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Abstract

This paper proposes two novel dual adaptive neural control schemes for the dynamic control of
nonholonomic mobile robots. The two schemes are developed in discrete-time and the robot's nonlinear
dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer
perceptron neural networks are used for function approximation. In each scheme, the unknown network
parameters are estimated stochastically in real-time, and no preliminary of�ine neural network training
is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the
dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but
account for the uncertainty in the estimates. This results in a major improvement in tracking performance,
despite the plant uncertainty and unmodelled dynamics. Monte Carlo simulation and statistical hypothesis
testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to
the trajectory tracking problem of a differentially driven wheeled mobile robot.

I. INTRODUCTION

The last two decades have witnessed an intense level of research activity on motion control
of nonholonomic mobile robots [1]�[17]. This interest is primarily justi�ed by a vast array
of existing and potential practical applications [18]�[22]. In addition, a number of particularly
interesting theoretical challenges enrich this �eld of study. In particular, most mobile robot
con�gurations manifest restricted mobility, giving rise to nonholonomic constraints in their
kinematics. Moreover, the majority of mobile robots are underactuated, having less control
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inputs than degrees of freedom. Consequently, the linearized kinematic model of these robots
lacks controllability; full-state feedback linearization is out of reach [3]; and pure smooth time-
invariant feedback stabilization of the Cartesian model is unattainable [23].

Kinematic control, which dominated research efforts in the control of mobile robots for over
a decade [1]�[3], [5], relies on the assumption that the control inputs, usually motor voltages,
instantaneously establish the desired robot velocities. This outlook completely ignores the robot
dynamics, and is commonly known as perfect velocity tracking [6]. In contrast, control schemes
based on a full dynamic model [4], [6], [10], capture completely the behaviour of real mobile
robots by accounting for dynamic effects due to mass, friction and inertia, which are otherwise
neglected by kinematic control. However, the robot dynamic functions are nonlinear and include
parameters that are often uncertain or even unknown, and which may also vary over time.
These factors call for the development of nonlinear adaptive dynamic controllers to handle better
unmodelled robot dynamics.

In response to these complex control issues, a number of advanced controllers have recently
been proposed. Pre-trained function estimators, typically arti�cial neural networks (ANNs), have
been used to render nonadaptive conventional controllers more robust in the face of uncertainty
[12], [13]. These techniques require preliminary open-loop plant identi�cation and remain blind to
parametric and/or functional variations taking place after the training phase. Parametric adaptive
control and robust sliding mode control, have also been proposed to mitigate the problem of
unknown or uncertain mobile robot parameters [8], [10]. Another approach is that of online
functional-adaptive control, where the uncertainty is not restricted to parametric terms, but covers
the dynamic functions themselves [7], [11], [14]�[17]. We consider this approach to be more
general and superior in handling higher degrees of uncertainty and unmodelled dynamics.

Adaptive controllers which have hitherto been proposed for the control of mobile robots, rely
on the heuristic certainty equivalence (HCE) assumption [7], [11], [14]�[17]. This means that
the estimated functions are used by the controller as if they were the true ones, thereby ignoring
completely their uncertainty. When the uncertainty is large, for instance during startup or when
the unknown functions are changing, HCE often leads to large tracking errors and excessive
control actions, which can excite unmodelled dynamics or even lead to instability [24], [25].

In this paper we address these shortcomings via nonlinear stochastic adaptive control [24].
In stochastic adaptive control the uncertainty in the system is characterized by probability
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distributions and their associated statistical measures. Moreover, an adaptive stochastic control
law is a function of the parameter estimates as well as the uncertainty measures of these estimates.
A major contribution in stochastic adaptive control is the dual control principle, introduced by
Fel'dbaum [26]�[28]. A dual adaptive control law is designed with two aims in mind: (i) to ensure
that the controlled output tracks the desired reference signal, with due consideration given to the
estimates' uncertainty; (ii) to excite the plant suf�ciently so as to accelerate estimation, thereby
reducing quickly the uncertainty in future estimates. These two features are known as caution
and probing respectively [25], [29]. Fel'dbaum showed that the exact solution of the optimal
adaptive dual control problem can be derived using dynamic programming, speci�cally by solving
the so called Bellman equation [26]�[28]. However, in almost all practical scenarios (with the
exception of a few very simple cases [30]) this equation is impossible to solve, due to the very
large dimensions of the underlying space [24], [25], [29], [31]. Consequently, a large number of
suboptimal dual controllers have been proposed [25], [29], [31]�[35]. Although these suboptimal
methods sacri�ce optimality to render the algorithm computationally feasible, they are designed
in a way to conserve the main dual features characterizing the optimal dual adaptive controller,
namely caution and probing. In literature these suboptimal methods are further divided into
two groups, namely implicit and explicit dual methods [25], [29]. The former type are based
on various approximations of the optimal cost function [36], while the latter are based on a
reformulation of the optimal adaptive control problem, so as the resulting solution is tractable
but still maintains the much desired dual properties [25], [33], [37] possessed by the optimal
controller. There are also a number of publications documenting successful practical applications
of dual adaptive control [38]�[41].

The main contributions of the work presented in this paper are twofold. Firstly it is an extension
of the control laws introduced by Fabri et al. [34] for the realization of dual adaptive control
to intelligent neural network-based control systems. In this paper we propose two novel dual
adaptive neural network controllers such that the work in [34] is generalized from the restricted
single-input, single-output (SISO) case to the multiple-input, multiple-output (MIMO) nonlinear
robot problem. The second main contribution is the investigation and statistical validation of the
proposed dual control laws as applied to adaptive dynamic control of mobile robots. To the best
of our knowledge, this application of dual control has not been previously investigated. We show
that the proposed schemes lead to a signi�cant improvement in performance as demonstrated by
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extensive simulation results and a rigorous Monte Carlo statistical analysis.
Speci�cally, in this paper two novel dual adaptive neural control schemes are proposed for

the dynamic control of nonholonomic mobile robots. ANNs are employed for the real-time
approximation of the robot's nonlinear dynamic functions which are assumed to be unknown.
The �rst scheme is based on Gaussian radial basis function (GaRBF) ANNs, and the second on
sigmoidal multilayer perceptron (MLP) ANNs. The relative merits of each scheme are detailed
later in the text. In each case, no preliminary of�ine neural network training is required, and the
estimated functions and a measure of their uncertainty are both used in a suboptimal explicit dual
adaptive discrete-time control law, which operates in cascade with a trajectory tracking kinematic
controller. Each of the two schemes brings by a major improvement in tracking performance
when compared to HCE control, under conditions of functional uncertainty and unmodelled
dynamics.

Generally speaking the convergence and stability analysis of dual adaptive control schemes
presents a very dif�cult challenge, mainly due to the stochastic and adaptive nature of the
problem. The few works that address these issues consider only linear systems of a particular
form and are characterized by a number of non-trivial assumptions [33], [42]. Consequently,
to prove strict convergence and stability for a dual adaptive controller for a nonlinear system,
is still considered to be an open problem within the research community. Hence in practice,
as argued in [33], the stability of dual adaptive controllers is commonly checked by computer
simulations and experimental applications. In this regard, we employ Monte Carlo simulation
and statistical hypothesis testing to illustrate the effectiveness of the proposed control methods
as applied to the trajectory tracking problem of a differentially driven wheeled mobile robot
(WMR). Nevertheless, the employed framework is completely modular, and the presented dual
adaptive dynamic controllers are valid also for different kinematic control laws that may be used
to address other types of robot control problems such as posture stabilization and path following
[3], [9].

The rest of the paper is organized as follows. Section II develops the stochastic discrete-time
dynamic model of the robot. This is then used to design the dual adaptive controllers outlined
in Section III. Monte Carlo simulations results and statistical hypothesis testing are presented in
Section IV, which is followed by a conclusion in Section V.
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II. MODELLING

This work considers the differentially driven WMR depicted in Fig. 1. The passive wheel is
ignored and the following notation is adopted throughout the article:
Po: midpoint between the two driving wheels
Pc: centre of mass of the platform without wheels
d: distance from Po to Pc

b: distance from each wheel to Po

r: radius of each wheel
mc: mass of the platform without wheels
mw: mass of each wheel
Ic: moment of inertia of the platform about Pc

Iw: moment of inertia of wheel about its axle
Im: moment of inertia of wheel about its diameter

The robot state vector is given by q , [x y φ θr θl]
T , where (x, y) is the Cartesian coordinate

of Po, φ is the robot's orientation with reference to the xy frame, and θr, θl are the angular
displacements of the right and left driving wheels respectively. The pose of the robot refers to
the three-dimensional vector p , [x y φ].

x

y

2r

2b

d

Po

Pc
φ

Driving wheels

Passive

wheel

Centre of

mass

Geometric

centre

Fig. 1. Differentially driven wheeled mobile robot

September 17, 2007 DRAFT



IEEE TRANSACTION ON SYSTEMS, MAN, AND CYBERNETICS � PART B: CYBERNETICS 5

A. Kinematics

Assuming that the wheels roll without slipping, the mobile platform is subject to three
kinematic constraints (two of which are nonholonomic [4]), which can be written in the form
A(q)q̇ = 0, where

A(q) =




− sin φ cos φ 0 0 0

cos φ sin φ b −r 0

cos φ sin φ −b 0 −r


 .

Furthermore, one can easily verify that A(q)S(q) = 0, where

S =




r
2
cos φ r

2
cos φ

r
2
sin φ r

2
sin φ

r
2b

− r
2b

1 0

0 1




.

Hence, the kinematic model of this WMR is given by

q̇ = S(q)ν, (1)

where ν represents a column vector composed of the angular velocities of the two driving wheels,
speci�cally ν , [νr νl]

T ,
[
θ̇r θ̇l

]T

.

B. Dynamics

The equations of motion of this WMR are given by the matrix equation

M(q)q̈ + V (q̇, q)q̇ + F (q̇) = E(q)τ −AT (q)λ, (2)

where M (q) is the inertia matrix, V (q̇, q) is the centripetal and Coriolis matrix, F (q̇) is a
vector of frictional forces, E(q) is the input transformation matrix, τ is the torque vector, and
λ is the vector of constraint forces [4].

Deriving the WMR dynamics, requires the elimination of the kinematic constraints AT (q)λ

from (2). In literature [4], [6], [8], this is done by differentiating (1) with respect to time,
substituting the expression for q̈ in (2), pre-multiplying the resulting expression by ST (q), and
noting that ST (q)AT (q) = 0. The resulting dynamic model is given by

M̄ν̇ + V̄ (q̇)ν + F̄ (q̇) = τ , (3)
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where:

M̄ =




r2

4b2
(mb2 + I) + Iw

r2

4b2
(mb2 − I)

r2

4b2
(mb2 − I) r2

4b2
(mb2 + I) + Iw


 ,

V̄ (q̇) =




0 mcr2dφ̇
2b

mcr2dφ̇
2b

0


 ,

F̄ (q̇) = ST (q)F (q̇), I = (Ic + mcd
2) + 2(Im + mwb2), and m = mc + 2mw. It is important to

note that:
Remark 2.1: M̄ is symmetric, positive de�nite, and is independent of the state vector or its

derivatives.
Remark 2.2: V̄ (q̇) and F̄ (q̇) constitute the nonlinear terms in the WMR dynamics.
Remark 2.3: V̄ (q̇) is effectively a function of ν, since φ̇ = r

2b
(νr − νl) as can be seen in (1).

To account for the fact that the controller is to be implemented on a digital computer, the
continuous-time dynamics (3) are discretized through a �rst order forward Euler approximation
with a sampling interval of T seconds. The resulting nonlinear discrete-time dynamic model is
given by

νk − νk−1 = fk−1 + Gk−1τk−1, (4)

where the subscript integer k denotes that the corresponding variable is evaluated at time kT

seconds, and vector fk−1 and matrix Gk−1, which together encapsulate the WMR dynamics, are
given by

fk−1 = −TM̄−1
k−1

(
V̄k−1νk−1 + F̄k−1

)
,

Gk−1 = TM̄−1
k−1.

The following conditions are assumed to hold:
Assumption 2.1: The control input vector τ remains constant over a sampling interval of T

seconds (zero order hold).
Assumption 2.2: The sampling interval is chosen low enough for the Euler approximation

error to be negligible.
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III. CONTROL DESIGN

The trajectory tracking task of WMRs is commonly de�ned via the concept of the virtual
vehicle [2]. The time dependent reference trajectory is designated by a non-stationary virtual
vehicle, kinematically identical to the real robot. The controller aims for the real WMR to track
the virtual vehicle at all times, in both pose and velocity, by minimising the discrete-time tracking
error vector ek de�ned as

ek ,




e1k

e2k

e3k




,




cos φk sin φk 0

− sin φk cos φk 0

0 0 1




(prk − pk) , (5)

where prk , [xrk yrk φrk]
T denotes the virtual vehicle pose vector at sampling instant k.

A. Kinematic Control

In trajectory tracking, the objective is to make e converge to zero, so that p converges to
pr. For this task, a discrete-time version of the continuous-time kinematic controller originally
presented in [2] is employed. This is given by

νck = C




vrk cos e3k + k1e1k

ωrk + k2vrke2k + k3vrk sin e3k


 , (6)

where νck is the wheel velocity command vector issued by the kinematic controller, k1, k2, and
k3 are positive design parameters, vrk and ωrk are the translational and angular virtual vehicle
velocities respectively, and C is a velocity conversion matrix given by

C =




1
r

b
r

1
r
− b

r


 .

If one assumes perfect velocity tracking (i.e. νk = νck ∀ k), and ignores the WMR dynamic
effects by considering only the kinematic model (1), then (6) completely solves the trajectory
tracking problem. However as mentioned earlier, mere kinematic control rarely suf�ces, and
often leads to performance degradation in demanding practical control situations where dynamic
effects are no longer negligible [6], [10].
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B. Nonadaptive Dynamic Control

If the nonlinear dynamic functions fk and Gk are perfectly known, the control law

τk = G−1
k (νck+1 − νk − fk + kd (νck − νk)) , (7)

with the design parameter −1 < kd < 1, yields the following closed-loop dynamics

νk+1 = νck+1 + kd (νck − νk) . (8)

Note that in contrast to [7], [11], [43], the proposed control law (7) has the desirable property
of yielding closed loop dynamics which are completely independent of the robot parameters.
Moreover, this control law solves the velocity tracking problem, since (8) and the choice of
kd assure that |νck − νk| → 0 as k →∞. It is important to note the issues presented in the
following remarks:

Remark 3.1: Control law (7) requires the velocity command vector νck+1 to be available at
instant k. For this reason, the kinematic control law (6) is advanced by one sampling interval.
This means that at instant k, the values of vrk+1, ωrk+1 and ek+1 need to be known. Additionally,
from (5) it is clear that prk+1 and pk+1 are also required to determine ek+1. Having the values
of prk+1, vrk+1 and ωrk+1 available at instant k is easy, since it simply means that the path-
planning algorithm is required to generate the reference trajectory one sampling interval ahead.
On the other hand, we propose to estimate the value of pk+1 via the �rst-order approximation
pk+1 ≈ 2pk − pk−1. This is justi�ed because it assumes that a typical sampling interval in the
order of milliseconds, is short enough to reasonably consider ṗ to remain constant between two
consecutive samples.

Remark 3.2: The case with kd = 0 in (7), corresponds to deadbeat control associated with
digital control systems [44].

C. Dual Adaptive Dynamic Control

The dynamic control law (7) driven by the kinematic law (6), solves the trajectory tracking
problem when the WMR dynamic functions fk−1 and Gk−1 in (4) are completely known. As
emphasized in Section I, this is rarely the case in real-life robotic applications commonly man-
ifesting: unmodelled dynamics, unknown/time-varying parameters, and imperfect/noisy sensor
measurements. In previous publications [15], [16], we tackle these issues via HCE adaptive
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control. In contrast, the two schemes presented in this paper not only consider fk−1 and Gk−1

to be completely unknown, but also feature dual adaptive properties to handle the issue of
uncertainty as explained in Section I.

1) GaRBF Dual Adaptive Scheme: Within this scheme, a GaRBF ANN [45] is used to
approximate the vector of discrete nonlinear functions fk−1. The advantage of using a GaRBF
ANN comes from the fact that the unknown optimal parameters appear linearly in the neural
network equations. This detail, which is clari�ed further in the following treatment, permits the
use of the well established techniques of Kalman �ltering for the real-time, least-squares-sense
optimal estimation of the unknown neural network parameters.

The GaRBF ANN employed to approximate fk−1, the estimate of which is denoted by f̂k−1,
is given by

f̂k−1 =




φT (xk−1)ŵ1k

φT (xk−1)ŵ2k


 , (9)

in the light of the following de�nitions and assumptions:
De�nition 3.1: xk−1 represents the ANN input vector, which in this case is set to νk−1.
De�nition 3.2: φ(x) is the ANN Gaussian basis function vector, whose ith element is given by

φi = exp
(
−0.5× (x−mi)

T Rr
−1 (x−mi)

)
,

where mi is the centre-coordinate vector of the ith basis function, Rr is the corresponding
covariance matrix, and the time index has been dropped for clarity.

De�nition 3.3: ŵjk represents the weight vector of the connection between the basis functions
and the jth output element of the network. The ˆ notation is used to indicate that the operand
is undergoing estimation. This convention is adopted throughout the paper.

De�nition 3.4: Let L denote the number of basis functions.
Assumption 3.1: The ANN input vector xk−1 is assumed to be contained within an arbitrarily

large compact set χ ⊂ R2.
Assumption 3.2: The basis functions are shaped and placed within the compact set χ, by

setting mi and Rr accordingly.
Sanner and Slotine [46] show that by utilising knowledge on the frequency characteristics of
the function being estimated, the number of basis functions and their corresponding means and
covariance matrices can be selected so as to satisfy a desired level of optimal approximation
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error. Moreover, our simulations indicate that the overall performance of the controller is not
overly sensitive to the placement and covariance of the basis functions as long as Assumption 3.1
is adhered to.

From Remark 2.1 it follows that Gk−1 has the following form

Gk−1 =




g1k−1 g2k−1

g2k−1 g1k−1


 ,

a symmetric state-independent matrix, with unknown elements. Consequently, its estimation does
not require the use of an ANN. The symmetry of Gk−1 is exploited when constructing its estimate
Ĝk−1 by imposing the following structure

Ĝk−1 =




ĝ1k−1 ĝ2k−1

ĝ2k−1 ĝ1k−1


 , (10)

where ĝ1k−1 and ĝ2k−1 represent the estimates of the unknown elements g1k−1 and g2k−1.
The GaRBF ANN parameter-tuning algorithm is developed next. Some de�nitions and as-

sumptions are required before proceeding:
De�nition 3.5:

Φk−1 ,




φT 0T

0T φT


 , Γk−1 ,




τrk−1 τlk−1

τlk−1 τrk−1


 ,

and Hk−1 , [Φk−1
... Γk−1], where: 0 is a zero vector bearing the same length as φ, τrk−1

and τlk−1 are the �rst and second elements of the torque vector τk−1 respectively, and the time
index in Φk−1 indicates that φ is a function of xk−1.

De�nition 3.6: The individual parameter vectors requiring estimation, are all grouped into a
single vector ẑk , [ŵ1

T
k ŵ2

T
k ĝ1k−1 ĝ2k−1]

T .

De�nition 3.7: The measured output in the dynamic model (4) is denoted by yk , νk − νk−1.
De�nition 3.8: The information state [25], denoted by Ik, consists of all output measurements

up to instant k and all the previous inputs, denoted by Y k and Uk−1 respectively.
Assumption 3.3: Inside the compact set χ, the ANN approximation error is negligibly small,

when the synaptic weight vectors ŵ1k and ŵ2k, are equal to some unknown optimal vectors
denoted by w∗

1k
and w∗

2k
respectively.
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This assumption is justi�ed in the light of the Universal Approximation Theorem of neural
networks [45]. The ∗ notation is used throughout the paper to refer to the optimal value of
the operand. In view of the stochastic adaptive approach taken in this paper, the unknown
optimal parameter vector z∗

k , [w∗
1

T
k

w∗
2

T
k

g1k−1 g2k−1]
T is treated as a random variable. In

the following we assume that the initial value of z∗
k has a Gaussian distribution.

Assumption 3.4: p(z∗
0 ) ∼ N (z̄0,Rz0).

In practice, Rz0 re�ects the con�dence in prior knowledge of the estimated vector; larger values
indicating less con�dence in the initial parameter estimate vector z̄0.

The stochastic formulation of this problem can also include, in a straight forward manner,
uncertainty in the measurements (e.g. due to noisy sensors). We therefore introduce a discrete
random vector εk additively with the measured output yk under the following assumptions:

Assumption 3.5: εk is an independent zero-mean white Gaussian process, with covariance
matrix Rε.

Assumption 3.6: z∗
0 and εk are mutually independent ∀k.

By (9), (10), De�nitions 3.1 to 3.7, and Assumptions 3.1 to 3.3, it follows that the WMR
dynamic model (4) can be represented in the following state-space form

z∗
k+1 = z∗

k

yk = Hk−1z
∗
k + εk.

(11)

As seen in 11, the GaRBF ANN leads to a model which is linear in terms of the unknown
neural network parameters. This is exploited by employing the well known Kalman �lter [47]
in predictive mode, for the real-time least-square sense optimal stochastic estimation of z∗

k+1, as
detailed in the following lemma.

Lemma 3.1: In the light of all the previous de�nitions, Assumptions 3.4 to 3.6 and (11), it fol-
lows that p(z∗

k+1|Ik) ∼ N (ẑk+1,Pk+1), and so ẑk+1 is the optimal estimate of z∗
k+1 conditioned

on Ik, provided that ẑk+1 and Pk+1 satisfy the following Kalman �lter equations:

ẑk+1 = ẑk + Kkik

Pk+1 = Pk −KkHk−1Pk,
(12)

where the Kalman gain matrix, the innovations vector, and the �lter's initial conditions are
respectively given by:
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Kk = PkH
T
k−1

(
Hk−1PkH

T
k−1 + Rε

)−1, ik = yk −Hk−1ẑk, and ẑ0 = z̄0, P0 = Rz0. Addition-
ally, in the light of (11), (12), De�nition 3.8, and the theory of Gaussian random variables [48],
it follows that p(yk+1|Ik) ∼ N (Hkẑk+1,HkPk+1H

T
k + Rε).

Proof: The proof follows directly that of the standard predictive type Kalman �lter [47],
[48] when applied to the state-space stochastic model (11).

The Kalman �lter formulation (12) constitutes the adaptation law for the proposed GaRBF
dual adaptive scheme. Additionally, it provides a real-time update of the density p(yk+1|Ik).
This information is essential in dual control since unlike HCE schemes, the uncertainty of the
estimates is not ignored.

The dual control law for the GaRBF scheme is presented next. It is based on the innovations
dual method originally proposed by Milito et. al. [37] for SISO linear systems. This approach
was later extended by Fabri and Kadirkamanathan [25], [34] for dual adaptive neural control
of nonlinear SISO systems. In contrast to these works, our control law addresses the nonlinear
MIMO nature of the relatively more complex WMR system.

The explicit-type suboptimal innovation-based performance index Jinn, adopted from [34], but
modi�ed to �t the MIMO scenario at hand is de�ned as

Jinn , E
{ (

yk+1 − ydk+1

)T
Q1

(
yk+1 − ydk+1

)
+

(
τ T

k Q2τk

)
+

(
iT
k+1Q3ik+1

) ∣∣∣Ik
}

,

where E
{·|Ik

}
denotes the mathematical expectation conditioned on Ik, and the following

de�nitions apply:
De�nition 3.9: ydk+1 is the reference vector of yk+1 and is given by ydk+1

, νck+1
− νk

(refer to De�nition 3.7).
De�nition 3.10: Design parameters Q1, Q2 and Q3 are diagonal and ∈ R2×2. Additionally:

Q1 is positive de�nite, Q2 is positive semi-de�nite, and each element of Q3 is less than or
equal to 0, and greater than or equal to the corresponding element of −Q1.

Remark 3.3: The design parameter Q1 is introduced to penalize tracking errors, Q2 induces
a penalty on large control inputs and prevents ill-conditioning, and Q3 affects the innovation
vector so as to induce the dual adaptive feature characterising this work.
The dual adaptive control law proposed for this scheme is stated by the following theorem.

Theorem 3.1: The control law minimising performance index Jinn (13), subject to the WMR
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dynamic model (4) and all previous de�nitions, assumptions and Lemma 3.1, is given by

τk =
(
ĜT

k Q1Ĝk + Q2 + Nk+1

)−1

×
(
ĜT

k Q1

(
ydk+1 − f̂k

)− κk+1

)
, (13)

where the following de�nitions apply:
De�nition 3.11: Let Q4 , Q1 + Q3, and the ith row, j th column element of any matrix AS

be denoted by aS(i, j).
De�nition 3.12: Pk+1 in (12) is repartitioned as

Pk+1 =




Pff k+1 PGf
T
k+1

PGf k+1 PGGk+1


 ,

where: Pff k+1 ∈ R2L×2L and PGGk+1 ∈ R2×2.

De�nition 3.13: Auxiliary matrix B , PGf k+1Φ
T
k Q4, and

κk+1 ,
[
b(1, 1) + b(2, 2) b(1, 2) + b(2, 1)

]T .
De�nition 3.14: The elements of Nk+1 are given by:

n(1, 1) = q4(1, 1)pGG(1, 1) + q4(2, 2)pGG(2, 2)

n(2, 2) = q4(1, 1)pGG(2, 2) + q4(2, 2)pGG(1, 1)

n(1, 2) = 0.5×
(
q4(1, 1)pGG(1, 2) + q4(1, 1)pGG(2, 1)

+ q4(2, 2)pGG(1, 2) + q4(2, 2)pGG(2, 1)
)

n(2, 1) = n(1, 2).

Note that the time index in Nk+1 indicates that each individual element pGG(·, ·) corresponds to
PGGk+1.

Proof: By the Gaussian distribution of p(yk+1|Ik) speci�ed in Lemma 3.1, and standard
results from multivariate probability theory, it follows that cost function (13) can be written as

Jinn =
(
Hkẑk+1 − ydk+1

)T
Q1

(
Hkẑk+1 − ydk+1

)

+ trace
{
Q4

(
HkPk+1H

T
k + Rε

)}
+ τ T

k Q2τk.

By replacing Hkẑk+1 by f̂k + Ĝkτk, and employing the formulations in De�nitions 3.5 and 3.12
to factorize completely the resulting expression in terms of τk, it is possible to differentiate the
cost function with respect to τk and equate to zero, in order to get the dual control law (13). The
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resulting second order partial derivative of Jinn with respect to τk, the Hessian matrix, is given
by 2 ×

(
ĜT

k Q1Ĝk + Q2 + Nk+1

)
. By De�nitions 3.10 and 3.14, it is clear that the Hessian

matrix is positive de�nite, meaning that τk in (13) minimizes the dual performance index (13)
uniquely. Moreover, the latter implies that the inverse term in (13) exists without exceptions.
Referring to control law (13) one can note the following:

Remark 3.4: Q3 which appears in (13) via κk+1 acts as a weighting factor, where at one
extreme, with Q3 = −Q1, the controller completely ignores the estimates' uncertainty, resulting
in HCE control, and at the other extreme, with Q3 = 0, it gives maximum attention to uncer-
tainty, which leads to cautious control. For intermediate settings of Q3, the controller strikes a
compromise and operates in dual adaptive mode. It is well known that HCE control leads to large
tracking errors and excessive control actions when the estimates' uncertainty is relatively high.
On the other hand, cautious control is notorious for sluggish response and control turn-off [25],
[29]. Consequently, dual control exhibits superior performance by striking a balance between
the two extremes.

2) Sigmoidal MLP Dual Adaptive Scheme: Another type of neural network, commonly em-
ployed in control applications, is the sigmoidal MLP ANN [7], [14], [16], [45]. Unfortunately,
MLP networks do not preserve the desirable property of linearity in the unknown network
parameters exhibited by radial basis function networks. As a result, the former Kalman �lter has
to be replaced by a suboptimal, nonlinear, stochastic estimator, like the extended Kalman �lter
(EKF), which complicates the derivation of the control law and introduces certain approximations.
On the other hand, unlike the activation functions employed in GaRBF ANNs, the sigmoidal
functions in MLPs do not have localized receptive �elds, implying that typically MLP networks
require less neurons than GaRBF ANNs to achieve the same degree of accuracy. This implies
that MLPs tend to be less computationally demanding, making them attractive for high-order
systems, since the number of neurons need not rise exponentially with the number of states; a
well known effect known as the curse of dimensionality [49].

Within this scheme, a sigmoidal MLP ANN with one hidden layer is used to approximate
the unknown vector fk−1. Consequently, a new parameter-tuning algorithm and control law,
differing from those of the GaRBF scheme, need to be derived. In the following treatment some
of the variables de�ned earlier within the previous scheme are rede�ned and reused. Hence each
variable, de�nition, assumption or remark, should be interpreted in the context of the scheme in
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focus at the time.
The sigmoidal MLP ANN output is given by

f̂k−1 =




φT (xk−1, âk)ŵ1k

φT (xk−1, âk)ŵ2k


 , (14)

where the following de�nitions are in order:
De�nition 3.15: xk−1 , [νk−1 1] is the ANN input, where the augmented constant serves

as a bias input.
De�nition 3.16: φ(·, ·) is the vector of sigmoidal activation functions, whose ith element is

given by
φi =

(
1 + exp(−ŝi

T x)
)−1, where ŝi is ith vector element in the group vector â;

i.e. â ,
[
ŝ1

T · · · ŝL
T
]T , where L denotes the number of neurons. In practice ŝi characterizes

the shape of the ith neuron.
In this de�nition, the time index has been dropped for the sake of clarity.

De�nition 3.17: ŵjk represents the synaptic weight estimate vector of the connection between
the neurons in the hidden hidden layer and the jth output element of the ANN.

The sigmoidal MLP ANN parameter-tuning algorithm is developed next. The following for-
mulation is required.

De�nition 3.18: The unknown network parameters requiring estimation are grouped in a single
vector
ẑk ,

[
r̂T

k ĝT
k

]T , where r̂k ,
[
ŵ1

T
k ŵ2

T
k âT

k

]T and ĝk ,
[
ĝ1k−1 ĝ2k−1

]
. The latter vector groups

up the elements of Ĝk−1, as de�ned in (10).
Assumption 3.7: Inside the compact set χ, the neural network approximation error is negligi-

bly small when the ANN parameter vector r̂k is equal to some unknown optimal vector denoted
by r∗

k .
The latter follows the same justi�cation as in the case of Assumption 3.3.

By (10) and (14), De�nitions 3.7, and 3.15 to 3.18, and Assumptions 3.1, 3.5 and 3.7, it
follows that the dynamic model (4) can be represented in the following state-space form

z∗
k+1 = z∗

k

yk = h (xk−1, τk−1,z
∗
k ) + εk,

(15)
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where h (xk−1, τk−1, z
∗
k ) is a nonlinear vector �eld in terms of the unknown optimal parameter

z∗
k given by,

h (xk−1, τk−1,z
∗
k ) = f̂k−1(xk−1, r

∗
k) + Ĝk−1(g

∗
k )τk−1.

It should be noted that:
Remark 3.5: The unknown optimal parameter vector z∗

k , required for the estimation of fk−1

and Gk−1 in (14) and (10) respectively, does not appear linearly in the system model (15).
Consequently nonlinear estimation techniques have to be used.

In this paper we opt to employ the well known EKF [48] in predictive mode for the estimation
of z∗

k+1, as detailed right after the following set of necessary preliminaries.
De�nition 3.19: ∇hk denotes the Jacobian matrix of h (xk−1, τk−1,z

∗
k ) with respect to z∗

k

evaluated at ẑk.
By (10), (14), and (16) it can be shown that:

∇hk ,
[∇f k ∇Γk

]
,

[
∂(f̂k−1)

∂(r̂k)

∂(Ĝk−1τk−1)

∂(ĝk)

]
,

where:
∂(f̂k−1)

∂(r̂k)
=




φT
k−1 0T

0T φT
k−1

· · · ŵ1,i(φi − φi
2)xT · · ·

· · · ŵ2,i(φi − φi
2)xT · · ·


 ,

i = 1, . . . , L and ŵj,i denotes the ith element of the jth output network parameter vector ŵjk,
notation-wise φk−1 implies that the activation function is evaluated for xk−1 and âk, 0 denotes
a zero vector having the same length as φk−1, and in this equation both φi and x correspond to
time instant (k − 1);

∂(Ĝk−1τk−1)

∂(ĝk)
=




τrk−1 τlk−1

τlk−1 τrk−1


 ,

where τrk−1
and τlk−1

are de�ned in De�nition (3.5).
In the light of De�nitions 3.8 and 3.19, and Assumptions 3.4 and 3.6, the EKF is applied

to the nonlinear stochastic model (15). The EKF effectively linearizes the non-linear function
h (xk−1, τk−1,z

∗
k ) around the current estimate ẑk, and applies the Kalman �lter using the

resulting Jacobian and the following approximation

p(z∗
k+1|Ik) ≈ N (ẑk+1,Pk+1), (16)

September 17, 2007 DRAFT

https://www.researchgate.net/publication/215721589_Stochastic_Models_Estimation_and_Control?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1


IEEE TRANSACTION ON SYSTEMS, MAN, AND CYBERNETICS � PART B: CYBERNETICS 17

where ẑk+1 and Pk+1 satisfy the EKF recursive equations

ẑk+1 = ẑk + Kkik,

Pk+1 = Pk −Kk∇hkPk,
(17)

in which the EKF gain matrix, the innovations vector, and the �lter's initial conditions are given
by:
Kk = Pk∇h

T
k

(∇hkPk∇h
T
k Rε

)−1, ik = yk − h (xk−1, τk−1, ẑk), and ẑ0 = z̄0, P0 = Rz0 re-
spectively.

Expressing yk+1 as a �rst order Taylor series around z∗
k+1 = ẑk+1 yields the following ap-

proximation
yk+1 ≈ h (xk, τk, ẑk+1) + ∇hk+1

(
z∗

k+1 − ẑk+1

)
+ εk+1, (18)

which results in the following lemma.
Lemma 3.2: On the basis of approximations (16) and (18), it follows that p(yk+1|Ik) is

approximately Gaussian with mean h (xk, τk, ẑk+1) and covariance ∇hk+1Pk+1∇h
T
k+1 + Rε.

Proof: The proof follows directly from: the linearity of (18), the approximate conditional
distribution of z∗

k+1 in (16), and the Gaussian distribution of εk+1 as speci�ed in Assumption 3.5.

The EKF formulation (17) constitutes the adaptation law for the proposed sigmoidal MLP dual
adaptive scheme. Moreover, it provides a real-time update of the density p(yk+1|Ik) as detailed
in Lemma 3.2. This information is employed by the dual control law, speci�cally derived for
this scheme, which is presented in the following theorem.

Theorem 3.2: Control law (13) minimizes the performance index used in the GaRBF scheme,
namely Jinn (13) subject to: De�nitions 3.9 and 3.10, Remark 3.3, the WMR dynamics (4),
all de�nitions and assumptions employed within this scheme, and Lemma 3.2; in the light of
De�nitions 3.11 to 3.14 in the context of this scheme and subject to the following variations:

• The covariance matrix Pk+1 is repartitioned as before according to De�nition 3.12, but in
this case Pffk+1

∈ R5L×5L.
• The auxiliary matrix B, in De�nition 3.13, is rede�ned as B , PGf k+1∇f

T
k Q4.

Proof: Given the approximate Gaussian distribution p(yk+1|Ik) in Lemma 3.2, and standard
results from multivariate probability theory, it follows that within this scheme, (13) can be written
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as

Jinn =
(
hk+1 − ydk+1

)T
Q1

(
hk+1 − ydk+1

)
+ τ T

k Q2τk

+ trace
{

Q4

(
∇hk+1

Pk+1∇T
hk+1

+ Rε

)}
,

where hk+1 denotes h (xk, τk, ẑk+1). Replacing hk+1 by f̂k + Ĝkτk and employing the formu-
lations in De�nitions 3.12 and 3.19 to factorize completely the resulting expression in terms
of τk, it is possible to differentiate the cost function with respect to τk and equating to zero;
leading to the dual control law (13) as speci�ed in Theorem 3.2. The resulting Hessian matrix
is again given by 2×

(
ĜT

k Q1Ĝk + Q2 + Nk+1

)
, and the same reasoning in its regards, as in

the proof of Theorem 3.1, applies.
Remark 3.4 is also valid for the dual control law proposed for this scheme, since the latter is

still based on the same innovations dual control philosophy.

IV. SIMULATION RESULTS

This section presents a number of simulation results1 demonstrating the effectiveness of the two
dual control schemes proposed in this paper. Given the non-deterministic nature of the stochastic
system in question, one cannot rely solely on a single simulation trial to verify the system's
performance. For this reason, a comprehensive Monte Carlo comparative analysis, supported by
statistical hypothesis testing, is also presented. This renders the performance evaluation process
much more objective and hence reliable.

A. Simulation Scenario

Together, Equations (1) and (2) provide the continuous-time model used to simulate the
differential WMR. To render the simulations more realistic, a number of model parameters,
namely d, mc, Ic and F (q̇), were allowed to vary about a set of nominal values, from one
simulation to another. These variations adhere to the physics of realistic randomly generated
scenarios that exhibit various load con�gurations and surface frictional conditions. The nom-
inal parameter values used for simulations are: b = 0.5m, r = 0.15m, d = 0.2m, mc = 30kg,
mw = 2kg, Ic = 15kgm2, Iw = 0.005kgm2, and Im = 0.0025kgm2. Moreover, viscous friction

1MATLABr was used for simulations and SPSSr for statistical testing.
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was included in the model by setting F (q̇) = Fcq̇, where Fc is a diagonal matrix of coef�cients,
with nominal diagonal values set to [2, 2, 5, 0.5, 0.5]. The control sampling interval T = 50ms,
and the additive discrete random vector εk was set in accordance to Assumption 3.5 with
covariance matrix Rε = 1× 10−4I7, where Ii denotes an (i× i) identity matrix.

Each simulation trial consists of seven consecutive simulations, six of which correspond to the
three modes of operation (for each of the two schemes) of adaptive control law (13) namely: HCE
(Q3 = −Q1), cautious (Q3 = 0) and dual (Q3 = −0.8Q1). The remaining trials corresponds
to a tuned non-adaptive (TNA) controller, which represents a non-adaptive dynamic controller
implemented via (7) that assumes the model parameters to be equal to their nominal values. This
is the best a non-adaptive controller can do when the exact robot parameters are unknown. In
contrast, the HCE, cautious and dual controllers assume no preliminary information about the
robot whatsoever, since closed loop control is activated immediately with the initial parameter
estimate vector z̄0 selected at random from a zero-mean, Gaussian distribution of variance 4×
10−4. For the sake of fair comparison, the same noise sequence, reference trajectory, initial
conditions, initial �lter covariance matrix (P0 = 100Iβ where β is the length of vector ẑk),
tracking error penalty (Q1 = I2), and control input penalty (Q2 = 1× 10−6I2) are used in each
of the seven cases in a particular simulation trial. The noise sequence is randomly generated
afresh for each trial.

B. Single Trial Analysis: GaRBF Scheme

The GaRBF ANN used for simulations contained 49 radial basis functions (L = 49 and
β = 100) evenly placed in the two dimensional approximation region χ ranging from −30 to 30

in steps of 10, in each dimension. It took an of�ce desktop computer 2 with no code optimisation
merely fourteen seconds to simulate one minute of real time when using the proposed GaRBF
dual adaptive controller. This implies that the proposed algorithm is also computationally feasible
in a practical implementation.

A number of simulation results, typifying the performance of the three control modes of the
GaRBF scheme are presented in Fig. 2. Plot (a) depicts the WMR tracking a demanding reference
trajectory for a non-zero initial tracking error controlled by the dual adaptive GaRBF controller.

2Pentiumr 4 @ 3GHz, 512MB RAM.
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It clearly veri�es the good tracking performance of the proposed dual control scheme, even when
the trajectory reaches high speeds of around 2m/s. Plots (b) to (d) correspond to one particular
simulation trial. Plots (c) and (d) compare the Euclidian norm of the pose error during the
transient and steady-state performance respectively. Plot (c) indicates that dual control exhibits
the best transient performance among the three adaptive modes (in accordance with Remark 3.4).
It is not surprising that the TNA controller leads to better initial transient response, since it
requires no learning process and is pre-tuned to the nominal parameters of the actual model.
However this superiority is quickly lost in the steady-state phase, depicted in Plot (d), since by
that time, the initially random estimates used by the adaptive controllers would have converged
to better approximates of the real functions, while the TNA controller would still be assuming
the far less accurate nominal parameters that it was originally tuned with. Plot (b) depicts the
Euclidian norm of the control input vector during the initial transient. The very high transient
control inputs of the HCE controller re�ect the aggressive and incautious nature of this controller,
which ignores completely the high uncertainty in the initial estimates, and uses them as if they
were perfectly true.
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Fig. 2. (a): reference (×) & actual (©) trajectories with GaRBF dual control; (b): control input; (c): transient tracking error;
(d): steady-state tracking error.

September 17, 2007 DRAFT



IEEE TRANSACTION ON SYSTEMS, MAN, AND CYBERNETICS � PART B: CYBERNETICS 21

C. Single Trial Analysis: Sigmoidal MLP Scheme

The Sigmoidal MLP ANN used for simulations contained 10 neurons (L = 10 and β = 52).
In accordance with the comments at the end of the �rst paragraph in Section III-C2, it is evident
that sigmoidal MLPs required less neurons than GaRBF ANNs. As a result, the simulation time
for the proposed sigmoidal MLP dual adaptive controller was eight seconds per minute of real
time; almost twice as fast as the GaRBF scheme.

Fig. 3 combines a number of simulation results typifying the performance of the three control
modes of the sigmoidal MLP scheme. These results are very similar to those presented in Fig. 2
for the GaRBF scheme, and the same comments apply. Yet, it is incorrect to draw any conclusions
regarding the overall performance of the two schemes relative to each other, based solely on the
individual trial results presented so far due to the stochastic nature of the system.

D. Monte Carlo Comparative Analysis

A Monte Carlo analysis involving 1000 simulation trials was performed. Each of the seven
simulations in a trial corresponds to a time horizon of three minutes in real-time under the
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Fig. 3. (a): reference (×) & actual (©) trajectories with MLP dual control; (b): control input; (c): transient tracking error;
(d): steady-state tracking error.
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simulation conditions speci�ed earlier. After each simulation, the following cost is calculated

C(N) =
N∑

k=1

|pr − p|. (19)

This cost is the accumulated Euclidean norm of the pose error over the whole time horizon (N
sampling instants). It serves as a performance measure for each of the seven controllers operating
under the same conditions, where lower values of C(N) are preferred.

The salient statistical features of the seven cost distributions resulting from the Monte Carlo
analysis, are depicted in the boxplot of Fig. 4. Additionally, the mean and variance of each of
these cost distributions are shown in Table I. These results provide the �rst indications of how
one would rank the general performance of the seven controllers under investigation; where
the dual control schemes rank best on both mean and variance. However, in order to provide
a rigourous argument that the observed difference between the mean cost of each controller is
statistically signi�cant and cannot be attributed to chance, we employed a statistical inference
procedure via hypothesis testing.

It is important to note that the cost distribution of the HCE GaRBF controller has a number
of very high (extreme) outliers. This is the reason why the mean and variance for this controller
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Fig. 4. Cost distributions resulting from the Monte Carlo analysis
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are exceptionally high. This implies that in some cases the HCE GaRBF controller led to very
high tracking errors. This is the result of the coexistence of two problems; both anticipated
earlier in this paper. Speci�cally, the high control inputs associated with HCE control yield high
robot velocities, with the possibility of the ANN input vector (xk−1 = νk−1) moving well out
of the highly localized GaRBF ANN approximation region χ, leading to completely erroneous
approximations. For this reason the HCE GaRBF controller is withdrawn from the statistical
analysis, on the basis that its behaviour, which in practice might lead to instability if left
uncontrolled, is simply unacceptable and makes it un�t for further comparison.

TABLE I
MEAN AND VARIANCE OF THE COST DISTRIBUTIONS

HCE CAUTIOUS DUAL TNA

RBF MLP RBF MLP RBF MLP

Mean 21094 79 71 75 70 72 80

Variance 2× 1011 160 2 41 1 11 55

The One-Way Analysis of Variance (ANOVA) [50] is a powerful and common statistical
procedure for comparing the means of several independent samples to make inferences on their
population means. It is based on the assumption that the observed data is normally distributed.
The cost distributions corresponding to the six controllers left for investigation are all positively
skewed (refer to Figure 4), and therefore cannot be closely approximated to normal distributions.
For this reason the 1000 cost observations from each distribution were split in groups of 20 and
the mean of each group calculated. In this manner a new data set composed of 50 sample
means was generated for each controller. In contrast to the original cost distributions, each of
the six sampling distributions of means was found to have a normal distribution. The normality
assumption was veri�ed using the Kolmogorov-Smirnov test [50]. Other graphical presentations,
including Q-Q plots [50], and visual comparison of the sampling distribution (histogram) to
the normal curve complemented this assumption. Statistical theory speci�es that the mean of
each sampling distribution is equal to the corresponding mean of the original cost distribution.
Based on these results the One-Way ANOVA test was employed to compare the means of the
six sampling distributions rather than the means of the six original cost distributions. The null
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and alternative hypotheses for this two-tailed test are:

H0 : In an in�nite number of trials, each of the six controllers would score the same average
cost as the others.

H1 : In an in�nite number of trials, two or more of the six controllers would score a different
average cost from each other.

As expected, the Levene homogeneity of variance test [50] revealed that equal variances
among the six data groups cannot be assumed. In such cases it is suggested that the Brown-
Forsythe statistic [50] or the Welch statistic [50] is used instead of the F statistic in the One-Way
ANOVA. We employed each of these three statistics in turn, and the resulting p-value [50] was
always approximately zero in each case. Since the p-value was smaller than the chosen level of
signi�cance α = 0.01, then H0 was rejected. This implies that at least one of the six controllers
is signi�cantly better (cost-wise) than the others. In order to determine which controllers perform
signi�cantly better than which other ones, we employed the Games-Howell post-hoc test [50]
which is highly recommended in the case of unequal variances. The results were conspicuous
since all the p-values resulting from the 15 pair-wise combinations were much lower than α.
This implies that the means reported in Table I are all signi�cantly different and can be used
to rank the performance of the six controllers. In addition to the Games-Howell test three other
post-hoc tests, all suited for the case of unequal variances, were performed. These are: Tamhane's
test, Dunnett's T3 test and Dunnett's C test [50]. Each test strongly reassured the result of the
Games-Howell test. A non-parametric test using the original cost distributions instead of the
sampling distributions of means, namely the Kruskal-Wallis H test [50] was also employed. The
�nal result of this analysis recon�rmed that of the One-Way ANOVA.

With the results from the Monte Carlo comparative analysis supporting the results in Table I we
can con�dently claim that the proposed dual adaptive controllers (both GaRBF and MLP) bring
about a signi�cant improvement in tracking performance; not only over non-adaptive controllers
which assume nominal values for the robot parameters, but also over adaptive controllers based
on the HCE assumption. Moreover, it is just as evident that within each of the two schemes,
the dual control mode is even better than the cautious mode, as anticipated in Remark 3.4. This
complies with the dual control philosophy that a balance between caution and probing yields
the best performance in adaptive control. It is also not surprising that the performance of the

September 17, 2007 DRAFT

https://www.researchgate.net/publication/39406694_Discovering_statistics_using_IBM_SPSS_statistics?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/39406694_Discovering_statistics_using_IBM_SPSS_statistics?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/39406694_Discovering_statistics_using_IBM_SPSS_statistics?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/39406694_Discovering_statistics_using_IBM_SPSS_statistics?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/39406694_Discovering_statistics_using_IBM_SPSS_statistics?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/39406694_Discovering_statistics_using_IBM_SPSS_statistics?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/39406694_Discovering_statistics_using_IBM_SPSS_statistics?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1


IEEE TRANSACTION ON SYSTEMS, MAN, AND CYBERNETICS � PART B: CYBERNETICS 25

GaRBF scheme is generally better than the MLP scheme. We associate the inferiority of the
latter to the approximations introduced by the EKF.

V. CONCLUSIONS

The novelty in this paper comprizes the introduction of dual neuro-adaptive control for the
discrete-time, dynamic control of nonholonomic mobile robots. The two proposed dual control
schemes exhibit great improvements in steady-state and transient performance over non-adaptive
and non-dual adaptive schemes respectively. This was con�rmed by Monte Carlo simulation and
a comprehensive statistical hypothesis test. Future research will investigate the replacement of the
EKF in the MLP scheme, by more recent nonlinear stochastic estimators such as the unscented
Kalman �lter (UKF) [51]. It is envisaged that this will improve the overall performance of this
scheme due to the lesser degree of approximation associated with such nonlinear estimation
techniques. Additionally, it is planned to develop the work to include fault-tolerant schemes
for the control of mobile robots. Early results from experiments carried out so far using a real
mobile robot, con�rm the same interpretation as re�ected by the simulation results presented in
this paper.
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[24] K. J. 	Aström and B. Wittenmark, Adaptive Control, 2nd ed. Reading, MA: Addison-Wesley, 1995.
[25] S. G. Fabri and V. Kadirkamanathan, Functional Adaptive Control: An Intelligent Systems Approach. London, UK:

Springer-Verlag, 2001.
[26] A. A. Fel'dbaum, �Dual control theory I-II,� Automation and Remote Control, vol. 21, pp. 874�880, 1033�1039, 1960.
[27] ��, �Dual control theory III-IV,� Automation and Remote Control, vol. 22, pp. 1�12, 109�121, 1961.
[28] ��, Optimal Control Systems. New York, NY: Academic Press, 1965.

September 17, 2007 DRAFT

https://www.researchgate.net/publication/220509181_Adaptive_control_for_mobile_robot_using_wavelet_networks?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/220509181_Adaptive_control_for_mobile_robot_using_wavelet_networks?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/221075140_Application_of_the_Distributed_Field_Robot_Architecture_to_a_Simulated_Demining_Task?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/221075140_Application_of_the_Distributed_Field_Robot_Architecture_to_a_Simulated_Demining_Task?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/221075140_Application_of_the_Distributed_Field_Robot_Architecture_to_a_Simulated_Demining_Task?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/229707438_Robust_tracking_control_of_mobile_robots_in_the_presence_of_uncertainties_in_the_dynamical_model?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/229707438_Robust_tracking_control_of_mobile_robots_in_the_presence_of_uncertainties_in_the_dynamical_model?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3715487_Global_self-localization_of_a_robot_in_underground_mines?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3715487_Global_self-localization_of_a_robot_in_underground_mines?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/243696763_Asymptotic_stability_and_feedback_stabilization?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/243696763_Asymptotic_stability_and_feedback_stabilization?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3332765_Das_T_Kar_IN_Design_and_implementation_of_an_adaptive_fuzzy_logic-based_controller_for_wheeled_mobile_robots_IEEE_Trans_Contr_Syst_Technol_2006143501-10?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3332765_Das_T_Kar_IN_Design_and_implementation_of_an_adaptive_fuzzy_logic-based_controller_for_wheeled_mobile_robots_IEEE_Trans_Contr_Syst_Technol_2006143501-10?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3207613_Electric_Powered_Wheelchairs?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/235224634_Functional_Adaptive_Control_An_Intelligent_Systems_Approach?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/229874260_Neural_Networks_Based_Control_of_Mobile_Robots_Development_and_Experimental_Validation?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/229874260_Neural_Networks_Based_Control_of_Mobile_Robots_Development_and_Experimental_Validation?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/4201051_Kinematic_and_dynamic_adaptive_control_of_a_nonholonomic_mobile_robot_using_a_RNN?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/4201051_Kinematic_and_dynamic_adaptive_control_of_a_nonholonomic_mobile_robot_using_a_RNN?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/4201051_Kinematic_and_dynamic_adaptive_control_of_a_nonholonomic_mobile_robot_using_a_RNN?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/221645552_Multilayer_perceptron_functional_adaptive_control_for_trajectory_tracking_of_wheeled_mobile_robots?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/221645552_Multilayer_perceptron_functional_adaptive_control_for_trajectory_tracking_of_wheeled_mobile_robots?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/221645552_Multilayer_perceptron_functional_adaptive_control_for_trajectory_tracking_of_wheeled_mobile_robots?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3344095_Trailer-truck_trajectory_optimization_-_The_transportation_of_components_for_the_Airbus_A380?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3344095_Trailer-truck_trajectory_optimization_-_The_transportation_of_components_for_the_Airbus_A380?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/27296529_Rescue_Robotics_for_Homeland_Security?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/239394216_On_the_design_of_optimal_and_sub-optimal_control_systems?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/220397072_Adaptive_tracking_control_of_a_nonholonomic_mobile_robot?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/220397072_Adaptive_tracking_control_of_a_nonholonomic_mobile_robot?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1


IEEE TRANSACTION ON SYSTEMS, MAN, AND CYBERNETICS � PART B: CYBERNETICS 27

[29] N. M. Filatov and H. Unbehauen, �Survey of adaptive dual control methods,� in Proc. IEE Control Theory Applications,
vol. 147, no. 1, Jan. 2000, pp. 118�128.

[30] J. Sternby, �A simple dual control problem with an analytical solution,� IEEE Trans. Autom. Control, vol. 21, no. 6, pp.
840�844, 1976.

[31] B. Wittenmark, in 5th IFAC Symposium on Adaptive Systems in Control and Signal Processing, Jan. 1995, pp. 67�72.
[32] A. M. Thompson and W. R. Cluett, �Stochastic iterative dynamic programming: a Monte Carlo approach to dual control,�

Automatica, vol. 41.
[33] N. M. Filatov and H. Unbehauen, Adaptive Dual Control: Theory and Applications. London, UK: Springer-Verlag, 2004.
[34] S. G. Fabri and V. Kadirkamanathan, �Dual adaptive control of nonlinear stochastic systems using neural networks,�

Automatica, vol. 34, no. 2, pp. 245�253, 1998.
[35] N. M. Filatov, H. Unbehauen, and U. Keuchel, �Dual pole-placement controller with direct adaptation,� Automatica, vol. 33,

no. 1, pp. 113�117, 1997.
[36] Y. Bar-Shalom and E. Tse, Concept and Methods in Stochastic Control, ser. Control and Dynamic Systems, C. T. Leondes,

Ed. New York, NY: Academic Press, 1976.
[37] R. Milito, C. S. Padilla, R. A. Padilla, and D. Cadorin, �An innovations approach to dual control,� IEEE Trans. Autom.

Control, vol. 27, no. 1, pp. 133�137, Feb. 1982.
[38] G. A. Dumont and K. J. 	Aström, �Wood chip re�ner control,� IEEE Control Syst. Mag., vol. 8, no. 2, pp. 38�43, 1988.
[39] N. M. Filatov, U. Keuchel, and H. Unbehauen, �Dual control for an unstable mechanical plant,� IEEE Control Syst. Mag.,

vol. 16, no. 4, pp. 31�37, 1996.
[40] B. J. Allison, J. E. Ciarniello, P. J.-C. Tessier, and G. A. Dumont, �Dual adaptive control of chip re�ner motor load,�

Automatica, vol. 31, no. 8, pp. 1169�1184, 1995.
[41] A. Ismail, G. A. Dumont, and J. Backstrom, �Dual adaptive control of paper coating,� IEEE Trans. Contr. Syst. Technol.,

vol. 11, no. 3, pp. 289�309, May 2003.
[42] M. S. Radenkovic, �Convergence of the generalised dual control algorithm,� Int. J. Control, vol. 47, no. 5, pp. 1419�1441,

1988.
[43] R. Fierro and F. L. Lewis, �Robust practical point stabilization of a nonholonomic mobile robot using neural networks,�

Journal of Intelligent and Robotic Systems, vol. 20, pp. 295�317, 1997.
[44] K. J. 	Aström and B. Wittenmark, Computer Controlled Systems: Theory and Design, 3rd ed. Upper Saddle River, NJ:

Prentice Hall, 1997.
[45] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. London, UK: Prentice Hall, 1999.
[46] R. M. Sanner and J. J. E. Slotine, �Gaussian networks for direct adaptive control,� IEEE Trans. Neural Networks, vol. 3,

no. 6, pp. 837�863, 1992.
[47] R. E. Kalman, �A new approach to linear �ltering and prediction problems,� Trans. ASME J. Basic Eng., vol. 82, pp.

34�45, 1960.
[48] P. S. Maybeck, Stochastic Models, Estimation and Control, ser. Mathematics in Science and Engineering, R. Bellman, Ed.

London, UK: Academic Press Inc., 1979, vol. 141-1.
[49] R. Bellman, Adaptive Control Processes: A Guided Tour. Princeton, NJ: Princeton University Press, 1961.
[50] A. Field, Discovering Statistics using SPSS, 2nd ed. London, UK: Sage Publications Ltd., 2005.
[51] S. J. Julier and J. K. Uhlmann, �A new extention of the Kalman �lter to nonlinear systems,� in Proc. of AeroSense: The

11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls, 1997.

September 17, 2007 DRAFT

View publication statsView publication stats

https://www.researchgate.net/publication/224390072_Gaussian_Networks_for_Direct_Adaptive_Control?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/224390072_Gaussian_Networks_for_Direct_Adaptive_Control?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/220061691_Robust_Practical_Point_Stabilization_of_a_Nonholonomic_Mobile_Robot_Using_Neural_Networks?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/220061691_Robust_Practical_Point_Stabilization_of_a_Nonholonomic_Mobile_Robot_Using_Neural_Networks?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/222441927_Dual_adaptive_control_of_chip_refiner_motor_load?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/222441927_Dual_adaptive_control_of_chip_refiner_motor_load?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/224839919_A_New_Approach_To_Linear_Filtering_and_Prediction_Problems?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/224839919_A_New_Approach_To_Linear_Filtering_and_Prediction_Problems?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/223558836_Dual_adaptive_control_of_nonlinear_stochastic_systems_using_neural_networks?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/223558836_Dual_adaptive_control_of_nonlinear_stochastic_systems_using_neural_networks?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/223493823_Stochastic_iterative_dynamic_programming_A_Monte_Carlo_approach_to_dual_control?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/223493823_Stochastic_iterative_dynamic_programming_A_Monte_Carlo_approach_to_dual_control?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/215721589_Stochastic_Models_Estimation_and_Control?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/215721589_Stochastic_Models_Estimation_and_Control?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/245196001_Adaptive_Dual_Control_Theory_and_Applications?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3206471_Dual_control_for_an_unstable_mechanical_plant?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3206471_Dual_control_for_an_unstable_mechanical_plant?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3029301_An_innovations_approach_to_dual_control?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3029301_An_innovations_approach_to_dual_control?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3027801_A_Simple_Dual_Control_Problem_with_an_Analytical_Solution?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3027801_A_Simple_Dual_Control_Problem_with_an_Analytical_Solution?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/270442268_Adaptive_Control_Processes_A_Guided_Tour?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/39406694_Discovering_statistics_using_IBM_SPSS_statistics?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/225075551_A_New_Approach_to_Linear_Filtering_and_Prediction_Problems?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/225075551_A_New_Approach_to_Linear_Filtering_and_Prediction_Problems?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3352290_Survey_of_adaptive_dual_control_methods?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/3352290_Survey_of_adaptive_dual_control_methods?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/265439255_Neural_Networks_A_Comprehensive_Foundation?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/251320424_6_DUAL_POLE-PLACEMENT_CONTROLLER_WITH_DIRECT_ADAPTATION?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/251320424_6_DUAL_POLE-PLACEMENT_CONTROLLER_WITH_DIRECT_ADAPTATION?el=1_x_8&enrichId=rgreq-661f51bc5c548369d5f17ef33168bda2-XXX&enrichSource=Y292ZXJQYWdlOzIzNzk3ODYwO0FTOjMzMDgyMjI5ODE2MTE1MkAxNDU1ODg1NTkxMDc1
https://www.researchgate.net/publication/23797860

