
Dual Application Model for Agile Software Engineering

Ashley Aitken
School of Information Systems

Curtin University of Technology
A.Aitken@Curtin.Edu.Au

Abstract

There are problems with Traditional Software
Engineering and with Agile Software Development. A
new approach called Agile Software Engineering that
combines the best of both is proposed and an aspect of
this approach described. The Dual Application Model
involves the development of a logical software
application focused on capturing the functional
requirements and a physical software application
focused on transforming the logical application to meet
the non-functional requirements. It has advantages
and disadvantages like any approach to software
development but meets two of the principles proposed
for Agile Software Engineering. Frameworks and tools
are proposed to support the Dual Application Model
but are not essential to the approach. The approach
provides an almost complete separation of concerns
between defining and specifying (in code) the domain
solution / software problem for which the domain
experts are primarily responsible and designing and
implementing the software solution to meet the non-
functional requirements for which the software
developers are primarily responsible.

1. Introduction

Agile Software Development (ASD) has gone
mainstream at 35% and dominates Traditional
Software Engineering (TSE) at 21% and Waterfall
Software Development (WSD) at 13%, according to a
global developer survey, as reported in [1]. This
doesn’t mean that everything in TSE (or even WSD)
was wrong and everything in ASD is right. In fact,
there is a risk in such a dramatic move from TSE to
ASD of throwing the baby out with the bath water. It
is important to transfer to ASD (perhaps with some
reinterpretation) those concepts and practices from
TSE (and even WSD) that have been found to be
effective and not to just discount them because they are
traditional (just as new concepts and practices
shouldn’t be adopted just because they are new).

The overall objective of this research programme is
to develop a new approach to software development
that combines the best of TSE with the best of ASD

(and even WSD). This paper represents a first step in
this research. It discusses the context within which this
new approach was first developed, explains the new
approach, including some of the theoretical and
practical advantages and disadvantages, and discusses
areas of further research (e.g. data supporting the
efficacy of the approach) and development to support
the new approach (e.g. development tools, class
libraries, and frameworks).

Software models, like all models, are defined by
their scope – the breadth of their representation, their
perspective – the particular view of the software, and
their level of abstraction – the amount of detail or
complexity is included in the model. There are also
many different representations for models (e.g.
physical, textual, graphical, mathematical, and
computational models), each with their different
characteristics, advantages and disadvantages.

Software development is all about modeling.
Software models include textual models (e.g. user
stories, use-cases and requirements documents),
graphical models (e.g. class diagrams, sequence
diagrams), and other models (e.g. mathematical
models). An important software model that is often
overlooked, whilst right in front of everyone’s eyes, is
the source code. The source (and executable) code for
an application is another model, it just happens to be
one that can be executed (i.e. can be run directly or
interpreted) and the primary goal of software
development (i.e. to build a software application).

Software models can represent the (mostly) static
relationships between entities within the software,
somewhat analogous to a photograph. Examples of
models of static aspects are the UML Class Diagrams
and Deployment Diagrams [2]. Software models can
also represent the dynamics within and between
entities within the software, somewhat analogous to a
movie. Examples of models of the dynamics are the
UML Sequence and Interaction Diagrams.

Software development is problem solving. As a
result, all software development, no matter which
approach or methodology is used, goes through the
same cycle of requirements, analysis, design and
implementation, independent of what form each takes
or what models are (or are not) constructed. WSD

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.588

4789

aims to do this only once, whereas best practice for
TSE and ASD aims for highly iterative and
incremental development. Any source code that is
written has some design, analysis and requirements
that directs its development and provides context, even
if it’s all done within developers’ heads.

The next section of this paper discusses some of the
problems with Traditional Software Engineering and
Agile Software Development and a solution based on
the best of both called Agile Software Engineering.
The following section introduces the Dual Application
Model as an approach to software development that is
compatible with Agile Software Engineering. The
paper finishes with further discussion of this approach,
including related work, answers to common questions,
possible tools or frameworks, and future research
directions.

2. Agile Software Engineering

Traditional Software Engineering (TSE) is defined
here as the best practice software engineering that was
undertaken before agile software development came
along. It was planned, highly iterative and
incremental, and employed many models of the
software system being developed, as exemplified by
the the Rational Unified Process [3]. Agile Software
Development (ASD) is defined here by the Agile
Manifesto [4] and tends to be highly iterative and
incremental but adaptive rather than planned and
generally embraces less formal processes and fewer
persistent models (e.g. primarily the code) and
formalities than TSE [5].

2.1. Analysis versus Design

Analysis is the process of understanding the

domain and the software problem itself. Here the word
“problem” is used in the sense of the task to be
undertaken, e.g. to develop a software system to do
specified information processing and/or storage in a
particular domain meeting specified constraints.
Analysis involves modeling the problem independent
of any possible final solution, in particular independent
of any non-functional requirements and any decisions
made about the solution. Analysis or logical models

are models of the problem (not just a general model of
the problem domain).

Design is the process of determining and specifying
a solution to the problem with specific implementation
technology that meets the non-functional requirements.
In essence, if there were no non-functional
requirements or implementation constraints there
would be no need for design. In software
development, the analysis model is in effect a solution
meeting the functional requirements but not the non-
functional requirements or implementation constraints.
The design or physical models are models of a solution
modified to meet the non-functional requirements
using the chosen implementation technologies [6].

Software development is initially driven by a
domain problem (e.g. in a business or technical area).
However, solving the domain problem is, almost by

definition, the task of domain experts. It is not the role
of software developers to determine how a business
should solve its business problems, even information
processing problems, or to find the solution to some
technical business problem (although it seems, at least
in business, this is often the case).

For any domain problem there is a domain solution
that is chosen by the domain experts from a set of
possible domain designs to meet the functional and
non-functional requirements within their domain. The
task for software developers is to take this domain
solution on as a software development problem with its
own non-functional requirements and find the most
appropriate software solution from a number of
possible software designs. The domain solution is in
essence the functional requirements and analysis or
logical models, a complete specification of what the
software system should do.

Whilst is possible to use automated tools to create
different representations of the logical models (e.g.
using CASE tools) and to create different
representations of the physical models separately, it is
not generally possible to use tools to automate (at least,
not completely) the transformation from logical models
to physical models or vice-versa. This is because this
is where creative design happens, tradeoffs are made,
solutions to meet non-functional requirements are
determined, and there is not yet any way to fully
automate these decisions (or the search through the
solution space).

Software Design Choices
Software Solution 1
Software Solution 2
Software Solution...

Domain Design Choices
Domain Solution 1
Domain Solution 2
Domain Solution...

Domain
Problem

Software
Requirements

Software
Problem

Software
ApplicationSoftware

Solution

Domain
Solution

Figure 1. Domain Problem-Solution versus Software Problem-Solution

4790

In summary, software analysis is about
understanding the functional requirements as presented
or developed in logical model(s) with the help of the
domain expert(s). For software this can be done, for
example, with user stories, use-cases or requirements
documents and various other analysis models.
Software design is then about modifying the logical
model(s) to form physical models and to ensure the
results meet the non-functional requirements with the
chosen implementation technologies.

For software development the non-functional
requirements can be characteristics like speed,
reliability, ease-of-use, scalability, and persistence. As
a result of these different non-functional requirements
we have different roles and expertise within software
development like algorithm designer, UI designer,
persistence designer, and the designer of the software
architecture (upfront or incrementally as the system is
developed). Software analysis is about understanding
and modeling (if these are not already provided) the
domain solution, and software design is about finding a
software realisation of the domain solution that meets
the non-functional requirements.

The benefits of the analysis / logical models are: 1)
that they focus purely on the software problem /
domain solution, 2) they are independent of any
decisions related to the software solution (e.g.
architecture or technology decisions), and 3) they are
independent of any non-functional requirements (e.g.
they do not have to concern themselves with meeting
non-functional requirements) . Inevitably, there must
be a logical model of the problem, even if it is only
partial and/or temporarily maintained in the heads of
the software developers.

2.2. The Problems with Traditional Software
Engineering and Agile Software Development

One of the main strengths of TSE was, in the
author’s opinion, its multi-model approach to software
development. Having models that give different
perspectives on the software at different stages in the
lifecycle allowed developers to focus on particular
aspects of the software development task (e.g. the
requirements, the analysis, the design, and the
implementation). As engineers in other disciplines
also use multiple models (e.g. of buildings and roads)
there is strong reason to think of this as a key aspect of
an engineering approach to software development.

The biggest practical problem with traditional
software engineering relevant to this paper was not the
waterfall approach (as many agile software developers
informally argue) since best practice traditional
software engineering was highly incremental and
iterative. The biggest problem was the fact that the

various models developed (e.g. requirements, analysis,
design, and code) quickly became out-of-sync with
each other, particularly when developers changed the
code without updating the other models.

The requirements (combining functional and non-
functional requirements) and analysis (only functional
requirements) models were also most often a collection
of static and dynamic textual, graphical, and sometime
mathematical models. The static textual and graphical
models could quickly become very complex and
difficult to understand, and the dynamic textual and
graphical models had trouble capturing the full
dynamical nature of the domain solution. These
models were also very hard to verify and validate,
because of their form or the fact that they were partial
and incomplete.

One of the main strengths of Agile Software
Development (ASD) is the incremental development of
the software, without detailed overall plans, or even
detailed requirements specifications. The software
development work is often done one (vertical) piece at
a time to create incremental value for the users and
stakeholders. The quickest way to achieve this ASD
suggest is by going directly to the source code model
with minimal and often only transient forms of other
modeling. ASD employs, generally speaking, even
less than “just-in-time” modeling. Most ASD models
(except the source code) are considered only temporary
artifacts and often only for momentary communication
between developers.

Of course, ASD is a very broad church [A, so it is
difficult to claim it has a specific problem (since there
will often be a form(s) of ASD that don’t have that
problem). That said, the problem that is most relevant
to this research and commonly found in ASD is the use
of the source code model as the primary artifact and
form of documentation for everything related to the
software development. The source code does not only
include the functional source code but also unit testing,
test harness, and other supporting code and comments
within the code. It seems reasonable to suggest that it
is not optimal to include all documentation and
alternative models, including logical models, within
the physical model code (i.e. the final solution).

The ASD code does capture most (if not all) of the
physical aspects of the solution. For example, implicit
in the code is the architecture of the final application,
the physical design of each API, and the optimized
algorithms and data structures for each module.
However, by their very nature these are solution
specific and implementation specific. They are after
all the source code that meets the functional and non-
functional requirements in the chosen implementation
technologies. The problem is that the logical model is
generally not recorded because there is no easy

4791

mapping between logical and physical models, and
thus lost when the focus is only on the physical source
code.

Some snippets of the logical model may be saved
as comments in code or separate documentation (e.g. a
user story, a diagram here, or a photo of a whiteboard
sequence diagram there). However, this separate
documentation suffers from the same problems that
plague traditional documentation, i.e. that it can be
come out-of-date and out-of-sync very quickly if the
solution changes. Most significantly though, if other
developers, e.g. those allocated the job of maintaining
the source code, want to get a real understanding for
the problem domain and domain solution they have to
attempt to see it within the code through all the
modifications made to meet the non-functional
requirement and the technology chosen for the
implementation. The goal of the physical source code
is to meet the non-functional requirements rather than
to clearly express the logical model.

2.3. Agile Software Engineering

Agile Software Engineering (ASE) aims to
combine the best of TSE and ASD and overcome the
problems with each. It adopts the highly iterative and
incremental approach of TSE and ASD, and most often
the adaptive approach of ASD rather than the planned
approach of TSE. ASE adopts the multi-model view of
TSE against the limited and primarily physical
modeling approach of ASD. Its approach to the
problem of out-of-sync models is primarily to
eliminate all permanent models of the software except
the source code model (or what can be represented in
the source code model). ASE’s approach to the out-of-
sync models problem is to encourage the maintenance
of multiple models and support tools or automated
generation of models separately within the logical or
physical spaces so that they can be kept in sync.

This paper focuses on the problems mentioned
above, i.e. in TSE of the requirements, analysis, and
design models becoming out-of-sync and the lack of
analysis or logical models in ASD. How can a
development approach have multiple models, with not
just physical models, that do not (or at least should not)
become out-of-sync? This paper also does not provide
a complete description of ASE, it is still a work in
progress, but it suggests here a couple of the general
principles of ASE in line with these identified
problems:

Principle of Appropriate Models: This principle
states that the most appropriate place to work on
logical aspects of a problem is in logical models of
the problem and the most appropriate place to

work on physical aspects of a software solution are
in the physical models.

This may seem obvious but it is not what is

generally done in ASD. As mentioned, ASD tends to
work primarily on the source code model, i.e. a
physical model for the system. Any logical models are
either implicit in the physical model or temporary and
transient models discarded once the physical model is
produced.

Principle of Only Forward Engineering: This
principle, a corollary to the previous one, states
that it is inappropriate to reverse engineer or work
back from physical models back to logical models.
Doing so is, generally, a violation of the previous
principle even if possible.

Of course, the latter doesn’t mean you cannot

reverse engineer if/when it is possible and necessary,
for example if you receive code without any logical
models. However, the aim is to not encourage
developers to start with the traditional source code (i.e.
a physical model) and then try to work back to logical
models if needed since this is often very difficult, if not
impossible, to do completely.

3. The Dual Application Model

The goal of ASE may seem difficult to attain – a
combination of TSE and ASD – that at the very least
meets the principles specified above. In this section,
an approach to software development called the Dual
Application Model (DAM) is proposed that, at least
partially, provides a step in that direction.

Before the Dual Application Model is explained in
detail it should be said that it only relates to specific
aspects of the approach to software development (in
particular, which models are developed). For all other
aspects of software development the approach assumes
the best current practice in software development. For
example, highly iterative development with Scrum [7]
or a Kanban [8] approach to work management, the use
of unit testing and acceptance test driven development.
Although the paper discusses the development of two
models it is definitely not suggesting that these will be
developed in a waterfall fashion, each may be built up
incrementally during each iteration just as the
traditional source code model is developed in ASD, or
that these will necessarily be the only models
developed.

3.1. Overview of the Dual Application Model

4792

The DAM proposes that software developers
develop two applications instead of just the one that
they will deploy. The first application, called the
Logical Application (LA), implements a runnable
logical model of the domain solution, / software
problem. The second application, called the Physical
Application (PA), implements the physical model of
the desired software system, which is actually in fact
the desired software system.

Logical
Application

Physical
Application

Figure 2. Logical and Physical Application
This DAM approach may sound crazy. Why

should developers do twice the work to achieve the
same outcome? The assumptions (that needs to be
proven) are 1) that there will be some extra work but it
won’t be twice the work (as will be explained), and 2)
that this approach has other advantages like higher
quality and overall productivity that outweigh this
extra work (whilst also being in line with the principles
of Agile Software Engineering). It is proposed that the
DAM is a way to achieve ASE without discarding the
multiple models of TSE (i.e. without throwing the baby
out with the bath water) and, it is claimed, will achieve
better productivity and higher quality, primarily
because of the separation of concerns.

In essence, this paper is suggesting that developers
swap the traditional logical models (i.e. traditional
declarative requirements specifications and analysis
models) for a runnable LA, the development of which
can be guided by user stories or use-cases). Recall the
problems with declarative requirements and analysis
models, is that they are often incomplete, inconsistent,
difficult to validate, get out-of-sync with development.
The LA should go along way to solving some of these
problems – software abhors inconsistency, software
can be exercised and tested to verify and determine
validity, and incompleteness stands out in software,
particularly when it is exercised and tested.

3.2. Logical Application (LA)

The LA is in essence a runnable logical model of
the domain solution / software problem. Unlike
traditional requirements or analysis models that were
often incomplete, inconsistent, and piece-meal (i.e.
only representing portions of the logical model), the
LA can be a complete and detailed model of the
software problem so far. It should also be a “natural”

model of the problem since it is aiming to clearly
capture the logical model. It does, by definition, lack
any details pertaining to the physical implementation.

The goal of the LA is to capture the desired
software system independent of any non-functional
requirements or implementation technologies. The LA
is a direct, explicit, and executable model of the
domain solution. Having an executable logical model
means the users can try out the logical model, that
logical unit tests may be written, as well as logical
system tests. These tests may then be mapped to
physical unit and system tests.

Of course, any runnable software application must
be implemented in some programming language and
have some design, it is not possible to escape the
“physicalness” of even a logical model. However, the
design of the LA is chosen to best represent the domain
solution and to be as easy and quick as possible to
develop and change. The best way to do this is usually
to match the domain solution and logical model as
closely as possible. As a result, many LAs would be
object-oriented because object orientation is a natural
way to model many problem domains. However, other
LAs could be written using functional or other styles of
programming.

The physical constraints on the LA should be
minimal. For example, it should be assumed that the
application has a very large amount (but not infinite)
memory, a very fast (but not infinitely fast) processor,
and a very high (but not infinite) network bandwidth.
The LA should not be concerned with persistence since
that is a non-functional requirement (i.e. that the
software shall be able to maintain state when the
application is not running). It should not be concerned
with the solution application architecture, e.g. whether
it is a one tier, two-tier or n-tier application for Web,
desktop, mobile or an embedded platform, since these
are architecture and implementation constraints of the
physical model.

The DAM does not constrain the technologies used
to implement the LA. They should be whatever is best
able assist the developer to as easily and as quickly as
possible model the problem domain solution in a
natural way. Contemporary programming languages
that would seem to meet these requirements would be
languages like Ruby, Groovy or Python, i.e. the
dynamic programming languages because of their
dynamic typing, brevity and rapid application
development. This is not to say that the LA could not
be developed in pretty much any programming
language.

4793

Whilst there may be some advantage of developing
in LA in a programming language that can also be used
for the PA it is not a requirement. It could be
beneficial because it could allow the developer to copy
some source code directly from the LA to the PA, at
least initially. The LA can be considered a first draft
for the PA [6]. The problem with using the same
programming language for the LA and PA is that it
could confuse developers with regard to which model
they are working on. The temptation is also that
developers may not develop a separate LA (since they
believe it is just being copied to the PA anyway).

Recall that the benefit of the LA is not just that it
can be used as a draft for the PA but also that even
after the PA starts to be transformed into the physical
application that will satisfy the non-functional
requirements, the LA should still be a natural
representation of the domain solution / software
problem. Developing further user stories, use-cases,
and functional requirements firstly within an
unadulterated LA will be a lot easier than developing
them in the PA, which will be more complex due to its
persistence technology, UI design, and various
optimizations.

3.3. Physical Application (PA)

The goal of the Physical Application (PA) is to
firstly implement the functional requirements as
represented in the LA and then the non-functional
requirements of the software system. Developers of
the PA have a clearly defined LA to work from. In
effect, to implement the functional requirements the
developer only need to translate / port (if necessary)
the LA to the PA implementation and deployment
environment. For example, logical types in the LA
need to become physical types in the PA. If the LA
and PA use the same or “compatible” languages at
least this step could be a relatively easy and perhaps
even a semi- or fully-automated process.

The full design of the PA is the primary task of
software developers. The LA, which can become the
first draft of the PA for software developers, should
come almost for free from the domain experts and
product owner. The PA then needs to be modified and
changed until the PA meets the non-functional
requirements. Aspects of the PA that could need to

determined and changed include the architecture, the
presentation and the persistence.

The PA is, of course, familiar to software
developers since it is what they normally deliver. There
is one significant difference, however, between
development of the PA and the traditional executable
that developers deliver. When developing the PA
developers do not have to worry about defining the
software problem in any way. They can work directly
with what is specified in the LA. At this stage the
developer is free to focus on optimizing the user
interface, perfecting the persistence, scaling the
architecture, … all to ensure the final deliverables meet
the non-functional requirements. In these areas the
developer is the expert (not the product owner),
although of course the product owner and users have a
say in the outcome through setting the non-functional
requirements and feedback on incremental versions of
the PA.

Key to the development of the PA will be a list of
changes made to the LA that accompany the user
stories, use-cases, and/or functional requirements for
this particular iteration. As the LA is source code it
can be kept in a version control system (e.g. SVN or
Git) and changes can be tracked. The PA developer(s)
will thus have a description of the functionality with
source code changes that already implement this
functionality in the LA. The PA developer(s) will also
have a record of the non-functional requirements in
some form, generally for the entire software solution or
specifically for these user stories, use-cases, or
functional requirements.

The PA developer(s) will then use their expertise to
translate those changes (additions, modifications, and
deletions) from the LA to the PA and implement the
any required user interface, persistence, architecture or
other changes necessary to meet the non-functional
requirements. It seems possible that with a well-
designed PA, many developers could actually work on
this PA at the same time, e.g. UI specialists could work
on the user interface, persistence specialists could work
on the persistence, and others could translate the LA
code and integrate with the other changes. Some
changes to the LA may be superficial, e.g. renaming of
variables or modules, and can perhaps be ignored by
the PA developer. However, such changes are often a
form of documentation, done to convey meaning and to

Software Design Choices
Software Solution 1
Software Solution 2
Software Solution...

Domain Design Choices
Domain Solution 1
Domain Solution 2
Domain Solution...

Domain
Problem

Logical
Application

Software
Problem

Physical
ApplicationSoftware

Solution

Domain
Solution

Figure 3. Logical Application becomes primary Requirements and Analysis Models

4794

correct or guide interpretations so perhaps they are
important for the PA developer to consider as well.

3.4. Advantages and Disadvantages

Some possible advantages of the DAM include:

1. The LA clearly and as naturally as possible
captures the static and dynamic nature of the
desired software system, i.e. the problem domain
solution and the software problem, and the PA
captures the static and dynamic nature of the
desired software solution (since it is the desired
software system).

2. The LA works out any inconsistencies,
incorrectness, incompleteness in the logical model
before the more difficult PA is further developed.
It is significantly more effective and efficient to
find problems early in the software development
lifecycle [9].

3. The DAM offers nearly complete separation of the
analysis and design (as defined earlier), which
should improve the results of each task. When
developing the LA the developers focus primarily
on capturing and defining the problem as related
by the product owner and/or domain expert(s) and
are not distracted by other concerns. When
developing the PA developers focus primarily on
implementing the provided parts of the LA in the
chosen implementation technologies and designing
the solution to meet the non-functional
requirements and not about the domain solution or
software problem.

Some possible disadvantages of DAM include:
1. The development of the LA and PA seems to

involve more work than just the development of
the PA. Although, as mentioned above some of
this work may be “copied” over, at least initially,
to the PA. It is suggested that any extra effort in
developing this extra model has significant
advantages and payoffs in the short to medium
term for the software development.

2. The product owner needs to work with both the
LA to check its functionality and the PA to check
it meets the non-functional requirements. They
may also be confused somewhat by the two
different applications and hesitant to go back to
work on the LA when the PA is available.

3. There is nothing physically stopping developers
from implementing new functionality directly in
the PA without implementing it firstly in the LA.
This may be “strongly discouraged” by
management (or technology) but it is hoped that
the advantage of using the LA will become clear
to developers and they will choose to develop
functionality in it first.

Further, and as discussed earlier, it is not possible
to directly generate the PA from the LA (or reverse
engineer the other way), although some automation
may be possible. The reason is that design is about
making choices between alternatives and tradeoffs
between these alternatives, e.g. the different user
interface options, the different persistence options, the
different architecture options, and different algorithm
design options. So it is generally not possible for tools
to perform the LA to PA transition.

However, it is entirely possible to uses tools to
automate generation of various logical models from
other logical models and various physical models from
other physical models. For example, it is possible to
use UML graphical analysis models and a CASE tool
to generate (a skeleton of) the LA source code and to
reverse engineer the UML graphical analysis models
from the LA source code. Similarly, it is possible to
use UML graphical design or deployment models and a
CASE tool to generate (a skeleton) of the PA source
code and to reverse engineer the UML graphical design
models from the PA source code.

Logical
Application

Physical
Application

Analysis
Models

Design
Models

Automatic Generation
with CASE Tools

Manual

Figure 4. Automatic generation and reverse
engineering of models in Analysis or Design

4. Further Discussion

4.1. Related Work

The notion of logical and physical models of
software is obviously not new. Even the use of a
traditional programming language for the logical
model may not be novel (although TSE often used
graphic models for their logical models). However, it
is thought that preserving the LA and using source
code changes (diffs) to communicate the incremental
changes to the functional requirements to the
developers of the PA is novel. The DAM encourages a
full lifecycle iterative and incremental approach to
development with all changes to the functionality of
the PA being implemented in the LA firstly (i.e. always
doing explicit analysis before design).

Model-Driven Development (MDD) [10, 11] and
the OMG instance Model-Driven Architecture (MDA)

4795

[12] are more ambitious attempts at automation of
software development than the DAM by working at
higher levels of abstraction (like current source code is
a higher level of abstraction than machine code) and
automating the compilation down to machine code.
Whilst it is possible to abstract away from a concrete
platform and to map an abstraction to a concrete
platform, it is much more difficult to see any
compilation being able to make all the designs and
design tradeoffs that are needed to meet varied and
custom non-functional requirements any time soon.
Whilst the LA may correspond to the Platform
Independent Model (PIM) and Platform-Specific
Models (PSMs) may correspond to the initial draft PAs
(for various platforms), this approach does not seem to
address the tradeoffs, optimisations, and custom
designs needed to meet the non-functional
requirements.

In its simplest expression, the DAM approach is
basically two software application written in regular
programming languages, the LA language usually
higher level and easier to develop in than the PA
application. The LA application is focused only on
functional requirement and has no specific project-
related non-functional requirements. The PA is a
reimplementation of the LA on chosen implementation
technologies to meet the projects non-functional
requirements. Source code changes (diffs) in the LA
are used to specify required functional changes to the
PA. The DAM approach does not see the LA as being
at a higher level of abstraction to the PA; it is just
using the simplest (physical) software language and
environment to implement (only) the functional
requirements as quickly and easily as possible. The
LA is as detailed and complex as the domain solution /
software problem requires it to be. The DAM
approach does embrace transformations and reverse
engineering between models at various levels of
abstraction for the logical application and the physical
application separately. However, it does not seek (at
least at this stage) anything more than simple syntactic
transformations between the LA and PA. This is seen
to be where the true work and expertise of software
developers.

4.2. Common Questions

Who develops the logical application? The LA will
be developed by a software developer(s) with the co-
operation and, perhaps, even the participation of the
product owner (or users and domain experts). The
product owner will raise a user story, use-case or
functional requirement and the developer will
implement that in the LA directly, sometimes even
whilst with the product owner.

Is the LA the same as a prototype? The simple
answer is, generally speaking, no. A prototype is
usually a quick and dirty implementation of a physical
design as a test of the appropriateness of the solution or
the feasibility of finding a solution. LAs are supposed
to be well designed to capture the functional
requirements. Further, once the feasibility of the
problem has been determined by a prototype it is
supposed to be discarded for a better-designed
solution. The LA is designed to stay around and
always be the arbiter and “point of record” for the
domain solution / software problem (especially as it
changes).

In a way, the DAM approach mimics some aspects
of rapid prototyping, especially as it was often done in
the 1990s, e.g. some developers would implement a
prototype in Smalltalk [13] and then re-implement the
real system in C or C++ to meet the non-functional
requirements (often speed). Smalltalk is an effective
rapid application development environment, allowing
developers to run the application and fill in missing
code / modules as they are found at run-time. Most
Smalltalk environments also employ the idea of an
application image that is persistent (including the
development environment), which would be very
useful for LA development.

As [14] writes, Smalltalk "can also be used to avoid
the shift between the description/specification of a
system and its implementation." This is the goal of the
LA. However, we think it is novel to use this approach
within a highly iterative and incremental approach.
Mostly prototyping is for early evaluation or
specification and the prototype is subsequently
discarded. DAM suggests maintaining the LA and the
description / specification of the domain solution /
software problem, and modifying it as needed in order
to modify the PA subsequently.
Will the product owner just want developers to
deploy the LA? The problem with many traditional
prototypes is that they were part logical and part
physical application. They often included persistence,
screen designs (albeit rushed), and although they often
did not meet all of the non-functional requirements
they often met a few (or even many). Obviously then
the customer would be interested in getting the
software deployed immediately. The LA will usually
have inappropriate user interface design, persistence
and architecture and not attempt to meet any non-
functional requirements. For example, the logical
application for a Web application could be a desktop
application, or vice versa (as discussed later).
What about applications that don’t have basic input
and output screens (e.g. embedded software or
games)? Applications that don’t have basic input and
output still necessarily have some form of input and

4796

some form of output. In these cases the LA would still
have logical and abstract representations of these
interfaces. For the case of games, the 2D for 3D nature
of the game can be considered a non-functional
requirement and the LA can again work with
abstractions of these inputs and outputs (e.g. game
control inputs and abstract scene descriptions).
Why not just use one application and try to keep
the logical and physical aspects separate in the same
source code (e.g. by using interfaces and aspects)?
This is an interesting idea but probably difficult and
doomed to fail. The whole idea of the design of
software is to bend and twist the logical application as
little a possible but as much as needed to meet the non-
functional requirements and implementation
technology choices. Good luck trying to maintain the
logical aspects of code that is implemented in assembly
language for speed or memory optimisation. Whilst
some very simple applications may see similarity
between the LA and PA, in real world cases they will
be very different.

4.3. A Framework or Platform for the LA

In essence, the LA can be developed from scratch
in any programming language and software
development environment that meets the requirements
for a logical application. As mentioned, this may often
be an interpreted single command-line or desktop
application that the developer can share with the
product owner directly (or via some source code
control system) to validate.

There are, however, common aspects of the LA that
could be factored out to make implementation easier.
For example, the simple handling of inputs and
outputs, making it easier for developers just to declare
they need a user interface with these inputs, outputs,
and/or commands and for such an interface to become
available. Remember the user interface design is not
central here but it does need to capture grouping of
inputs, outputs, commands etc.

A first approach to this would be to develop a set of
libraries or an application framework, which made
developing applications easier than starting from
scratch. A LA Framework (LAF) could provide all the
foundational functionality for any LA. Similarly, there
could be libraries for simple logical storage of
information. These could be just extended version of
collections that allow the LA to model the grouping of
entities in the domain solution (e.g. a collection of
customers, or a folder of documents). All of these seek
to raise the level of abstraction that is used to create the
LA and make it quicker and easier to implement. A
second approach could go even further. A 4GL-like
software application could be provided in which the

product owner could define the logical interfaces. They
could define logical screens with inputs, outputs, and
or commands, grouping and describing the logical
types of these inputs and outputs and perhaps textually
describing what each of the commands will do. This
application could be a single-user desktop application
or a Web-based application for multiple users and
multiple projects.

It is usually beyond the ability of the product owner
to go much beyond the interfaces, typically what would
be described in a use-case, i.e. the interaction between
users (or actors as they are called in UML) and the
interfaces of the software system. Usually a software
developer would be required to develop the internals of
the application with guidance and information from the
product owner (e.g. how the output is computed, what
are the steps in completing the actions). The software
developer brings the logical application to life for the
product owner with this coding of the domain solution.

An interesting question is what sort of software
developer will be required to develop the LA. Recall,
it is devoid of any technicalities related to non-
functional requirement like usability, persistence,
optimizations. Also the developer needs to work
closely with the users, product owner, and/or domain
experts to really understand the domain solution and
software problem. Could a business analyst with the
right training and skills undertake this task? This role
of LA developer is somewhat distinct from the roles of
traditional or agile software developers.

5. Summary and Future Research

This paper has highlighted the differences between
analysis and design and logical and physical models. It
has focused on some problems with Traditional
Software Engineering and some problems with Agile
Software Development as motivation for a new
approach to software development called the Dual
Application Model. It involves the development of two
software applications instead of the regular one
deliverable application. The first application is the
Logical Application and it is a runnable logical model
of the domain solution / software problem. It is
independent of any solution technology and the non-
functional requirements and is runnable. It is
developed as a clear and natural record of the domain
solution / software problem so that it can be rapidly
developed and easily maintained. The Logical
Application is developed with close involvement of the
user(s), product owner, and/or domain expert(s).

The second application is the Physical Application
and it is a physical model of the software solution and
what is eventually delivered as the software solution.

4797

The Logical Application is a first draft for the Physical
Application but the application must be extended and
modified to run on the physical implementation
platform and to meet all the non-functional
requirements of the software solution, e.g. persistence,
ease-of-use, speed, and reliability. The development of
the Physical Application is the domain and expertise of
software developers, although the product owner
through their desire for various non-functional
requirements directs it. The development of the PA,
like the LA, is done iteratively and incrementally and
directed by changes to the LA source code, user
stories, use-cases, functional, and also non-function
requirements provided by the product owner.

This approach in line with the proposed principles
of Agile Software Engineering, i.e. to have separate
logical and physical models and to work forward from
the logical to physical models (in each iteration). It
also supports multiple models developed separately
from the Logical and Physical Applications or used to
generate (at least initially) parts of the Logical and
Physical Applications. It does not include, however,
the generation of the Physical Application from the
Logical Application (as done in MDD) since this is
where the real expertise of software developers is
needed. A number of advantages and disadvantages of
this approach are discussed with the belief that overall
it will lead to the more efficient and effective
development of higher quality software.

There are four important features of this approach.
Firstly, the LA is a full model of each particular
version of the domain solution / software problem not
some high-level abstraction that leaves out details and
may be inconsistent. Secondly, every iteration of the
LA is a runnable application that can be verified with
automated and manual testing and validated by the
product owner, users, and other stakeholders before
significant effort is made to implement that iteration of
the PA. Thirdly, changes to the LA can be tracked by
a source code version control system and provided to
software developer to guide them in updating the PA.
Compare this to TSE when changes to logical models
were generally hard to track. Fourthly, the LA and PA
can be developed iteratively and incrementally and in
parallel because of the ease of tracking the changes to
the LA

The approach has been “walked through” for
simple software development problems (e.g. a library
management software system). It needs, however, to
be trialed in larger more real-world software
development projects to see and measure how effective
and efficient it may (or may not) be. There is also a lot
of room for research and development of class
libraries, application frameworks, and CASE tools to
support the Dual Application Model. If successful this

approach could become a central component of Agile
Software Engineering.

6. References

[1] D. West, T. Grant, M. Gerush and D. D’Silva, Agile
development: Mainstream adoption has changed agility,
Forrester Research, 2010.
[2] J. Rumbaugh, I. Jacobson and G. Booch, Unified
Modeling Language Reference Manual, The, Pearson Higher
Education, 2004.
[3] P. Kruchten, The rational unified process: an
introduction, Addison-Wesley Professional, 2004.
[4] K. Beck, M. Beedle, A. v. Bennekum, A. Cockburn, W.
Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt,
R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K.
Schwaber, J. Sutherland and D. Thomas, Manifesto for Agile
Software Development, http://agilemanifesto.org/, 2001.
[5] A. Aitken and V. Ilango, A Comparative Analysis of
Traditional Software Engineering and Agile Software
Development, System Sciences (HICSS), 2013 46th Hawaii
International Conference on, IEEE, 2013, pp. 4751-4760.
[6] I. Jacobson, Object-Oriented Software Engineering,
Addison-Wesley, 1992.
[7] K. Schwaber and J. Sutherland, "What is Scrum", URL:
http://www.scrumalliance.org/system/resource/file/275/whatI
sScrum.pdf (2007).
[8] K. Hiranabe, Kanban applied to software development:
From agile to lean, http://www.infoq.com/articles/hiranabe-
lean-agile-kanban, 2008.
[9] B. W. Boehm, "Software engineering economics",
Software Engineering, IEEE Transactions on (1984), pp. 4-
21.
[10] S. J. Mellor, T. Clark and T. Futagami, "Model-driven
development: guest editors' introduction", IEEE Software, 20
(2003), pp. 14-18.
[11] O. Pastor, S. España, J. I. Panach and N. Aquino,
"Model-driven development", Informatik-Spektrum, 31
(2008), pp. 394-407.
[12] A. G. Kleppe, J. Warmer, W. Bast and M. Explained,
The model driven architecture: practice and promise,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
2003.
[13] A. Goldberg, Smalltalk-80: The Interactive
Programming Environment, Addison-Wesley, Reading, MA,
1984.
[14] F. Kordon, "An introduction to rapid system
prototyping", Software Engineering, IEEE Transactions on,
28 (2002), pp. 817-821.

4798

