) in dgrgx in the latest record of his log such
that example.com is an instance of regular expression
rgx, locates (h(id), h(certm, dga, dgrv)) in dgid and cert
in dga, then generates the proof of presence of cert in
dga, (h(id), h(certm, dga, dgrv)) in dgid, (rgx, dgid) in dgrgx,
and h(req,Nmlog, dg

rgx) is the latest record in the digest
dgclog of the log with size N . Then, the certificate log
maintainer signs (dgclog, N, tA, h), where h = h(m) such
that m = (dga, dgrv, rgx, dgid, req,Nmlog, dg

rgx, P ), and P
is the set of proofs, and sends (dgclog, N, σ) to Alice.

Alice should verify that Nmlog is the same as her local
copy of the size of mapping log. If the received Nmlog is
greater than the copy, then it means that the mapping log
is changed (it rarely happens) and Alice should run the
request mapping protocol again. If Nmlog is smaller, then
it means the CLM has misbehaved. Alice then verifies the
signature and proofs, and sends the previously stored dg′clog
with the size N ′ to the log maintainer, and expects to receive
the proof of extension of (dg′clog, N

′) into (dgclog, N). If they
are all valid, then Alice replaces the corresponding cache by
the signed (dgclog, N, tA, h) and believes that the certificate
is an authentic one.

In order to preserve privacy of Alice’s browsing history,
instead of asking Alice to query all proofs from the log
maintainer, Alice can send the request to Bob who will
redirect the request to the log maintainer, and redirect the
received proofs from the log maintainer to Alice.

With DTKI, Alice is able to verify whether Bob’s domain
has a certificate by querying the proof of absence of certifi-
cates for example.com in the corresponding certificate log.
This is useful to prevent TLS stripping attacks, where an
attacker can maliciously convert an HTTPS connection into
an HTTP connection.

4.3 Log verification

Users of the system need to verify that the mapping log
maintainer and certificate log maintainers did update their
log correctly according to the requests they have received,
and certificate log maintainers did follow the latest map-
pings specified in the mapping log.

These checks can be easily done by a trusted moni-
tor. However, since we aim to provide a TTP-free system,
DTKI uses a crowdsourcing-like method, based on random
checking, to monitor the correctness of the public log. The
basic idea of random checking is that each user randomly
selects a record in the log, and verifies whether the request
and data in this record have been correctly managed. If all
records are verified, the entire log is verified. Users only
need to run the random checking periodically (e.g. once
a day). The full version (with formalisation) of random
checking can be found in our technical report. We give a
flavour here by providing an example. Example 1 presents
the random checking process to verify the correct behaviour
of the mapping log.

Figure 4: The protocol for verifying a certificate with the
corresponding certificate log maintainer.

Example 1. Suppose verifier has randomly selected the kth

record of the mapping log, and the record has the form
h(add(rgx, id), tk, dg

s
k, dg

bl
k , dg

r
k, dg

i
k). The verifier must

check that all digests in this record are updated from the
(k − 1)th record by adding a new mapping (rgx, id) in
the mapping log at time tk.
Let the label of the (k − 1)th record be
h(reqk−1, tk−1, dg

s
k−1, dg

bl
k−1, dg

r
k−1, dg

i
k−1), then to

verify the correctness of this record, the verifier should
run the following process:

• verify that dgsk = dgsk−1 and dgblk = dgblk−1; and
• verify that dgrk is the result of adding (rgx, id) into

dgrk−1 by using VerifPoAddO , and id is an instance of
rgx; and

• verify that (id, dgirgxk ) is the result of replac-

ing (id, dgirgxk−1
) in dgik−1 by (id, dgirgxk ) by using

VerifPoMO ; and
• verify that dgirgxk is the result of adding rgx into

dgirgxk−1
by using VerifPoAddO .

Note that all proofs required in the above are given by
the log maintainer. If the above tests succeed, then the
mapping log maintainer has behaved correctly for this
record.

4.4 Performance Evaluation

In this section, we measure the cost of different protocols in
DTKI.

Assumptions: We assume that the size of a certificate
log is 108 (the total number of registered domain names
currently is 2.71 × 108 [38], though only a fraction of them
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have certificates). In addition, we assume that the number
of stored regular expressions, the number of certificate logs,
and the size of the mapping log are 1000 each. (In fact, if
we assume a different number or size (e.g. 100 or 10000)
for them, it makes almost no difference to the conclusion).
Moreover, in the certificate log, we assume that the size of
the set of data represented by dgrgx is 10, by dgid is 105,
by dga is 10, and by dgrv is 100. These assumptions are
based on the fact that dgrgx represents the set of regular
expressions maintained by a certificate log; the dgid repre-
sents the set of domains which is an instance of a regular
expression; and dga and dgrv represent the set of currently
valid certificates and the revoked certificates, respectively.
Furthermore, we assume that the size of a certificate is 1.5
KB, the size of a signature is 256 bytes, the length of a regular
expression and an identity is 20 bytes each, and the size of
a digest is 32 bytes.

Space: Based on these assumptions, the approximate
size of the transmitted data in the protocol for publishing
a certificate is 4 KB, for requesting a mapping is 3 KB, and
for verifying a certificate is 5 KB. Since the protocols for
publishing a certificate and requesting a mapping are run
occasionally, we mainly focus on the cost of the protocol for
verifying a certificate, which is required to be run between
a log server and a web browser in each secure connection.

By using Wireshark, we3 measure that the size of data
for establishing an HTTPS protocol to log-in to the internet
bank of HSBC, Bank of America, and Citibank are 647.1
KB, 419.9 KB, and 697.5 KB, respectively. If we consider
the average size (≈588 KB) of data for these three HTTPS
connections, and the average size (≈6 KB) of data for their
corresponding TLS establishment connections, we have that
in each connection, DTKI incurs 83% overhead on the cost
of the TLS protocol. However, since the total overhead of
an HTTPS connection is around 588 KB, so the cost of DTKI
only adds 0.9% overhead to each HTTPS connection, which
we consider acceptable.

Time: Our implementation uses a SHA-256 hash
value as the digest of a log and a 2048 bit RSA signature
scheme. The time to compute a hash4 is ≈ 0.01 millisecond
(ms) per 1KB of input, and the time to verify a 2048 bit RSA
signature is 0.48 ms. The approximate verification time on
the user side needed in the protocol for verifying certificates
is 0.5 ms.

Hence, on the user side, the computational cost on the
protocol for verifying certificates incurs 83% on the size of
data for establishing a TLS protocol, and 0.9% on the size
of data for establishing an HTTPS protocol; the verification
time on the protocol for verifying certificates is 1.25 % of the
time for establishing a TLS session (which is approximately
40 ms measured with Wireshark on the TLS connection to
HSBC bank).

5 SECURITY ANALYSIS

We consider an adversary who can compromise the private
key of all infrastructure servers in DTKI. In other words,

3. We use a MacBook Air 1.8 GHz Intel Core i5, 8 GB 1600 MHz
DDR3.

4. SHA-256 on 64 byte size block.

the adversary can collude with all log servers and certificate
authorities to launch attacks.

Main result: Our security analysis shows that

• if the distributed random checking has verified all
required tests, and domain owners have successfully
verified their initial master certificates, then DTKI
can prevent attacks from the adversary; and

• if the distributed random checking has not com-
pleted all required tests, or domain owners have not
successfully verified their initial master certificates,
then an adversary can launch attacks, but the attacks
will be detected afterwards.

We provide all source codes and files required to un-
derstand and reproduce our security analysis at [39]. In
particular, these include the complete DTKI models and the
verified proofs.

5.1 Formal analysis

We analyse the main security properties of the DTKI proto-
col using the TAMARIN prover [30]. The TAMARIN prover
is a symbolic analysis tool that can prove properties of
security protocols for an unbounded number of instances
and supports reasoning about protocols with mutable global
state, which makes it suitable for our log-based protocol.
Protocols are specified using multiset rewriting rules, and
properties are expressed in a guarded fragment of first order
logic that allows quantification over timepoints.

TAMARIN is capable of automatic verification in many
cases, and it also supports interactive verification by manual
traversal of the proof tree. If the tool terminates without
finding a proof, it returns a counter-example. Counter-
examples are given as so-called dependency graphs, which
are partially ordered sets of rule instances that represent
a set of executions that violate the property. Counter-
examples can be used to refine the model, and give feedback
to the implementer and designer.

Modeling aspects: We used several abstractions dur-
ing modeling. We model our log as lists, similar to the
abstraction used in [29], [40]. We also assume that the
random checking is verified.

We model the protocol roles D (domain server), M
(mapping log maintainer), C (certificate log maintainer), and
CA (certificate authority) by a set of rewrite rules. Each
rewrite rule typically models receiving a message, taking
an appropriate action, and sending a response message.
Our modeling approach is similar to the one used in most
TAMARIN models. Our modeling of the roles directly corre-
sponds to the protocol descriptions in the previous sections.
TAMARIN provides built-in support for a Dolev-Yao style
network attacker, i.e., one who is in full control of the net-
work. We additionally specify rules that enable the attacker
to compromise service providers, namely the mapping log
maintainer, certificate log maintainers and CAs, learn their
secrets, and modify public logs.

Our final DTKI model (available from [39]) consists
of 959 lines for the base model and five main property
specifications, examples of which we will give below.
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Proof goals: We state several proof goals for our
model, exactly as specified in TAMARIN’s syntax. Since
TAMARIN’s property specification language is a fragment
of first-order logic, it contains logical connectives (|, &,
==>, not, ...) and quantifiers (All, Ex). In TAMARIN, proof
goals are marked as lemma. The #-prefix is used to denote
timepoints, and “E @ #i” expresses that the event E occurs
at timepoint i.

The first goal is a check for executability that ensures
that our model allows for the successful transmission of a
message. It is encoded in the following way.

lemma protocol_correctness:

exists-trace

" /* It is possible that */

Ex D Did m rgx ltpkD stpkD #i1.

/* The user has sent an encrypted message aenc{m}stpkD

to domain server D whose identity is Did and TLS key

is stpk, and the user received from D a confirmation

h(m) of receipt. */

Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* without the adversary compromising any party. */

& not (Ex #i2 CA ltkCA.

Compromise_CA(CA,ltkCA) @ #i2)

& not (Ex #i3 C ltkC.

Compromise_CLM(C,ltkC) @ #i3)

& not (Ex #i4 M ltkM.

Compromise_MLM(M,ltkM) @ #i4)

"

The property holds if the TAMARIN model exhibits a
behaviour in which a domain server received a message
without the attacker compromising any service providers.
This property mainly serves as a sanity check on the model.
If it did not hold, it would mean our model does not model
the normal (honest) message flow, which could indicate
a flaw in the model. TAMARIN automatically proves this
property in several minutes and generates the expected
trace in the form of a graphical representation of the rule
instantiations and the message flow.

We additionally proved several other sanity-checking
properties to minimize the risk of modeling errors.

The second example goal is a secrecy property with
respect to a classical attacker, and expresses that when no
service provider is compromised, the attacker cannot learn
the message exchanged between a user and a domain server.
Note that K(m) is a special event that denotes that the
attacker knows m at this time.

lemma message_secrecy_no_compromised_party:

"

All D Did m rgx ltpkD stpkD #i1.

/* The user has sent an encrypted message aenc{m}stpkD

to domain server D whose identity is Did and TLS key

is stpk, and the user received from D a confirmation

h(m) of receipt. */

(Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* and no party has been compromised */

& not (Ex #i2 CA ltkCA.

Compromise_CA(CA,ltkCA) @ #i2)

& not (Ex #i3 C ltkC.

Compromise_CLM(C,ltkC) @ #i3)

& not (Ex #i4 M ltkM.

Compromise_MLM(M,ltkM) @ #i4)

)

==>

( /* then the adversary cannot know m */

not (Ex #i5. K(m) @ #i5)

)

"

TAMARIN proves this property automatically (in 575
steps).

The above result implies that if a domain server D,
whose domain name is Did such that Did is an instance of
regular expression rgx, receives a message that was sent by a
user, and the attacker did not compromise server providers,
then the attacker will not learn the message.

The next two properties encode the unique security
guarantees provided by our protocol, in the case that even
all service providers are compromised.

The first main property we prove is that when all service
providers (i.e. CAs, the MLM, and CLMs) are compromised,
and the domain owner has successfully verified his master
certificate in the log, then the attacker cannot learn the
message exchanged between a user and a domain owner.
It is proven automatically by TAMARIN in 5369 steps.

lemma message_secrecy_compromise_all_domain_verified_master_cert:

"

All D Did m rgx ltpkD stpkD #i1.

/* The user has sent an encrypted message aenc{m}stpkD to domain

server D whose identity is Did and TLS key is stpk, and the user

received from D a confirmation h(m) of receipt. */

(Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* and at an earlier time, the domain server has verified his

master certificate */

& Ex #i2.

VerifiedMasterCert(D, Did, rgx, ltpkD) @ #i2

& #i2 < #i1

)

==>

( /* then the adversary cannot know m */

not (Ex #i3. K(m) @ #i3)

)

"

The property states that if a domain server D receives
a message that was sent by a user, and at an earlier time,
the domain server has verified his master certificate, then
even if the attacker can compromise all server providers,
the attacker cannot learn the message.

The final property states that when all service providers
can be compromised, and a domain owner has not veri-
fied his/her master certificate, and the attacker learns the
message exchanged between a user and the domain owner,
then afterwards the domain owner can detect this attack by
checking the log. It is also verified by TAMARIN within a
few minutes.

lemma detect_bad_records_in_the_log_when_master_cert_not_verified:

"

All D Did m rgx ltpkD flag stpkD #i1 #i2 #i3.

/* The user has sent an encrypted message aenc{m}stpkD to domain

server D whose identity is Did and TLS key is stpk, and the user

received from D a confirmation h(m) of receipt. */

(Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* and the adversary knows m */

& K(m) @ #i2

/* and we afterwards check the log */

& CheckedLog(D, Did, rgx, ltpkD, flag, stpkD) @ #i3
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& #i1 < #i3)

==>

( /* then we can detect a fake record in the log */

(flag = ’bad’)

)

"

6 COMPARISON

As mentioned previously, DTKI builds upon a wealth of
ideas from SK [23], CT [26], CIRT [28], and AKI [27]. Figure
5 shows the dimensions along which DTKI aims to improve
on those systems.

Compared with CT, DTKI supports revocation by en-
abling log providers to offer proofs of absence and currency
of certificates. In CT, there is no mechanism for revocation.
CT has proposed additional data structures to hold revoked
certificates, and those data structures support proofs of their
contents [41]. However, there is no mechanism to ensure that
the data structures are maintained correctly in time.

Compared to CIRT, DTKI extends the log structure of
CIRT to make it suitable for multiple log maintainers, and
provides a stronger security guarantee as it prevents attacks
rather than merely detecting them. In addition, the pres-
ence of the mapping log maintainer and multiple certificate
log maintainers create some extra monitoring work. DTKI
solves it by using a detailed crowd-sourcing verification sys-
tem to distribute the monitoring work to all users’ browsers.

Compared to AKI and ARPKI, in DTKI the log providers
can give proof that the log is maintained append-only from
one step to the next. The data structure in A(RP)KI does
not allow this, and therefore they cannot give a verifiable
guarantee to the clients that no data is removed from the
log.

DTKI improves the support that CT and A(RP)KI have
for multiple log providers. In CT and AKI, domain owners
wishing to check if there exists a log provider that has
registered a certificate for him has to check all the log
providers, and therefore the full set of log providers has to
be fixed and well-known. This prevents new log providers
being flexibly created, creating an oligopoly. In contrast,
DTKI requires the browsers only to have the MLM public
key built-in, minimising the oligopoly element.

In DTKI, trusted monitors are optional, as it uses crowd-
sourced verification. More precisely, a trusted monitor’s
verification work can be done probabilistically in small
pieces by users’ browsers.

Unlike the mentioned previous work, DTKI allows the
possibility that all service providers (i.e. the MLM, CLMs,
and mirrors) to collude together, and can still prevent at-
tacks. In contrast, SK and CT can only detect attacks, and
to prevent attacks, A(RP)KI requires that not all service
providers collude together. Similar to A(RP)KI, DTKI also
assumes that the domain is initially registered by an honest
party to prevent attacks, otherwise A(RP)KI and DTKI can
only detect attacks.

7 DISCUSSION

Responding to incorrect proofs: How should the
browser (and the user) respond if a received proof (e.g., a
proof of presence in the log) is incorrect? Such situations
should be handled in the background by the software in the

browser that verifies proofs, and be sent to domain own-
ers for further investigation. The browser can also present
errors to the user in the same way as the current state of
the art. So, the user interface will remain the same. For
example, a user might be shown two options, i.e. either to
continue anyway, or not to trust the certificate and abort
this connection. Another possible way is to hard fail if the
verification has not been successful, as suggested by Google
certificate transparency. However, this might be an obstacle
for deploying DTKI in early stages.

Coverage of random checking: As mentioned pre-
viously, several aspects of the logs are verified by user’s
browsers performing randomly-chosen checks. The number
of things to be checked depends on the size of the mapping
log and certificate logs. The size of the mapping log mainly
depends on the number of certificate logs and the mapping
from regular expressions to certificate logs; and the size of
certificate logs mainly depends on the number of domain
servers that have a TLS certificate. Currently, there are
2.71 × 108 domains [38] (though not every domain has
a certificate), and 3 × 109 internet users [42]. The prob-
ability of a given domain not being checked on a given

day (or week) is (1 − 1

2.71×108
)3×10

9

≈ 1.56 × 10−5 (resp.

((1 − 1

2.71×108
)3×10

9

)7 ≈ 2.25 × 10−34). Thus, the expected
number of unchecked domains per day (resp. per week) is
4.23× 103 (resp. 6.10× 10−26).

Accountability of mis-behaving parties: The main
goal of new certificate management schemes such as CT,
CIRT, AKI, ARPKI and DTKI is to address the problem
of mis-issued certificates, and to make the mis-behaving
(trusted) parties accountable.

In DTKI, a domain owner can readily check for rogue
certificates for his domain. First, he queries a mirror of
the mapping log maintainer to find which certificate log
maintainers (CLM) are allowed to log certificates for the
domain (section 4). Then he examines the certificates for
his domain that have been recorded by those CLMs. The
responses he obtains from the mirror and the CLMs are
accompanied by proofs. If he detects a mis-issued certificate,
he requests revocation in the CLM. If that is refused, he can
complain to the top-level domain, who in turn can request
the MLM to change the CLM for his domain (after that, the
offending CLM will no longer be consulted by browsers).
This request should not be refused because the MLM is
governed by an international panel. The intervening step,
of complaining to the top-level domain, reflects the way
domain names are actually managed in practice. Different
top-level domains have different terms and conditions, and
domain owners take them into account when purchasing
domain names. In DTKI, log maintainers are held account-
able because they sign and time-stamp their outputs. If a
certificate log maintainer issues an inconsistent digest, this
fact will be detected and the log maintainer can be blamed
and blacklisted. If the mapping log misbehaved, then its
governing panel must meet and resolve the situation.

In certificate transparency, this process is not as smooth.
Firstly, the domain owner doesn’t get proof that the list of
issued certificates is complete; he needs to rely on monitors
and auditors. Next, the process for raising complaints with
log maintainers who refuse revocation requests is less clear
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SK [23] CT [26] AKI [27] ARPKI [29] DTKI
Terminology

Log provider Time-line
server

Log Integrity log
server (ILS)

Integrity log
server (ILS)

Certificate/Mapping
log maintainer
(CLM, MLM)

Log extension - Log
consistency

- - Log extension

Trusted party Mirror Auditor &
monitor

Validator Validator
(optional)

-

Whether answers to queries rely on
trusted parties or are accompanied by
a proof

Certificate-in-log query: Rely Proof Proof Proof Proof
Certificate-current-in-log query: Rely Rely Proof Proof Proof
Subject-absent-from-log query: Rely Rely Proof Proof Proof
Log extension query: Rely Proof Rely Rely Proof

Non-necessity of trusted monitors

The role of trusted monitors can be
distributed to browsers

No No No+ No+ Yes

Trust assumptions

Not all service providers collude
together

Yes Yes Yes Yes No

Domain is initially registered by an
honest party

No No Yes* Yes* Yes*

Security guarantee

Attacks detection or prevention Detection Detection Prevention Prevention Prevention

Oligopoly issues

Log providers required to be built into
browser (oligopoly)

Yes Yes Yes Yes Only MLM

Monitors required to be built into
browser (oligopoly and trust
non-agility)

Yes No Yes Yes† No

+ The system limits the trust in each server by letting them to monitor each other’s behaviour.

* Without the assumption, the security guarantee is detection rather than prevention.

† The trusted party is optional, if there is a trusted party, then the trusted party is required to be built into browser.

Figure 5: Comparison of log-based approaches to certificate management. Terminology helps compare the terminology
used in the papers. How queries rely on trusted parties shows whether responses to browser queries come with proof
of correctness or rely on the honesty of trusted parties. Necessity of trusted parties shows whether the TP role can be
performed by browsers. Trust assumptions shows the assumption for the claimed security guarantee. Oligopoly issues
shows the entities that browsers need to know about.

(indeed, the RFC [26] says that the question of what domain
owners should do if they see an incorrect log entry is beyond
scope of their document). In CT, a domain owner has no
ability to dissociate himself from a log maintainer and use a
different one.

AKI addresses this problem by saying that a log main-
tainer that refuses to unregister an entry will eventually lose
credibility through a process managed by validators, and
will be subsequently ignored. The details of this credibility
management are not very clear, but it does not seem to
offer an easy way for domain owners to control which log
maintainers are relied on for their domain.

Master certificate concerns: One concern is that a
CA might publish fake master certificates for domains that
the CA doesn’t own and are not yet registered. However,
this problem is not likely to occur: CAs are businesses, they
cannot afford the bad press from negative public opinion
and they cannot afford the loss of reputation. Hence, they

will only want to launch attacks that would not be caught.
(Such an adversary model has been described by Franklin
and Yung [43], Canetti and Ostrovsky [44], Hazay and
Lindell [45], and Ryan [28]). In DTKI, if a CA attempts to
publish a fake master certificate for some domain, it will
have to leave evidence of its misbehaviour in the log, and
the misbehaviour will eventually be detected by the genuine
domain owner.

Another concern is the assumption that the domain
owners can securely handle their master keys. In practice,
the domain owners might have problems looking after their
master keys due to lack of awareness of good practices. This
problem arises in any web PKI: it is assumed that domain
owners can securely handle their TLS keys. Our system
adds one more key (the master key) to that requirement.
A possible practical solution for domain owners is to use
a trustworthy service to handle TLS keys (and the master
key); the details are beyond the scope of the paper.
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Avoidance of oligopoly: As we mentioned in the
introduction, the predecessors (SK, CT, CIRT, AKI, ARPKI)
of DTKI do not solve a foundational issue, namely oligopoly.
These proposals require that all browser vendors agree on a
fixed list of log maintainers and/or validators, and build it
into their browsers. This means there will be a large barrier
to create a new log maintainer.

CT has some support for multiple logs, but it doesn’t
have any method to allocate different domains to different
logs. In CT, when a domain owner wants to check whether
mis-issued certificates are recorded in logs, he needs to
contact all existing logs, and download all certificates in
each of the logs, because there is no way to prove to the
domain owner that no certificates for his domain is in the
log, or to prove that the log maintainer has showed all
certificates in the log for his domain to him. Thus, to be
able to detect fake certificates, CT has to keep a very small
number of log maintainers. This prevents new log providers
being flexibly created, creating an oligopoly.

In contrast to its predecessors, DTKI does not have a
fixed set of certificate log maintainers (CLMs) to manage
certificates for domain owners, and it allows operations of
adding or removing a certificate log maintainer by updating
the mapping log. In DTKI, the public log of the MLM is the
only thing that browsers need to know.

The MLM may be thought to represent a monopoly; to
the extent that it does, it is likely to be a much weaker
monopoly than the oligopoly of CAs or log maintainers.
CAs and log maintainers offer commercial services and
compete with each other, by offering different levels of
service at different price points in different markets. The
MLM should not offer any commercial services; it should
perform a purely administrative role, and is not required to
be trusted because it behaves fully transparently and does
not manage any certificates for web domains. In addition,
the MLM is expected to be operated by an international
panel with a lot of members.

In practice, we expect ICANN to be the MLM, as it is
responsible for coordinating name-spaces of the Internet,
and is governed by a Governmental Advisory Committee
containing representatives from 111 states. However, there
might be concerns here, including the concern that ICANN
might not be interested in being the MLM, due to the fact
that the service won’t generate any revenue. Our solution
does not address political issues around making decisions
of whether to add or remove some CLMs or not.

8 CONCLUSIONS AND FUTURE WORK

Sovereign keys (SK), certificate transparency (CT), account-
able key infrastructure (AKI), certificate issuance and revo-
cation transparency (CIRT), and attack resilient PKI (ARPKI)
are recent proposals to make public key certificate author-
ities more transparent and verifiable, by using public logs.
CT is currently being implemented in servers and browsers.
Google is building a certificate transparency log containing
all the current known certificates, and is integrating verifi-
cation of proofs from the log into the Chrome web browser.

Unfortunately, as it currently stands, CT risks creating
an oligopoly of log maintainers (as discussed in section 7),
of which Google itself will be a principal one. Therefore,

adoption of CT risks investing more power about the way
the internet is run in a company that arguably already has
too much power.

In this paper we proposed DTKI – a transparent public
key validation system using an improved construction of
public logs. DTKI can prevent attacks based on mis-issued
certificates, and minimises undesirable oligopoly situations
by using the mapping log. In addition, we formalised the
public log structure and its implementation; such formalisa-
tion work was missing in the previous systems (i.e. SK, CT,
A(RP)KI, and CIRT). Since devising new security protocols
is notoriously error-prone, we provide a formalisation of
DTKI, and formally proved its security properties by using
Tamarin prover.
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APPENDIX

IMPLEMENTATION OF DATA STRUCTURES

This section shows the implementation of the chronological
data structure and ordered data structure. We give some
examples to show how the proofs could be done. Full details
can be found in our technical report. We consider a secure
hash function (e.g. SHA256), denoted h.

Chronological data structure

The chronological data structure is implemented based on
Merkle tree structure that we call ChronTree.

A ChronTree T is a binary tree whose nodes are labelled
by bitstrings such that:

• every non-leaf node in T has two children, and is
labelled with h(tℓ, tr) where tℓ (resp. tr) is the label
of its left child (resp. right child); and

• the subtree rooted by the left child of a node is
perfect, and its height is greater than or equal to the
height of the subtree rooted by the right child.

Here, a subtree is “perfect” if its every non-leaf node has
two children and all its leaves have the same depth.

Note that a ChronTree is a not necessarily a balanced
tree. The two trees in Figure 6 are examples of ChronTrees
where the data stored are the bitstrings denoted d1, . . . , d6.

Figure 6: Example of two ChronTrees, Ta and Tb.

Figure 7: An example of a LexTree Tc, where hi =
h(di, null, null) for all i = {1, 3, 5, 7, 9, 11}

Given a ChronTree T with k leaves, we denote by
S(T ) = [d1, . . . , dk] the sequence of bitstrings stored in T .
Note that a ChronTree is completely defined by the sequence
of data stored in the leaves. Moreover, we say that the size
of a ChronTree is the number its leaves.

Given a bitstring d and a ChronTree T , the proof of
presence of d in T exists if there is a leaf n1 in T labelled
by d; and is defined as (w, [b1, . . . , bk]) such that:
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• w is the position in {ℓ, r}∗ of n1 (that is, the sequence
of left or right choices which lead from the root to
n1), and |w| = k; and

• if n1, . . . , nk+1 is the path from n1 to the root, then
for all i ∈ {1, . . . , k}, bi is the label of the sibling
node of ni.

Intuitively, a proof of presence of d in T contains the
minimum amount of information necessary to recompute
the label of the root of T from the leaf containing d.

Example 2. Consider the ChronTree Tb of Figure 6. The proof
of presence of d3 in Tb is the tuple (w, seq) where:

• w = ℓ · r · ℓ
• seq = [d4, h(d1, d2), h(d5, d6)]

Note that the size of the proof of presence is logarithmic
in the size of the tree; even if the tree grows considerably,
the size of the proof does not increase much.

Let T and T ′ be ChronTrees of size N and N ′, respec-
tively, such that N ′ ≤ N , S(T ) = [d1, . . . , dN ′ , . . . , dN ], and
S(T ′) = [d1, . . . , dN ′ ] for some bitstrings d1, . . ., dN ′ , . . .,
dN . Let m be the smallest position of the bit 1 in the binary
representation of N ′; and let (d, w) be the (m+ 1)th node in
the path of the node labelled by dN ′ to the root in T , where d
is a bitstring and w ∈ {ℓ, r}∗ indicates the position. At last,
let (w, seq′) be the proof of presence of d in T . The proof
of extension of T ′ into T is defined as the sequence seq of
bitstrings such that

• if N ′ = 2k for some k, then seq = seq′; otherwise
• seq = d :: seq′, where :: is the concatenation opera-

tion.

Example 3. The proof of extensions of Ta into Tb (Figure 6)
is the sequence seq = [d3, d4, h(d1, d2), h(d5, d6)].

While a proof of presence is the minimal amount of
information necessary to recompute the hash value of a
ChronTree from the leaf containing some particular data,
the proof of extension is the minimal amount of information
necessary to recompute the hash value of ChronTree T from
the hash value of a ChronTree T ′ where T is an extension of
T ′. Intuitively, the proof of extension of a ChronTree T ′ into
a ChronTree T is the proof of presence in T of the last in-
serted data of T ′, i.e. dN ′ when S(T ′) = [d1, . . . , dN ′ ]. With
this proof and the sizes of both trees, we can reconstruct
the label of the root T but also the label of the root of T ′

as means to verify the proof of extension. Note that when
N ′ = 2k for some k, it implies that the tree T ′ is perfect and
so the label of the root of T ′ is also a label of a node in T .
Therefore, to reconstruct the label of the root of T , we only
need a fragment of the proof of presence of dN ′ in T .

Example 4. Coming back to Example 3, consider the
bitstrings hb = h(h(h(d1, d2), h(d3, d4)), h(d5, d6)) and
ha = h(h(d1, d2), d3). seq proves the extension of ha

of size 3 into hb of size 6. Figure 6 is the graphical
representation of the verification of seq given ha and
hb. In particular, (ℓ · r · ℓ, [d4, h(d1, d2), h(d5, d6)]) proves
the presence of d3 in hb and (r, [h(d1, d2)]) proves the
presence of d3 in ha.

Ordered data structure

The ordered data structure is implemented as the combi-
nation of a binary search tree and a Merkle tree. The idea
is that we can regroup all the information about a subject
into a single node of the binary search tree, and while
being able to efficiently generate and verify the proof of
presence. We consider a total order on bitstrings denoted ≤.
This order could be the lexicographic order in the ASCII
representations but it could be any other total order on
bitstrings. The implementation is called LexTree.

A LexTree T is a binary search tree over pairs of bitstrings

• for all two pairs (d, h) and (d′, h′) of bitstrings in
T , (d, h) occurs in a node left of the occurrence of
(d′, h′) if and only if d ≤ d′ lexicographically;

• for all nodes n ∈ T , n is labelled with the pair
(d, h(d, hℓ, hr)) where d is some bistring and (dℓ, hℓ)
(resp. (dr, hr)) is the label of its left child (resp. right
child) if it exists; or the constant null otherwise.

Note that contrary to a ChronTree, the same set of data
can be represented by different LexTrees depending on how
the tree is balanced. To avoid this situation, we assume that
there is a pre-agreed way for balancing trees.

Example 5. The tree in Figure 7 is an example of LexTree
where d1 ≤ d2 ≤ . . . ≤ d12.

Example 6. Consider the LexTree T of Figure 7. The proof of
presence of d8 in T is the tuple (hℓ, hr, seqd, seqh) where:

• hℓ = h7 and hr = h9; and
• seqd = [d10, d6]
• seqh = [h(d12, h11, null), h(d4, h(d2, h1, h3), h5)]

Like in ChronTrees, verifying the proof of presence of
some data d in a LexTree T consists of reconstructing the
hash value of the root of T .

Example 7. Consider the Tc of Figure 7. Consider some data
d such that d7 ≤ d ≤ d8. The proof of absence of d in Tc

is the tuple (null, null, seqd, seqh) where:

• seqd = [d7, d8, d10, d6]
• seqh = [h9, h(d12, h11, null), h(d4, h(d2, h1, h3), h5)]
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