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Abstract

Typical person re-identification (ReID) methods usually

describe each pedestrian with a single feature vector and

match them in a task-specific metric space. However, the

methods based on a single feature vector are not sufficient

enough to overcome visual ambiguity, which frequently oc-

curs in real scenario. In this paper, we propose a novel end-

to-end trainable framework, called Dual ATtention Match-

ing network (DuATM), to learn context-aware feature se-

quences and perform attentive sequence comparison si-

multaneously. The core component of our DuATM frame-

work is a dual attention mechanism, in which both intra-

sequence and inter-sequence attention strategies are used

for feature refinement and feature-pair alignment, respec-

tively. Thus, detailed visual cues contained in the interme-

diate feature sequences can be automatically exploited and

properly compared. We train the proposed DuATM network

as a siamese network via a triplet loss assisted with a de-

correlation loss and a cross-entropy loss. We conduct ex-

tensive experiments on both image and video based ReID

benchmark datasets. Experimental results demonstrate the

significant advantages of our approach compared to the

state-of-the-art methods.

1. Introduction

Person Re-Identification (ReID) aims at associating the

same pedestrian across multiple cameras [13, 63], which

has attracted rapidly increased attention in the computer

vision community due to its importance for many poten-

tial applications, such as video surveillance analysis and

content-based image/video retrieval. A typical person ReID

pipeline usually describes each pedestrian image or video

footage with a single feature vector firstly and then match

them in a task-specific metric space, where the feature vec-

tors of same pedestrian are expected to have smaller dis-
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Figure 1. Hard examples in person ReID. (a): negative pair with

similar appearance. (b): positive pair with large spatial displace-

ment. (c): positive pair with body-part missing due to occlusion.

(d): positive video pair with interference frames (marked by el-

lipse) and temporal misalignments (indicated by red “×” mark).

tances than that of different pedestrians, e.g., [20, 34, 21, 64,

54]. Recently, benefited from the success of deep learning,

feature vector based methods have obtained significant per-

formance improvements [14, 37, 28, 26]. However, when

the individuals undergo drastic appearance changes or when

they are dressed in similar clothes, it becomes quite dif-

ficult to use single feature vector based representation for

reliable person ReID. As shown in Fig. 1 (a), different indi-

viduals are very similar to each other in appearance, except

for some local patterns on skirts. Unfortunately, the single

feature vector based methods usually pay more attention on

the overall appearance rather than the local discriminative

parts and thus fail to yield accurate matching results. More-

over, as shown in Fig. 1 (d), there are also some interference

frames in each video sequence, which will heavily contami-

nate the whole feature vector and thus lead to mismatching.

An alternative way to address these problems is to de-

scribe each person with a set of feature vectors and match

them based on feature set or feature sequence.1 For ex-

ample, in [18, 1, 32, 59, 60], the spatial-patch based lo-

cal feature sequences or body-part based semantic feature

sets are extracted from pedestrian images and matched ac-

cording to some heuristic correspondence structures; in

[44, 43, 69], multiple sub-segment or frame level compar-

1In this paper, we refer to a group of feature vectors as feature sequence

if they have spatial/temporal adjacent relations; otherwise as feature set.
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Figure 2. Schematic illustration of DuATM.

isons are computed and aggregated for matching pedestrian

based on video. Among these methods, matching the lo-

cal feature sequences based on a universal correspondence

structure might easily fail when encountering heavily se-

quence misalignments, e.g., caused by the spatial displace-

ments as shown in Fig. 1 (b) or local interferences as shown

in Fig. 1 (d). Besides, matching the semantic feature sets

based on human body structure might also fail when en-

countering body-part occlusions as shown in Fig. 1 (c).

To tackle the challenges mentioned above, we propose a

novel end-to-end trainable framework, named Dual ATten-

tion Matching network (DuATM), to jointly learn context-

aware feature sequences and perform attentive sequences

comparison. Our framework consists of two cascaded mod-

ules, one for feature sequence extraction and one for feature

sequence matching, as illustrated in Fig. 2. The feature se-

quence extraction module is built on a spatial/bi-recurrent

convolutional neural network (CNN) for image/video inputs

to extract spatial/temporal-spatial context-aware feature se-

quences. The sequence matching module is based on a dual

attention mechanism—which contains one attention strat-

egy for intra-sequence refinement and one attention strategy

for inter-sequence alignment—the former refines each cor-

rupted feature vectors by exploiting the contextual informa-

tion within sequence and the later aligns feature-pair by se-

lecting semantically consistent counterparts cross paired se-

quences. After feature sequences refinement and alignment,

the holistic sequence distance score is computed by ag-

gregating multiple local distances between the refined and

aligned pairwise feature vectors of each paired sequences.

We train the proposed DuATM as a siamese network with

a triplet loss plus a de-correlation loss and a cross-entropy

loss, to reduce the feature sequence redundancy and en-

hance the feature sequence discrimination.

The main contributions of the paper are as follows.

• We propose a novel end-to-end trainable framework for

person ReID, which can jointly learn context-aware fea-

ture sequences and perform sequences comparison with

dual attention mechanism.

• We use a dual attention mechanism to perform intra-

sequence feature refinement and inter-sequence feature-

pair alignment simultaneously.

• We train DuATM as a siamese network with a triplet loss,

plus a de-correlation loss and a cross-entropy loss, and

evaluate the effectiveness of each part.

• We conduct extensive experiments on both image and

video based benchmark datasets and demonstrate the ef-

fectiveness of our proposal.

2. Related Works

Person ReID systems usually consist of two major com-

ponents: a) feature extraction and b) metric learning. Pre-

vious works on person ReID focus on either construct-

ing informative features, or finding a discriminative dis-

tance metric. According to the used representation forms

in matching stage, we roughly divide the existing meth-

ods into two groups: feature vector based methods, e.g.,

[10, 4, 19, 37, 41, 17, 12, 45, 35]; and feature set or feature

sequence based methods, e.g., [69, 60, 59, 57, 36, 18, 1, 38].

In feature vector based methods, an image or video

is represented by a feature vector and the metric learn-

ing is performed based on feature vectors. For example,

in [2, 20, 29, 47, 56, 51, 54, 64, 70, 21], hand-crafted lo-

cal features are integrated into a feature vector, and distance

metric is learned by simultaneously maximizing inter-class

margins and minimizing intra-class variations. Meanwhile,

many recent works directly learn comparable feature em-

bedding from the raw input data via a neural network. For

example, in [33, 26], high-quality local patterns are ex-

plored from images or videos firstly and then aggregated

into informative feature vectors; in [28, 39, 49], local fea-

tures of recurrent appearance data are extracted and inte-

grated using temporal-pooling strategy; in [14, 5], to en-

hance the generalization capability of the learned embed-

dings, the pairwise similarity criterion is extended to triplet

or quadruplet. Although these methods mentioned above

are able to learn task-specific compact embeddings, these

methods still suffer from the mismatching problem, espe-

cially when some vital visual details fail to be captured.

Different from the feature vector based methods, fea-

ture set or feature sequence based methods are capable of

preserving more detailed visual cues by leveraging com-

plementary feature vectors or spatial information. For ex-

ample, in [32, 3], local spatial constraints are adopted

when computing spatial-patch based feature sets similar-

ity; in [43], dense element-wise correspondences are em-

ployed when computing the distance of temporal feature

sequences; in [36, 18, 1, 38], spatial correspondence struc-

tures are explored via the patch comparison layer inserted

in a deep network; in [59, 60], the body structure informa-

tion is utilized to facilitate the semantic alignment of feature

sequences. While these methods mentioned above exploit

heuristic correspondence structures to compare feature se-
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Figure 3. Feature sequence extraction module.

quences, they might easily fail when heavy misalignments

or interferences occur in feature sequences.

Recently, attention mechanism has been proposed in

many tasks of matching sequences or learning representa-

tions, e.g., [40, 48, 50, 42, 24, 69]. In [40, 42], attention

mechanism is used to softly align word embeddings be-

tween each text-sequence pair in the task of natural lan-

guage processing. In [48, 24], glimpse representation is

produced for each image via neural attention, so that each

input pair can be compared progressively. In [50, 69],

fixed-dimension feature vectors are learned from variable

length videos for face recognition and person ReID by at-

tentive aggregation, respectively. However, these methods

either consider a single intra-sequence attention for feature

selection from feature set/sequence, or consider a single

inter-sequence attention for feature sets/sequences match-

ing. While inter-sequence attention is able to tackle the

sequence misalignment problem, it might fail when inter-

ferences or corruptions occur. On the other hand, intra-

sequence attention is able to tackle corruptions but it is not

able to align sequences.

In this paper, we exploit the attention mechanism into

feature sequence based person ReID. Unlike the existing

methods, that compare sequences via heuristic correspon-

dence structures, we attempt to compare two sequences via

dual attention processes, in which an inter-sequence atten-

tion process is used to perform sequence alignment and an

intra-sequence attention process is used simultaneously to

perform sequence refinement.

3. Our Proposal: Dual Attention Matching

Network (DuATM)

This section will present an end-to-end trainable

framework—DuATM, which consists of two modules: one

for extracting feature sequences and one for matching fea-

ture sequences, as illustrated in Fig. 2.

3.1. Feature Sequence Extraction Module

In DuATM, we adopt DenseNet-121 [15] as the back-

bone of the feature sequence extraction module. Owning to

the direct connections between each layer to all the subse-

quent layers in DenseNet, local details are better propagated

to the outputs to enrich the final feature sequences. Specif-

ically, the network architectures for image and video inputs

are slightly different.

• Given an image X ∈ R
H×W×3, as illustrated in Fig. 3

(a), the convolutional feature maps are obtained from the

outputs of DenseNet-Block4. Each feature vector at a

specific position across all channels contains both the

spatial details and semantic contexts due to its large re-

ceptive field size. Then, these feature vectors are rear-

ranged by locations to form a feature sequence and each

feature vector is further transformed into a compact em-

bedding space via a Fully Connected (FC) layer.

• Given a video footage X ∈ R
H×W×3×T , of length T ,

as illustrated in Fig. 3 (b), each frame in video at a time-

step is passed to a DenseNet to produce the frame-level

feature vector. Then, a bidirectional recurrent layer is in-

troduced to encode both the temporal-spatial appearance

details and the complementary motion cues, by allowing

information to be passed between time-steps. Finally, all

hidden states from different time-steps compose the final

feature sequence for the video.

For convenience, we denote the feature sequence extrac-

tion as X = F(X ; ΘF ), where X is the extracted feature

vectors sequence which encodes spatial or temporal infor-

mation and F(·; ΘF ) represents the feature extraction mod-

ule parameterized with ΘF . More specifically, we denote

X = {xi ∈ R
D}S

i=1 as a feature sequence of length S.

Each feature vector xi is normalized to unit ℓ2 norm before

passing it to the next module.

3.2. Sequence Matching Module

Sequence matching module is the most important com-

ponent of DuATM. Note that there is no supervision in-

formation available to force the feature extraction mod-

ule to learn semantically aligned feature sequences, thus

one of the goals of this module is to compare each pair

of possibly unaligned feature sequences (Xa,Xb), where

Xa = {xi
a}

Sa
i=1 and Xb = {xj

b}
Sb
j=1. However, each se-

quence may also contain a certain amount of corrupted fea-

ture vectors (e.g., caused by the noisy inputs). A naive

method is to transform feature sequences into comparable

feature vectors via average pooling, in which the misalign-

ment or corruptions are ignored. Instead, we propose to re-

fine and align each feature sequence pair at first, then com-

pute and aggregate the distances of multiple feature pairs.

Since that the intermediate feature sequences obtained

from our feature extraction module contain abundant con-

textual information, we use these contexts to remove the

feature corruptions and compare feature sequences. Specif-

ically, we attempt to exploit the contextual information to

help feature sequence refinement and feature sequence pair

alignment via the attention mechanism. To be more specific,

if one of a feature sequence pair is treated as the memory,

the refinement of each feature vector within this sequence
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can be achieved by an intra-sequence attention process; op-

positely, if the other sequence is treated as the memory,

the alignment of each feature vector can be achieved by an

inter-sequence attention process; and vice versa.

For clarity, we illustrate the sequence matching module

of DuATM in Fig. 4 (a), in which two types of attention pro-

cedures are integrated into a dual attention block for feature

sequence refinement and alignment, as illustrated in Fig. 4

(b). After refinement and alignment, the holistic sequence

distance score is computed by aggregating multiple local

distances between refined and aligned pairwise feature vec-

tors of each sequence pair.

3.2.1 Dual Attention Block

The dual attention block is composed of one transform layer

and one attention layer, in which the transform layer is used

to produce the feature-aware filter and the attention layer is

used to generate the corresponding attention weights. With-

out loss of generality, as an example to present the dual at-

tention block in detail, we describe the generation process

of (x̄i
a, x̂

i
b), as illustrated in Fig. 4 (b). Specifically, let xi

a

be the reference feature to be refined and aligned.

• At first, the filter is computed through the transform layer

as follows:

qi
a = ReLU(BN(Wxi

a + b)), (1)

where W and b are the weight matrix and bias vector

of a linear layer, BN and ReLU represent Batch Nor-

malization [16] and rectified linear unit (ReLU) function,

respectively.

• Then, the attention significance for intra-sequence refine-

ment and inter-sequence alignment can be computed sep-

arately through the attention layer as follows:

ēi,ma = 〈qi
a,x

m
a 〉, ê

i,n
b = 〈qi

a,x
n
b 〉, (2)

where 〈·, ·〉 denotes the inner product.

• Finally, the semantically refined and aligned feature vec-

tor pair (x̄i
a, x̂

i
b) is obtained by linearly combining ele-

ments within the corresponding sequences, respectively,

via normalized attention weights as

x̄i
a =

Sa∑

m=1

σ(ēi,ma )xm
a , x̂i

b =

Sb∑

n=1

σ(êi,nb )xn
b , (3)

where σ(·) is a soft-max function for normalization in

which σ(tj) =
exp(tj)∑
S
j=1

exp(tj)
for t ∈ R

S .

Following Eq. (1) to (3), the comparable feature pairs

with respect to each feature vector can be obtained.

3.2.2 Distance Computation and Aggregation

Owing to the feature sequence refinement and alignment

performed in the dual attention block, it is reasonable to

directly compute the distance between two refined and si-

multaneously aligned features, and aggregate the computed

distances of feature-pairs into a holistic sequence distance.

In DuATM, the dual attention is bidirectional, i.e., the

dual attention process is carried out twice with respect to

{xi
a} and {xj

b}, respectively. Thus, we use the the distances

of sequence-pair in both two comparison directions to de-

fine the distance of the holistic sequences. Specifically, we

use the Euclidean distance to compute the distance between

feature pair, i.e.,

di
a = ‖x̄i

a − x̂
i
b‖2, i = 1, · · · , Sa,

d
j
b = ‖x̄

j
b − x̂

j
a‖2, j = 1, · · · , Sb.

(4)

And then, we aggregate these distances via the average-

pooling to define the distance of feature sequences Xa and

Xb as follows:

‖Xa −Xb‖M
=

1

2Sa

Sa∑

i=1

di
a +

1

2Sb

Sb∑

j=1

d
j
b, (5)

where ‖Xa−Xb‖M
is the distance defined by the sequence

matching module. For convenience, we denote all parame-
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ters (i.e., W, b, and the parameters in the BN layer) in the

sequence matching module as Θ
M

.

3.3. Loss Functions for Training DuATM

To train the whole network to perform person ReID and

generalize well on unseen data, we use the siamese architec-

ture with triplet loss during the training period as shown in

Fig. 5. Moreover, to make the learned intermediate feature

sequences compact, robust, and more discriminative, we

also combined with two auxiliary losses, i.e. de-correlation

loss and cross-entropy loss. Thus, the overall loss function

is defined as:

ℓ = ℓ(0)(X ,ΘF ,ΘM)+λ1ℓ
(1)(X ,ΘF )+λ2ℓ

(2)(X ,ΘF ,θ),

where λ1 > 0 and λ2 > 0 are two tradeoff parameters.

Triplet Loss. The objective of using triplet loss is to

force the network to make the distance between the posi-

tive pairs smaller than the negative ones. Given a triplet

of person images/videos, the extraction module extracts

spatial/temporal-spatial context-aware feature sequences

via a three-branch siamese subnet, and the matching mod-

ule attentively computes the distances between the positive

and negative pair via a two-branch siamese subnet.

Let X = (X⊥,X+,X−) be a triplet input. To force the

network to predict the distance of positive pair smaller than

the negative pair with a margin γ, we define the triplet loss

ℓ(0)(X ,ΘF ,ΘM) as:

max{0, γ+‖F(X⊥)−F(X+)‖M−‖F(X⊥),F(X−)‖M},
(6)

where γ > 0 (e.g., γ = 0.2 in our experiments).

De-Correlation Loss. In [9], de-correlating representations

has been studied as a regularizer to reduce over-fitting in

deep networks. In this paper, we formulate a similar but

different de-correlation loss to make our feature sequence

more compact. Specifically, we impose a constraint on the

intra-sequence correlation matrix as follows:

ℓ(1)(X ,ΘF ) =
1

N2
||I−F(X )TF(X )||2F , (7)

where I is an identity matrix and N is the total number of

feature vectors in the sequence.

Cross-Entropy Loss with Data Augmentation. To learn

more informative and robust feature sequences, we also

use a cross-entropy loss with data augmentation approach.

Specifically, we use the data with the same labels to gener-

ate more data for training.

SupposeX = F(X ) is an intermediate feature sequence,

we achieve this goal by first pooling the sequence as z =∑S

i=1 ωixi, where
∑

i ωi = 1 and ωi ≥ 0, and then passing

the aggregated vector to a FC layer followed by a cross-

entropy loss:

ℓ(2)(X ,ΘF ,θ) = − lnσ(wcz+ bc), (8)

where c is the same label as the input X , {wc, bc} refer to

the cth row of the FC layer’s weight matrix and bias vector,

respectively, and θ contains the parameters in the new FC

layer. Note that, instead of generating z by simply average

pooling, we propose to introduce a random convex combi-

nation strategy into the pooling stage by randomly gener-

ating ωi ∈ [0, 1] and even reset it to 0 with the probability

p > 0, but keeping
∑

i ωi = 1. This can be regarded as a

simplified version of the interpolation method [11] to aug-

ment training dataset.

4. Experiments

To evaluate our proposal, we conduct extensive experi-

ments on three large-scale data sets, including Market-1501

[62], DukeMTMC-reID [65], and MARS [61].

4.1. Datasets, Evaluation, and Implementations

Datasets Description. Market-1501 is collected from 6

cameras, which contains totally 1,501 identities and 32,668

bounding boxes generated by a DPM-detector. It is split

into non-overlapping train/test sets of 12,936/19,732 im-

ages as defined in [62], and single-query evaluation mode

is adopted in our experiments. DukeMTMC-reID is a sub-

set of DukeMTMC [30] captured with 8 cameras for cross-

camera tracking. It includes 1,404 identities, in which one

half for training and one half for testing. Specifically, there

are 2,228 queries, 17,661 galleries, and 16,522 training im-

ages, respectively. MARS is an extension of Market-1501

for video-based ReID. It is composed of 8,298 tracklets

for 625 identities for training, and 12,180 tracklets for 636

identities for testing as defined in [61], where the tracklets

usually contain 25-50 frames.

Evaluation Protocol. For performance evaluation, we em-

ploy the standard metrics as in most person ReID literatures,

namely the cumulative matching cure (CMC) and the mean

Average Precision (mAP). To compute these scores, we re-

implement the evaluation code provided by [61] in Python.

Implementation Details. We use the DenseNet-121 [15]

trained on ImageNet to initialize the DenseNet part in Du-

ATM, and train our network with stochastic gradient de-

scent (SGD) method. To be more specific, we freeze the

pre-trained DenseNet parameters and train our model for
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Method & Loss
Market-1501 DukeMTMC-reID MARS

R1 R5 R20 mAP R1 R5 R20 mAP R1 R5 R20 mAP

AvePool+ℓ(0) 74.20 89.67 95.58 56.88 64.05 79.44 87.52 43.79 65.45 81.92 90.10 47.26

DuATM+ℓ(0) 79.66 91.15 96.73 63.46 68.40 81.73 89.77 48.65 66.36 83.13 90.40 48.44

DuATM+ℓ(0)+ℓ(1) 81.83 92.46 97.33 65.21 69.17 82.23 89.36 49.48 66.52 83.78 91.21 49.07

DuATM+ℓ(0)+ℓ(2) 87.50 95.37 98.01 70.02 79.40 90.04 94.25 61.55 73.74 87.73 93.84 56.36

DuATM+ℓ(0)+ℓ(1)+ℓ(2) 88.75 95.78 98.46 70.46 81.06 91.11 95.02 62.27 74.43 89.08 94.13 58.19

DuATM∗+ℓ(0)+ℓ(1)+ℓ(2) 89.96 96.53 98.72 75.22 81.46 90.75 95.11 63.14 76.36 90.10 95.30 58.96

DuATM∗∗+ℓ(0)+ℓ(1)+ℓ(2) 91.42 97.09 98.96 76.62 81.82 90.17 95.38 64.58 78.74 90.86 95.76 62.26

Table 1. Comparison to the baseline model. ∗ We adjust the parameters of loss functions to more appropriate values as obtained in the

parameter analysis experiments. ∗∗ The data augmentation is also adopted during the evaluation stage.

the first 100 epochs, and continue the training of the entire

network for other 200 epochs. The learning rate is initial-

ized as 0.01 and changed to 0.001 in the last 50 epochs.

An obstacle in training DuATM with triplet loss is lack

of positive pairs compared with negative ones. To alle-

viate the data imbalance issue, we adopt the hard triplet

mining strategy [31, 14] to generate triplet mini-batches.

Specifically, each mini-batch contains P persons with V

images/tracklets, and all of them are regarded as anchor

points to select the corresponding hard positives and neg-

atives. In experiments, we set (P = 10, V = 4) with size

256 × 128 for image dataset, and set (P = 7, V = 3) with

size 128 × 64 for video dataset by default. Besides, we

follow the common practices to augment image dataset by

using random horizontal flips and random crops [28], and

to augment video dataset by randomly selecting video sub-

sequences of 16 consecutive frames.

The dimension D of feature vectors within each se-

quence is set to 256 for both image and video inputs. Be-

sides, the hyper parameters of loss functions, i.e., λ1, λ2
and corruption ratio p, are set as λ1 = 0.1, λ2 = 0.5,

and p = 0.2 when comparing with the baseline. They

are tuned to more proper values in the parameter analysis

experiments. During the evaluation, we discard the data

augmentation process except when comparing with state-

of-the-art methods, and use the sub-sequences of 64 con-

secutive frames for video ReID.2 All experiments are im-

plemented with PyTorch on 2 Nvidia Titan-X GPUs.

4.2. Evaluations on Performance of DuATM

DuATM Trained with Different Losses. To evaluate the

contribution of each loss and the dual attention block, we

train DuATM and report the results with the following

four settings: a) DuATM+ℓ(0), b) DuATM+ℓ(0)+ℓ(1), c)

DuATM+ℓ(0)+ℓ(2), and d) DuATM+ℓ(0)+ℓ(1)+ℓ(2). Note

that DuATM is built on DenseNet. Thus, as the baseline,

we take DenseNet to extract feature sequence, use an aver-

age pooling layer to form the holistic feature vector and use

Euclidean distance to compare feature vectors. The baseline

2If the tracklet has less frames, we circularly sample the sequence.

Method & Loss R1 R5 R20 mAP

AvePool+ℓ(0) 74.20 89.67 95.58 56.88

Intra+ℓ(0) 78.78 90.69 96.73 61.76

Inter+ℓ(0) 72.36 87.74 95.19 53.91

DuATM+ℓ(0) 79.66 91.15 96.73 63.46

Table 2. Ablation study of DuATM on Market1501.

is trained with the triplet loss ℓ(0), denoted as AvePool+ℓ(0).

Experimental results are presented in Table 1. As observed

from Table 1 that, the results of DuATM+ℓ(0) consistently

outperform that of AvePool+ℓ(0) on all three data sets. This

confirms the effectiveness of using dual attention block

in DuATM: using context-aware feature sequences with

dual attentive matching mechanism is more effective than

the average-pooling based single feature vector method.

The performance is further improved when adding the de-

correlation loss ℓ(1) and the cross-entropy loss ℓ(2). Since

that the de-correlation loss ℓ(1) does not bring any extra su-

pervision information for discrimination, the performance

gain of DuATM+ℓ(0)+ℓ(1) over DuATM+ℓ(0) is minor. In-

terestingly, when the cross-entropy loss is added, the perfor-

mance is significantly improved. This could be accounted

to the supervision information brought by the identity la-

bels. Finally, when combining all three loss functions, the

accuracy is further improved.

Ablation Study of DuATM. To verify the effects of intra-

and inter-sequence attentions in DuATM, we evaluate each

of them separately on Market1501, denoted as Intra+ℓ(0)

and Inter+ℓ(0). Experimental results are listed in Table 2,

where DuATM+ℓ(0) is nothing but Intra+Inter+ℓ(0). We can

observe from Table 2 that, jointly using the two attentions,

i.e., the dual attention, leads to improvements in the perfor-

mance than using only one type attention. This confirms the

importance of using dual attention mechanism.

Evaluation on Parameters in DuATM. In the loss function

of DuATM, there are two parameters λ1 and λ2. In training

the cross-entropy loss, there is also a parameter p to control

the corruption ratio in generating auxiliary data. To evaluate

the influence of these parameters, we conduct experiments
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Figure 6. Evaluation on influence of parameters.

16 32 64 128 256 512
Feature Vector Dimension

50

60

70

80

90

100

P
e

rf
o

rm
a

n
c
e

(%
)

mAP
Rank-1
Rank-5
Rank-10
Rank-20
Rank-50

(a)

1 2 4 8 16 32 64 96
Sequence Length

20

40

60

80

100

P
e
rf

o
rm

a
n
c
e
(%

)

mAP
Rank-1
Rank-5
Rank-10
Rank-20
Rank-50

(b)

Figure 7. Evaluation on feature dimension and sequence length.

on three data sets by changing one parameter while fixing

the other two. Experimental results are shown in Fig. 6.

From these results, we can draw three conclusions: a)

while a moderate value λ1 can enforce the sequences more

compact, an over-large λ1 harms the contextual relation-

ships between feature vectors leading to slightly degener-

ated performance; b) a moderate value λ2 can bring ex-

tra supervision information, but an over-large λ2 might

lead to over-fitting; c) the performance is not sensitive

to parameter p. Also, we find that DuATM achieves

the best performance with the settings of (λ1, λ2, p)
as (0.3, 0.9, 0.4), (0.1, 0.5, 0.6), and (0.5, 0.5, 0.4), on

Market-1501, DukeMTMC-reID, and MARS, respectively.

We list these results in the bottom two rows of Table 1.

In addition, we conduct experiments on Market-1501

and MARS to evaluate the impact of feature dimension D

and sequence length T of a video. Experimental results are

shown in Fig. 7. For image based ReID, when each per-

son is represented by a sequence with size D × T , even us-

ing a lower dimension, the whole sequence can still contain

enough discrimination information, e.g., the results at rank-

1 still keep at 78.50% or 87.71% for D = 16 or D = 32,

respectively. For video based ReID, since that the feature

sequence length is determined by the tracklet size, a longer

sequence will contain more visual cues captured at different

time points and thus lead to higher accuracy, e.g., mAP is

improved from 21.87% with T = 1 to 59.42% with T = 96.

Comparison to Other Attention Methods. To demon-

strate the effectiveness of our dual attention mechanism,

in Table 3, we compare our method with several existing

attentive methods, including CAN [24], HP-Net [25], ST-

Dataset Method R1 mAP Reference

Market

CAN 48.24 24.43 2017 TIP[24]

HP-Net 76.90 - 2017 ICCV[25]

DuATM 91.42 76.62 This paper

MARS

ST-RNN 70.60 50.70 2017 CVPR[69]

QAN 73.74 51.70 2017 CVPR[26]

DuATM 78.74 62.26 This paper

Table 3. Comparison to other attention methods.

Dataset Method R1 mAP Reference

Market

SCSP 51.90 26.35 2016 CVPR[3]

SpindleNet 76.90 - 2017 CVPR[59]

DLPAR 81.00 63.40 2017 ICCV[60]

DRL-PL 88.20 69.30 2017 Arxiv[52]

DuATM 91.42 76.62 This paper

Table 4. Comparison to other feature sequence/set based methods.

RNN [69], and QAN [26], in which the salient local pat-

terns are extracted by the attention strategy and aggregated

into a single comparable feature vector. Instead, we keep all

informative local patterns during feature extraction, and use

dual attention mechanism to perform local pattern refine-

ment and pattern-pair alignment during the matching stage.

Our model performs a more reasonable comparisons and

thus achieves superior performance.

Comparison to Other Feature Sequence / Feature Set

based Methods. In Table 4, we compare the performance

of our method to several existing sequence / set based meth-

ods [3, 59, 60, 52]. Since that, DuATM can not only adap-

tively infer the semantic correspondence structure between

local patterns but also automatically remove local corrup-

tions within sequence, our method achieves better perfor-

mance than body-part based (e.g., SpindleNet [59], DRL-

PL [52]) and densely-matching based (e.g., SCSP [3]) meth-

ods on dataset Market-1501.

Comparison to State-of-the-art Methods3. In Table 5,

Table 6, and Table 7, we compare our approach against

the state-of-the-art methods on Market-1501, DukeMTMC-

reID, and MARS, respectively. The proposed DuATM

achieves superior performance on all of them, that further

confirms the effectiveness of our attentively deep context-

aware feature sequences based approach. Specifically, in

Market-1501 and DukeMTMC-reID, DuATM surpasses all

stepwise models and end-to-end networks, and obtains

rank-1 accuracy at 91.24% and 81.37% for each dataset. In

MARS, DuATM is still better than most approaches above.

If our DuATM is trained with a larger image size 256× 128

as in [14], the rank-1 will be 81.16%, which surpasses the

3Note that different backbones are adopted in different methods, e.g.,

DenseNet is used in DuATM, ResNet is used in [37, 14], combined mul-

tiple networks are used in [19, 67]. Thus, a comprehensive evaluation on

the performance with different backbones is a worth future work.
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Method R1 R5 mAP Reference

BOW 44.42 63.90 20.76 2015 ICCV[62]

LDNS 61.02 - 35.68 2016 CVPR[55]

Re-Rank 77.11 - 63.63 2017 CVPR[66]

SSM 82.21 - 68.80 2017 CVPR[2]

S-LSTM 61.60 - 35.30 2016 ECCV[39]

G-CNN 65.88 - 39.55 2016 ECCV[38]

CRAFT 68.70 - 42.30 2017 TPAMI[8]

P2S 70.72 - 44.27 2017 CVPR[68]

CADL 73.84 - 47.11 2017 CVPR[22]

USG-GAN 78.06 - 56.23 2017 ICCV[65]

LDCAF 80.31 - 57.53 2017 CVPR[17]

SVDNet 82.30 92.30 62.10 2017 ICCV[37]

TriNet 84.92 94.21 69.14 2017 Arxiv[14]

JLML 85.10 - 65.50 2017 IJCAI[19]

DML 87.73 - 68.83 2017 Arxiv[58]

REDA 87.08 - 71.31 2017 Arxiv[67]

DarkRank 89.80 - 74.30 2017 Arxiv[6]

DuATM 91.42 97.09 76.62 This paper

Table 5. Comparison to state-of-the-art on Market-1501.

Method R1 R5 mAP Reference

BOW 25.13 - 12.17 2015 ICCV[62]

LOMO 30.75 - 17.04 2015 CVPR[21]

USG-GAN 67.68 - 47.13 2017 ICCV[65]

OIM 68.10 - - 2017 CVPR[46]

APR 70.69 - 51.88 2017 Arxiv[23]

SVDNet 76.70 86.40 56.80 2017 ICCV[37]

DPFL 79.20 - 60.60 2017 ICCVW[7]

REDA 79.31 - 62.44 2017 Arxiv[67]

DuATM 81.82 90.17 64.58 This paper

Table 6. Comparison to state-of-the-art on DukeMTMC-reID.

Method R1 R5 mAP Reference

SMP 23.59 35.81 10.54 2017 ICCV[27]

BOW 30.60 46.20 15.50 2015 ICCV[62]

DGM 36.80 54.00 21.30 2017 ICCV[53]

Re-Rank 73.93 - 68.45 2017 CVPR[66]

IDE 65.10 81.10 45.60 2016 ECCV[61]

LDCAF 71.77 86.57 56.50 2017 CVPR[17]

TriNet 79.80 91.36 67.70 2017 Arxiv[14]

DuATM 78.74 90.86 62.26 This paper

DuATM∗ 81.16 92.47 67.73 This paper

Table 7. Comparison to state-of-the-art on MARS. DuATM∗:

trained with a larger image size 256× 128 as suggested in [14].

state-of-the-art result.

Visualization of Dual Attention Mechanism. To better

understand the dual attention mechanism used in our Du-

ATM, we display some intermediate visualization results in

Fig. 8. Since that the learned feature vectors within each

sequence are context-aware, with reference to each feature
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Figure 8. Visualization of the attention weights for intra-sequence

and inter-sequence attention, respectively.

vector, the intra-sequence attention can concentrate on its

context-related body-parts or gaits from the same image or

video to refine itself, and the inter-sequence attention can

simultaneously concentrate on the semantically consistent

body-parts or gaits from the opposite image or video to

generate its aligned counterpart, even when the reference

feature is derived from a corrupted region as in Fig. 8 (c).

Consequently, in DuATM, the feature sequences are seman-

tically refined and aligned, and thus properly compared.

5. Conclusions

We proposed an end-to-end trainable framework, namely

Dual ATtention Matching network (DuATM), to learn

context-aware feature sequences and to perform dually at-

tentive comparison for person ReID. The core component

of DuATM is a dual attention block, which simultane-

ously performs feature refinement and feature-pair align-

ment. DuATM is trained via a triplet loss assisted with a

de-correlation loss and a cross-entropy loss. Experiments

conducted on large-scale image and video data sets have

confirmed the significant advantages of our proposal.
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