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ABSTRACT (up to 200 words) 

Improving our understanding of species’ ranges under rapid climate change requires application of our 

knowledge of the tolerance and adaptive capacity of populations to changing environmental 

conditions.  Here, we describe an emerging modelling approach, ΔTraitSDM, which attempts to explain 

species distribution ranges based on phenotypic plasticity and local adaptation of fitness-related traits 

measured across large geographical gradients. The collection of intraspecific-trait data measured in 

common-gardens spanning broad environmental clines has promoted the development of these new 

models; firstly in trees but now rapidly expanding to other organisms. We review, explain and 

harmonize the main findings from this new generation of models that, by including trait variation over 

geographical scales, are able to provide new insights into future species ranges. Overall, ΔTraitSDM 

predictions generally give a less alarming message than previous models of species distribution under 

new climates, indicating that phenotypic plasticity should considerably help some plant populations to 

persist under climate change. The development of ΔTraitSDM opens a new perspective allowing 

analysis of intra-specific variation in single and multiple traits, with the rationale that trait (co-

)variation and the resulting fitness can significantly change across geographical gradients and new 

climates.   

1. Introduction  
The observed impact of contemporary climate warming on patterns of species migration and range 

shift has created a high demand for forecasts of biodiversity changes (Urban, 2015). Species 

distribution models (SDM) are a widely-used tool for generating hypotheses about the potential 

consequences of climate changes on the natural distribution of species (Urban, 2015), to predict 

current species richness (Algar et al., 2009), to understand biological invasion (Camenen et al., 2016), 

to propose locations for protected areas (Koch et al., 2017), to select species for ecological restoration 

(Gastón & García-Viñas, 2013), and to target areas where endangered species might occur (McCune, 

2016). SDM are correlational models of low structural complexity that rely on the statistical 

relationship between species’ occurrence and local climate. However, these models have often been 

criticized for relying on over-simplistic assumptions and neglecting critical biological processes 

involved in species’ response to a rapidly changing environment (Fordham et al., 2018). Several SDM 

and mechanistic modelling approaches have recently been developed to better account for key 

ecological processes such as species’ dispersal ability, (meta-)population demography and dynamics, 

and the role of different biotic interactions (reviewed in Pagel & Schurr, 2012; Wisz et al., 2013; 

Normand et al., 2014). These refined approaches have considerably improved our understanding of 



how climate warming could drive changes in the distributions of species and the abundance of 

populations across their range. However, very few models have to date considered a further key 

dimension in the response of populations to rapid environmental change: phenotypic variation in 

functional traits and its consequences for fitness (Valladares et al., 2014; Roches et al., 2018). Here, 

we review recent developments in this emerging field and unify different approaches that consider 

phenotypic trait variation under a common header for which we propose the term ΔTraitSDM.  

Species ranges are modulated by those biological mechanisms that allow populations to survive and 

reproduce within their local abiotic and biotic environment as well as those that determine their 

dispersal capacity (Hargreaves et al., 2014). Under rapid climate change, populations are expected to 

be extirpated, to track climate through migration (Brito-Morales et al., 2018), or to persist in situ 

through phenotypic plasticity and evolutionary adaptation (Valladares et al., 2014; Des Roches et al., 

2018): the latter response and its contingent  biological mechanisms form the basis of ΔTraitSDM. 

Phenotypic plasticity refers to the capacity of one genotype to express different phenotypes across 

environmental gradients, giving individual organisms the flexibility to react rapidly to environmental 

changes (Nicotra et al., 2010). Evolutionary adaptation involves selection acting on heritable traits, 

producing fitness differentials that lead to a predominance of individuals with high performance within 

their local environment (Savolainen et al., 2013). Phenotypic plasticity and local adaptation are 

ubiquitous in natural populations, and their interplay is important in shaping patterns of geographical 

variation in phenotypic traits found across the species range (Savolainen et al., 2013; Valladares et al., 

2014; Roches et al., 2018). Extensive phenotypic plasticity is often considered favourable for the 

persistence of populations under rapid climate change (Valladares et al., 2014), although it can delay 

evolutionary adaption to new environments in the long term (Wund, 2012).  However, few studies 

have been able to tease apart the roles of plasticity vs. local adaptation for fitness across large 

environmental gradients (Mclean et al., 2014; Richardson et al., 2017; Macdonald et al., 2018). These 

studies are typically based on common-garden experiments where the genetic origins of the 

populations are known (Wilczek et al., 2014). Until recently, a poor understanding of the role of 

phenotypic plasticity and local adaptation in shaping species ranges has critically limited attempts to 

anticipate how these mechanisms will drive the performance of populations under new climates (Des 

Roches et al., 2018). This is now changing thanks to the increasing availability of data from common-

garden and reciprocal-transplant experiments established along large environmental gradients 

(Robson et al., 2018), for which reaction norms (i.e., the phenotypic response of a genotype across 

different environments) have been measured to quantify phenotypic variation of given populations 

across the species range. These data are fundamental for the development of ΔTraitSDM, emerging 

models that quantify local adaptation, phenotypic plasticity and their interaction across species ranges 

to make predictions about the persistence of populations and species under new climates.   

The dependence of ΔTraitSDM on extensive common-garden experiments explains why these models 

were first developed in forest research (Rehfeldt et al., 1999). Driven by the wish to identify suitable 

material for afforestation, common-garden experiments with many thousands of trees have been 

established and monitored over the past decades for a series of economically-important forest tree 

species. It is hence not surprising that early ΔTraitSDM mostly addressed management-related 

questions (Rehfeldt et al., 1999).  Since then, ΔTraitSDM have been expanded to more broadly consider 

how phenotypic plasticity and local adaptation affect projections of future species ranges (O’Neill et 

al., 2008; Benito Garzón et al., 2011; Oney et al., 2013; Sáenz-Romero et al., 2017; Rehfeldt et al., 

2018). During the last few years, the use of ΔTraitSDM has also extended to plants other than forest 

trees with the inception of large-scale experiments designed to separate local adaptation from 

phenotypic plasticity under controlled environmental conditions (Richardson et al., 2017).  



Here, we review, explain and harmonize the use of ΔTraitSDM: species distribution models that, by 

including phenotypic plasticity and local adaptation of fitness-related traits over geographical scales, 

are able to provide new insights into the sensitivity to climate change of populations across species 

ranges. 

 

2. ΔTraitSDM: traits, reaction norms, fitness and species ranges  
To account for phenotypic trait variation, ΔTraitSDM capture reaction norms of different provenances 

(i.e., populations from a specific geographic location) that are planted together in series of common-

gardens across a species range (Fig. 1). The rationale underlying this approach is that higher fitness 

implies a higher probability of population persistence in the local environment. To explain the 

relationship between trait variation and fitness in ΔTraitSDM, we can make use of SDM as baseline 

models: in SDM, the occurrence of a species in a given location is implicitly related to its survival 

capacity (or fitness-related trait values) under certain climatic conditions with fitness represented as 

binary value (1 = maximum fitness: survival, and 0 = minimum fitness: no survival). In ΔTraitSDM, the 

binary information on species occurrence is replaced with empirical observations of fitness-related 

phenotypic traits of controlled genetic origin. This allows ΔTraitSDM to keep the statistical simplicity 

of SDMs, while (i) making an explicit, empirically grounded link with fitness-related traits; (ii) splitting 

the phenotypic variation of target traits into the components of local adaptation (i.e., related to the 

climate of origin of the provenance) and of phenotypic plasticity (i.e., related to the climate of the 

common-garden site); and (iii) combining multiple traits and assessing their co-variation across species 

ranges (for which we propose the term multi-trait ΔTraitSDM).  

Following this rationale, ΔTraitSDM are developed in three steps (Fig. 1) that are described in the 

following sections.  

 

2. 1.  Gathering phenotypic trait variation from common gardens across large environmental gradients  

ΔTraitSDM are based on trait measurements recorded in well replicated common gardens planted with 

many provenances to capture environmental variation across the species range (Fig. 1A). The choice 

of an appropriate phenotypic trait is based on its putative relationship with fitness, defined in this 

context by the capacity of individuals to survive (survival success) and to contribute to the next 

generation (reproductive success). Data on fitness regarding reproductive success at range-wide scales 

has been directly measured for some herbaceous species (Wilczek et al., 2014; Wadgymar et al., 2017), 

although equivalent information has seldom been obtained for trees across large geographical areas. 

To date, the traits most commonly considered by ΔTraitSDM are those related to growth, spring 

phenology and mortality. Ecophysiological traits such as: specific leaf area, stomatal anatomy and 

photosynthesis (Drake et al., 2017; Patterson et al., 2018), wood density (Díaz et al., 2016), and xylem 

resistance to embolism (Anderegg et al., 2016; Benito Garzón et al., 2018) can affect demography and 

phenology and may consequently alter fitness across species ranges. Hence, they are good candidates 

to be integrated in ΔTraitSDM when more information at the intra-specific level becomes available.  

2.2. Integration of reaction norms in a unified model  

Reaction norms are calculated by regressing trait values against the climates of the provenance sites 

and the common gardens (Fig. 1B). Regressions are based on the rationale that (i) individual 

populations are locally adapted to the climatic conditions of the site where the seed originated, while 

(ii) the acclimation response of phenotypic traits occurs in response to the climatic conditions 



experienced at the common-garden site since the time of plantation (Leites et al., 2012). Two 

regression methods are typically used to calculate trait reaction norms across species ranges: statistical 

models such as universal transfer functions or linear mixed-effect models; and machine learning 

techniques such as random forests or artificial neural networks. Universal transfer functions first fit 

one equation by provenance and then scale up to all experimental sites in a stepwise process (O’Neill 
et al., 2008). Linear mixed-effect models combine the provenance and the site effect in a single 

equation, while including random effects that control for differences among experimental sites that 

are not related to climate (e.g. soil characteristics) (Leites et al., 2012). Machine learning models are 

characterized by a greater flexibility as they can use any combination of predictors (i.e., several 

environmental drivers in complex non-linear relationships); they have a higher predictive power than 

statistical techniques but do not provide any form of equation. Hence, machine-learning approaches 

are an interesting option when the complexity of the combination of predictors prevents statistical 

convergence of other models (Benito Garzón et al., 2011). On the whole, linear mixed-effect models 

are the most widely used because of their flexibility and capacity to account for the experimental 

design of common gardens as a random effect.  

For linear mixed-effect models, the equation describing the regression between traits and 

environmental drivers in ΔTraitSDM takes the general form:  

T1 = a0 + b1 CP + b2 CS + b3 CP × CS + β +  δ + ε     (equation 1) 

Where T1 is the trait value, a0 represents the slope,  b1 ,  b2 and b3 are the coefficients of the regression, 

δ is the random effect controlling for variation arising from the common garden experimental design, 

and ε is the model error. CP represents the climatic variables characterizing the provenances, and CS 

the climatic variables characterizing the planting site. CP × CS represents the interaction between the 

climate of the provenance sites and those of the common garden sites. β can include model co-variates 

if needed.  

Equation 1 allows us to quantify that part of the variance attributable to the genetic effect of each 

provenance (b1), to the phenotypic plasticity (b2) and the interaction between them (b3) representing 

the genetic x environment effect.  

2.3. Spatial prediction of phenotypic traits.  

In addition to quantifying the plastic and genetic components of phenotypic trait variation, ΔTraitSDM 

can also be used to generate spatial projections of trait variation under current or future climate 

scenarios using the relationship with climate of the fitted equation (equation 1, Fig. 1C). Because traits 

and their relation with fitness can change across climatic gradients, projections are highly dependent 

on the trait used. In some cases, higher values of fitness-related traits correspond to species 

occurrence (Benito Garzón et al., 2011; Chakraborty et al., 2018), but in other cases species occurrence 

is explained by the complex relationship among various traits over the species range (Gárate Escamilla 

et al., 2019). For example, phenological traits may delimit species ranges at high latitudes, at least for 

those species in which photoperiod actively constrains phenology (Way & Montgomery, 2015). Traits 

related to reproduction are probably more relevant near the leading range-edge where colonization 

events and population growth prevail, whereas traits related to drought resistance are more likely to 

be relevant near the trailing range-edge (Hampe & Petit 2005). Great care is needed in trait selection, 

to ensure that traits are selected to account for the potential of climate change to reshuffle trait-

interaction across species ranges (see Section 4). 

 



3. What can we learn from ΔTraitSDM?   
ΔTraitSDM are new and have been developed for various different purposes, therefore it is difficult to 

assess their contribution to understanding phenotypic plasticity and local adaptation patterns across 

large gradients, and contingent implications for species ranges under current and future conditions. 

Three major messages emerge from examining the outputs of existing ΔTraitSDM, and from comparing 

them with SDM outputs as baseline models, for the very few studies that to date have explicitly done 

this (Tables 1 and 2; Fig 2): (i) phenotypic plasticity is the most important component of intra-specific 

variation in demographic and phenological traits, (ii) spatial predictions of ΔTraitSDM based on 

experimental data do not necessary match current species ranges but rather reflect the adaptive and 

plastic responses of populations to climate, (iii) spatial predictions using ΔTraitSDM generally depict a 

smaller contraction of species ranges with climate change compared to forecasts based on SDM. These 

conclusions are mostly based on trees and, as we discuss below, may somewhat differ for species with 

more restricted gene flow or shorter generation times. 

Although undoubtedly important, the contribution of local adaptation to phenotypic trait variation 

across species ranges is lower than the contribution of plasticity for all the species and traits studied 

to date (Table 1), suggesting that, in trees, phenotypic plasticity is generally the predominant 

component of intraspecific variability. The initial aim of ΔTraitSDM was in guiding the selection of tree 

populations for translocation to mitigate the effects of climate change (Aitken & Bemmels, 2016), 

however this result (Table 1) suggests that moving populations adapted to warmer climates polewards 

would give only modest benefits towards this aim of increasing their productivity and/or survival. 

Nevertheless, the relative importance of plasticity vs. local adaptation can differ among traits. Overall, 

height and radial growth tend to show less local adaptation to climate than traits related to phenology 

(bud burst and flowering) (Duputié et al., 2015; Richardson et al., 2017). As a consequence, the choice 

of trait(s) to use in a ΔTraitSDM modulates the predicted response to climate across the range. For 

instance, ΔTraitSDM based on highly plastic growth-related traits would produce predictions of higher 

tolerance to climatic variation than those based on phenology, which is more constrained than growth 

by local adaptation to current conditions For instance, growth-related traits are highly plastic, whereas 

in comparison phenology is constrained by local adaptation to current conditions. Hence, ΔTraitSDM 

based on growth-related traits would produce predictions of higher tolerance to climatic variation than 

ΔTraitSDM based on phenology. Nevertheless, phenology has a strong plastic component, suggesting 

that populations can to some extent accommodate flowering dates to track expected climatic 

scenarios, as found in Artemisia tridentata populations in North America (Richardson et al., 2017). 

Hence, a natural extension of ΔTraitSDM will be to combine multiple traits and their interactions to 

account for the different responses of traits to climate (Laughlin, 2018; Gárate Escamilla et al., 2019).  

At an evolutionary scale, phenotypic plasticity could slow down genetic adaptation and hence turn into 

a counter-productive mechanism for the long-term survival of populations (Oostra et al., 2018). 

However, over the short-time scales imposed by modern rapid climate change, having higher plasticity 

than local adaptation in fitness-related traits is likely to translate into a positive outcome in terms of 

survival, at least for long-lived organisms like trees that are experiencing significant environmental 

change within their lifetime. ΔTraitSDM indicate that many tree populations hold enough phenotypic 

plasticity in fitness-related traits to persist in situ over the coming few decades under commonly used 

climatic scenarios (Table 1). This is the case for height growth in Pinus contorta (Oney et al., 2013) and 

in Abies alba (Pearman et al., 2008; Fréjaville et al., 2019), showing that ΔTraitSDM predict less-

restricted distributions than models that only consider the occurrence of a species. Similar conclusions 

can be drawn from ΔTraitSDM based on survival of Pinus sylvestris and Pinus pinaster considering only 

the southernmost part of their range (Benito Garzón et al., 2011).  



A comparison between ΔTraitSDM and SDM predictions under current (Fréjaville & Benito Garzón, 

2018) and future climate scenarios (RCP 8.5 GISS-E2-R, Nazarenko et al., 2015) is illustrated by the 

example of Fagus sylvatica (Fig. 2). The SDM (adapted from Stojnić et al., 2018) is based on the 

occurrence/absence of the species, whereas the ΔTraitSDM (adapted from Gárate Escamilla et al., 

2019) is based on young tree mortality measured across a large network of common gardens (Robson 

et al., 2018). The large differences visible between SDM and ΔTraitSDM outputs can be interpreted as 

the result of differences in how each model handles fitness. Not surprisingly, the SDM prediction for 

current conditions perfectly matches the species distribution range that is the basis of the regression. 

On the contrary, the ΔTraitSDM predicts low survival for young trees in areas within the current range 

(eastern part of the range) and high survival in areas located outside the current native distribution 

range of F. sylvatica (western part of the range). The former prediction can be interpreted as an early 

warning: i.e. the species still occurs in that part of the range but with very high mortality. But it may 

also reflect successful F. sylvatica recruitment in climatically favourable years not captured by the trait 

data. The latter prediction for the western part of the range reflects a long history of active 

management  which has left only a few beech forests remaining in Britain today. These can be 

considered native (Sjölund et al., 2017) and furthermore where planted F. sylvatica is regenerating 

vigorously in Britain and Ireland (Packham et al., 2012).  

This example of F. sylvatica also illustrates our third conclusion that predictions using ΔTraitSDM 

generally depict larger future species ranges than forecasts based on SDM (see Fig. 2, Table 2). 

Basically, ΔTraitSDM give more conservative predictions of greater similarity in distribution ranges 

between present and future conditions (Fig. 2). This pattern is consistent across those few studies 

published to date that employ ΔTraitSDM (Table 1), and it is likely to result from the high plasticity of 

populations helping them to persist in situ. However, we can expect that considering other traits or 

combination of traits in ΔTraitSDM would lead to different conclusions, particularly under new 

climates, where it is difficult to predict trait co-variation and the relationship of traits with climate.  

 

4. Towards multi-trait ΔTraitSDM 
Although multi-trait approaches are, to date, only conceptually proposed (Laughlin & Messier, 2015; 

Laughlin, 2018), the flexibility of ΔTraitSDM favors their actual implementation. One possible way to 

develop multi-trait ΔTraitSDM is by substituting β (equation 1) for a second trait used as a co-variate. 

For example, a model where a co-variate trait (T2) that affects T1 across climatic clines can take the 

form:  

β  = b4 T2 + b5 T2 × CS + b6 T2 × CP  (equation 2) 

where T2 is a trait that co-varies with T1;  b4, b5 and b6 are the coefficients of T2 and the interactions 

with climate of the common-garden site (CS) and with the provenance (CP).  

Multi-trait ΔTraitSDM draw upon concepts developed in functional ecology that consider weighted-

average trait values as a function of species performance to delimit species ranges (Stahl et al., 2014), 

with the additional strength that they consider intra-specific variation for each of the traits. Trait co-

variation can modulate fitness across species ranges (Laughlin & Messier, 2015), and can result in 

compensatory changes in demographic traits that buffer the negative effects of warming at the trailing 

range-edge (Peterson et al., 2018). It can also produce relationships between survival and phenology-

related traits that vary across species ranges (Richardson et al., 2017; König et al., 2018), and trade-

offs between photoperiod and tree growth that might limit species range expansion at the leading 

edge (Way & Montgomery, 2015).  



 

5. Conclusions, perspectives and limitations of ΔTraitSDM 
The ΔTraitSDM approach to understanding the controls on species ranges has been refined over the 

last decade, producing projected species ranges that are remarkably different from SDM outputs and 

generally are less alarming with regard to the consequences of climate change for species in the future. 

These differences emanate from the inclusion in ΔTraitSDM of plasticity, which can differ among 

populations across species ranges. The broad scope of ΔTraitSDM calls into question why this approach 

is not more widely used, especially for those forest tree species which are already growing in common 

gardens. The reason likely reflects technical difficulties in compiling, harmonising and calibrating 

models using extensive field measurements.  Our review shows that future conservation and 

management programs of tree populations such as assisted migration should look beyond SDM and 

not neglect the capacity of populations to adapt and acclimate to new conditions.  

ΔTraitSDM are based on empirical data measured in large networks of common gardens. This is a great 

strength of ΔTraitSDM but also its main constraint. Although incomplete data can be used in partial 

analyses, a poor representation of common gardens and provenances can easily compromise the 

statistical power of ΔTraitSDM; something that is required to scale-up processes and produce spatial 

generalisations. This is particularly important in predictive ecology, in which reaction norms inform us 

about the limits of environmental conditions that populations can withstand. In the context of climate 

change, one implication of this is straightforward: that new common gardens planted outside the limits 

of the distribution range of a species are needed to estimate the maximum tolerance of fitness-related 

traits to new conditions.  

To date, ΔTraitSDM have mostly been based on a limited variety of traits that are largely related to the 

survival component of fitness. Although growth and phenology can indirectly impact seed production, 

therefore affecting fitness through reproduction, direct measurements of reproduction are still 

missing from ΔTraitSDM. This is mainly because reproduction is largely unexplored at the range-wide 

scale in common gardens. More generally, we still know little about how well phenotypic traits 

measured under the experimental conditions of a common garden can represent phenotypic variation 

and its relation with fitness in natural populations.  

Natural selection boosts genetic differentiation among populations but reduces within-population 

genetic variation by fixing alleles (local adaptation). The potential of populations to adapt to new 

climates depends on the extent of within-population genetic variation at evolutionarily relevant loci; 

something that has not yet been addressed by ΔTraitSDM. This variation is however associated with 

climate across large gradients (Bay et al., 2018). Hence, linking genomics to phenotypic and 

environmental variation is the natural next step in ΔTraitSDM that will help us explain populations’ 
potential for adaptation under new climate conditions across species ranges.       
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Figure 1. Conceptual framework of ΔTraitSDM: A) Experimental design of common-garden networks 

across different climates (coloured oval shapes), where trees originate from different provenances 

(indicated by three colours: blue, red and yellow). Tree performance is represented by tree size. B) 

The graphs on the left represent different possible reaction norms calculated from the various 

provenances (indicated by their colour) across common gardens (three left panels); the corresponding 

graphics on the right represent the conversion of these reaction norms into trait breadth, that is, the 

relationship between the phenotype – e.g. height or survival - and fitness. C) Spatial prediction of a 

given fitness-related trait. The example shows the output of a ΔTraitSDM for Fagus sylvatica based on 

survival of young trees (adapted from Gárate Escamilla et al., 2019) estimated from the 

BeechCOSTe52 network of common gardens (Robson et al., 2018). The dashed envelope shows the 

current distribution of Fagus sylvatica (http://www.euforgen.org/species/fagus-sylvatica/) 

  

http://www.euforgen.org/species/fagus-sylvatica/


 

 

Figure 2.  Spatial predictions of habitat suitability (>0.5) from a SDM (left) and probability of young tree 

survival according to common-garden data (>0.5) from a ΔTraitSDM (right) under current (top) and 

future conditions (bottom) based on mortality measurements. The maps compare the models’ 
predictions with the current species range. Blue areas identify a perfect match between model 

predictions (habitat suitability/recruit survival) and species occurrence. Orange areas show regions 

with high suitability/recruit survival (>0.5) predicted by the models where the species is currently 

absent. Green areas indicate low suitability/recruit survival (<0.5) where the species is currently 

present. Habitat suitability was calculated using the occurrence/absence of the species according to 

EUFORGEN (http://www.euforgen.org/species/fagus-sylvatica/) and by adapting the SDM developed 

in (Stojnić et al., 2018) to match the same climatic variables as those used by the ΔTraitSDM. 

Probability of recruit survival was estimated by a ΔTraitSDM based on individual survival of young 

trees (adapted from Gárate Escamilla et al., 2019) measured in the BeechCOSTe52 network of 

provenance tests (Robson et al., 2018). Future predictions are based on RCP 8.5 (Representative 

Concentration Pathway 8.5) Scenario from the NASA Goddard Institute for Space Sciences coupled 

general circulation model for an increase in temperature ranging 3.5–4.5°C in 2100 (Nazarenko et al., 

2015). 
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 ΔTraitSDM 

 

SDM  

 

ΔTraitSDM  - SDM – PBM  

Comparison 

 Species TPVE  PVEP  PVEG Traits  References References  

Abies alba  42  

 

 

 

 

 

Tree height (Fréjaville et al., 

2019) 1  

(Pearman 

Peter B. et al., 

2008) 

SDM show a more restricted 

distribution than 

ΔTraitSDM, particularly at 
the periphery of the 

distribution.  

Artemisia 

tridentata 

79 46 33 Flowering 

phenology 

(Richardson et al., 

2017) 

  

Fagus sylvatica 45 (PVEP+ 

PVEG) 

49 (PVEP + 

PVEG) 

19 (PVEP + 

PVEG) 

 

-  

 

-  

 

-  

-  

 

-  

 

-  

Tree height 

 

D.B.H.  

 

Mortality 

 

Budburst 

 

 

 

Fruit ripening 

 

Leaf 

senescence 

(Gárate Escamilla et 

al. In review) 

 

(Gárate Escamilla et 

al. In review) 

 

 

 

 

 

 

(Gritti et al., 2013) 

(Pearman 

Peter B. et al., 

2008; Gritti et 

al., 2013; 

Stojnic et al., 

2018)  

Differences in the 

distribution depend on the 

trait used (ΔTraitSDM). 

Overall, predictions from 

ΔTraitSDM show larger 

potential distribution ranges 

than those predicted by 

SDM.  

Picea mariana 37 28 9 Tree growth  (Yang et al., 2015) -  -  

Pinus pinaster 43.1 (PVEP + 

PVEG) 

 

 

 

-  

 

 

-  

Tree height 

 

Survival  

(Benito Garzón et al., 

2011) 

-  Reduction in suitable area 

estimated with SDM by 

2080 = 60 %; reduction in 

suitable area estimated with 

ΔTraitSDM by 2050 = - 
30% 

Pinus 

ponderosa  

-  -  -  Tree height (Rehfeldt et al., 2014) (Rehfeldt et 

al., 2014) 

Large differences in tree 

growth and habitat 

suitability. No direct 

comparison of the two 

models.  



Pinus strobus 32 29 3 Tree growth (Yang et al., 2015) -  -  

Pinus sylvestris 82.4 (PVEP + 

PVEG) 

 

 

 

 

 

52.85 (PVEP 

+ PVEG) 

 

33 (PVEP + 

PVEG) 

 

- 

 

 

 

 

 

 

- 

 

 

- 

-  

 

 

 

 

 

 

- 

 

 

- 

Survival 

 

 

 

Budburst 

 

 

Survival & 

radial growth  

 

Leaf unfolding 

(Benito Garzón et al., 

2011; Valladares et 

al., 2014) 

 

(Gritti et al., 2013; 

Valladares et al., 

2014) 

 

 

(Duputié et al., 2015) 

 

 

(Duputié et al., 2015) 

(Benito 

Garzón et al., 

2008) 

 

(Gritti et al., 

2013) 

 

 

Reduction in area estimated 

with SDM by 2080 = 98%; 

reduction in suitable area 

estimated with ΔTraitSDM 
by 2050 = 1 % 

 

 

 

 

 

Pseudotsuga 

menziesii 

-  -  -  Tree height (Chakraborty et al., 

2018) 

(Chakraborty 

et al., 2018) 

ΔTraitSDM based on growth 
and SDM show very similar 

predictions under current 

climate.  

Quercus petraea  60.8 

58.1 

 

 

71 (PVEP + 

PVEG) 

7 (PVEP + 

PVEG) 

24 (PVEP + 

PVEG) 

 

59.4 

56.6 

 

 

- 

  

- 

 

- 

1.4 

1.5 

 

 

- 

 

- 

 

- 

 

Tree height 

Survival 

 

 

Budburst 

 

Fruit ripening 

 

Leaf 

senescence  

(Sáenz-Romero et al., 

2016; Fréjaville et al., 

2019) 

 

(Duputié et al., 2015) 

 

 

 

- 

 

 

 

 

 

-  

Quercus robur - - - Phenology (Gritti et al., 2013)1  (Gritti et al., 

2013) 

-  

Andropogon 

gerardii  

- - - Biomass 

Height  

Leaf width 

(Smith et al., 2017) -  -  



Chlorophyll 

content  

 

1 Reaction norms accounting for plasticity are estimated only at the core of the species distribution. 

Table 1. Comparison between ΔTraitSDM and SDM outputs for those cases where both types of models exist or where local adaptation and phenotypic 

plasticity have been quantified across species ranges. TPVE: Total percentage of the variance explained by the model; PVEP: Percentage of the variance 

explained by plasticity; PVEG: Percentage of the variance explained by local adaptation; Traits: phenotypic traits used by the model; References: references 

from which the data for the ΔTraitSDM and SDM have been extracted to compare the two modelling approaches.  
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 5 

 SDM – ΔTraitSDM comparison  
for Fagus sylvatica 

SDM – habitat 

suitability (%) 

ΔTraitSDM 
survival (%) 

PRESENT current occupied range predicted to have high 

suitability/survival 

(blue in Fig. 2)  

93.56 

 

52.65 

 

 current occupied range predicted to have low 

suitability/survival  

(green in Fig. 2)  

6.27 

 

47.34 

 current un-occupied range predicted to have 

high suitability/survival  

(orange in Fig. 2)  

30.90 

 

113.30 

 

2070 RCP 

8.5 

current occupied range predicted to have high 

suitability/survival – range persistence  

(blue in Fig. 2)  

48.22 

 

49.64 

 

 current occupied range predicted to have low 

suitability/survival – range retreat  

(green in Fig. 2)  

49.98 

 

50.36 

 

 current un-occupied range predicted to have 

high suitability/survival  

(orange in Fig. 2)  

88.72 100.45 

 

 6 

Table 2. Comparison between predictions of habitat suitability (SDM) and probability of young tree 7 

survival (ΔTraitSDM) shown in Fig. 2. See Fig. 2 caption for details.  8 
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