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ABSTRACT 

For most of the reported metamaterial absorbers, the peak absorption only occurs at one single 

wavelength. Here, we investigated a dual-band absorber which is based on simple gold nano-rings. Two 

absorption peaks can be readily achieved in 3-5 μm and 8-14 μm via tuning the width and radius of gold 

nano-rings and dielectric constant. The average maximum absorption of two bands can be as high as 

95.1% (-0.22 dB). Based on the simulation results, the perfect absorber with nano-rings demonstrates 

great flexibility to create dual-band or triple-band absorption, and thus holds potential for further 

applications in thermophotovoltaics, multicolor infrared focal plane arrays, optical filters, and biological 

sensing applications. 
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1. Introduction  

Artificial metamaterials (MMs) are widely studied for their exotic properties i.e. negative refractive index 

[1], and potential device-applications such as perfect lenses[2] and invisibility cloaks[3,4]. Composite 

optical MMs are innovative structures for customizing electric and magnetic properties for specific 

applications, which are based on fundamental resonance of the resonators. For the last ten years, 

researchers have presented MMs with the state-of-the-art performances from radio[5,6], microwave[7,8], 

mm-Wave[9-11], THz[12,9,13], FIR[14], MIR[15-17], NIR[18,19], to optical spectrum[20,21]. 

Specifically, metamaterial perfect absorber (MMPA), first demonstrated by Landy et al.[22], shows the 

merits of MMs such as highly absorptive characteristics, tunable resonant frequencies, and undemanding 

manufacturability for a high Q-factor. Intrigued by MMPA and possibility for near unity absorbance, 

MMPAs have become attractive for various optoelectronic applications, including detectors[23,24], 

emitters[25], imaging devices[26], solar cells[27], etc.    

Extensive efforts have been made to harness energy harvesting applications. For infrared (IR) 

detector application, to provide perfect signal-to-noise performance and an extremely fast response, 

traditional methods and materials require cryogenic cooling, sacrificing their convenience and scalability 

and makes them bulky, heavy, pricy. The IV-VI materials demonstrate available low gap and were fully 

studied, but with poor mechanical property and large permittivity. The III-V materials has matured 

dopants and fabrication technology and possible monolithic integration, but they demonstrate 

heteroepitaxy with large lattice mismatch. Recently, quantum dot and quantum well were used in the 

photodetection [28]. However, the weak absorption of quantum dots / well, challenge in achieving a 

uniform quantum structure size and low operating temperatures have not been addressed yet. Selective 

emitters using luminescent bands of rare earth oxides are limited in scarcity of materials and complication 

of controlling compounds [29,30]. Additionally, nonresonant nature of photonic crystal emitters impose 

restrictions on boosting efficiencies [31].  

The MMPAs with hundreds of nanometers present perfect absorption at specific wavelengths, 

consuming less material and lessening fabricate process. The pivotal focus for MMPA design is to 

minimize reflection and transmission while balancing electric and magnetic resonances to maximize 

absorption. Although rapid progress has been made in terahertz frequency domain [32-36], most MMPA 

designs are single-band at specific frequency with limited applications. Compared with the single-band 

absorbers, the dual-band devices have many advantages such as better image contrast, longer detecting 

distance and higher spatial resolution at targeted wavelengths. However, traditional dual-band detectors 

have low signal response with low responsivity and poor detection characteristics because of their multi-

surface and complex components of materials. Recently, researchers have demonstrated multiband 

MMPAs with two or more well-defined absorption peaks [37-42]. For instance, triple-band polarization-

independent metamaterial absorber are reported for GHz absorption based on millimeter-sized square 

strips [42]. The general structure is comprised of a highly conductive and geometrically shaped metallic 

resonator, i.e. gold and copper, and metal-dielectric layers with various arrangements, which oscillate 

electrons in a unit cell. Physically, engineered impedance matching Zeff = (µeff/εeff)
1/2, complex electric 

permittivity and complex magnetic permittivity need to be taken into account. If the Zeff  = 1, then the 

bulk effective impedance of MMs matches the Zeff of free space medium such as air and vacuum. By 

tuning ε and μ simultaneously, the reflectance weakens approximately to zero; indicating full light 

absorption and thus no penetrating radiation and no reflection.  

Here we present a design of MMPA with a double-ring geometry that is insensitive to the polarization 

of light. Here we used a single unit cell in the propagation direction achieving two maximum absorptions 
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as high as average 95.1% (-0.22 dB) with a much smaller thickness than the resonant wavelengths. The 

scalability with wavelengths permits applications for bolometric pixel elements and pyroelectric 

detectors. Our design can be especially useful for bolometers with a narrow band response; such 

bolometers are used as focal plane array (FPA) detectors for imaging. Meanwhile, the proposed detector 

also has potential use for combustible, toxic and harmful gases, such as CH4, CO, C2H6 in MIR region, 

SO2F2 and SF6 in FIR, thermographic cameras, hyperspectral imaging, meteorology, free space light 

communication, remote sensing, laser, and identification biological compounds, etc. 

2. Simulation methodology 

Fig. 1 shows MMPA structures proposed in this study, demonstrating the 3D construction of the structure 

which includes a thick Si substrate at the bottom, a layer of gold thin film with fixed thickness, a dielectric 

spacer layer and a gold nanoresonator at the top respectively. In this structure, the thickness of gold film 

is much larger than typical skin depth so that the A (ω) can be simplified as 1 - R (ω), where A (ω) and 

R (ω) are absorptivity and reflectance respectively. Fig. 1b demonstrates the top view of the surface 

which is incorporated with a nano-ring as a coupler to trap light in. The ring is 100 nm thick and capable 

of altering by tuning parameters of R and r, while the lattice constant is defined as P. The performance 

of this single-band MMPA extremely counts on these variates. 

Enlightened by the single band absorber, we designed the dual-band MMPA based on two concentric 

rings. Fig. 1c exhibits the dual-band MMPA including almost identical structure with the single-band 

structure. The only distinction is the addition of another concentric ring; the separation distance between 

two rings is defined as S. While the absorption of the device is relevant with geometrical parameters in 

single-band, the dual-band MMPA can also be engineered through the S, component also crucial for non-

loss absorption at specific frequencies, as illustrated in Fig. 1d.  

 

Fig. 1 Schematic illustration of a periodic single-band MMPA. a Side view of the 
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structure with a gold-ring of the height h = 100 nm, dielectric spacer with a thickness 

t, 100 nm gold film and silicon substrate. b Top view of the ring resonator with a width 

r, lattice constant P and radius R. c Side view of the structure incorporating paired gold 

concentric rings with height h = 100 nm, dielectric spacer with a thickness t, 100 nm 

gold film, distance S between two rings, and silicon substrate from top to bottom. d 

Top view of the double ring structure with the parameters: The ring widths r, lattice 

constant P, radius R and distance between two rings S. The surface of dielectric spacer 

is set as 0 in Z direction 

To design such structure, the overriding criteria is to certify the availability and reliability. Finite 

difference time domain (FDTD) method, based on Maxwell equation for theoretical study, shows its 

flexibility on design, analysis and optimization for photonic devices and materials. It provides a route to 

reducing dependence upon costly experimental prototypes, and breeds quicker assessment of designs 

[43,22,44]. Here, we simulated MMPAs with gold-ring placed on the top to provide dual-band 

absorptions at targeted frequencies while upholding tunability and flexibility. By altering corresponding 

parameters, maximum absorptions at desired frequencies between 3-5 μm (middle infrared, MIR) and 8-

14 (far infrared, FIR) μm can be realized. A single unit cell was simulated with appropriate boundary 
conditions as illustrated in Fig. 1. The wave vector k propagates through the Z direction with perfect 

magnetic field in y-z plane and perfect electric field in x-z plan. Perfectly matched layers (PML) was 

applied in the propagation direction in order to eliminate nonphysical reflections at domain boundaries 

and the periodic boundary condition (PBC) is adopted to simulate a structure which is periodic in one 

direction but not necessarily in other directions. The refractive index of materials are modelled using 

fitted optical data Au[45], silicon[46] and silicon dioxide[46]. Ideal dielectric spacer with different 

refractive indexes to replace SiO2 is investigated. According to the proposed structure, the TEM wave is 

reflected and absorbed when the incident radiation is perpendicular to the surface. So, the absorption 

hinges on Eq. (1) 

        
2 2

21 11
( ) 1 ( ) ( ) 1 ( ) ( )A S S T R                            (1) 

where 
11
( )S   and  

21
( )S   are the complex reflection and transmission coefficients 

respectively, which determine R (ω) and T (ω). Because of the existence of semi-infinite Au film, 

transmission vanished in the substrate, and the equation can be simplified as A (ω) = 1 - R (ω). 

3. Results and discussion 

As shown in Fig. 2, the proposed structure composing of a single ring atop exhibits narrow 

electromagnetic absorption peak centered at MIR and FIR region. The ring on the top creates a resonant 

response as a function of wavelength, while the Au film functions together with the spacer to generate 

strong coupling to magnetic component of the normal incident plane source. The lattice constant P has 

linear dependency with resonant wavelength and peaked absorption (features critical for light harvesting). 

As the P increases, the peak shifts to shorter wavelength, where plasmon resonances are excited. Full 

width at half maximum (FWHM) narrows down linearly as the P increase, giving rise to high 

distinguishability. While the resonant wavelengths respond sensitively to R and n with linear positive 

correlations, it is negligible for P and r, as indicated in Fig. 3. On the other hand, maximum absorptions 

are positively correlated with P, R, n and negatively correlated with ring width r. This phenomena are 

mainly attributed to the electromagnetic coupling efficiency. Smaller r with sharp edge have stronger 
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near field enhancement than the larger r, thus coupling more energy. Larger P and R can concentrate 

more energy in a unit cell and avoid out-coupling. Besides, Ohmic losses contribute partially to the non-

perfect absorption. 

 

Fig. 2 Absorbance properties of single-ring MMPA with different parameters. a 

Variation of lattice constant P. b Variation of radius of ring R. c Variation of refractive 

index n. d Variation of ring width r. The dielectric spacer is silicon dioxide 

 

Fig. 3 Resonant wavelength and maximum absorption dependence of single-ring 

MMPA with different parameters, matching with Fig. 2. a Lattice constant P. b Radius 

of ring R. c Ring width r. d Refractive index n. The dielectric spacer is silicon dioxide   
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To the end, we demonstrate a dual-band MMPA with considerable signal-to-noise ratio by using this 

ring-shaped resonator after investigating the properties of the single band. The data from simulations 

dovetail with our expectation. The two ring-shaped resonators support two resonances at targeted 

wavelength bands distributed in MIR and FIR respectively with different ring radii. As shown in Fig. 4, 

the two first-order resonant modes, M1 (short-wavelength) and M2 (long-wavelength), appear at MIR 

and FIR. Fig. 4a, b and c clarify the relationship between S and t. The S and the absorption curves are 

demonstrated in Fig. 4 a. It can be seen that the larger S pushes two bands toward MIR and FIR and the 

two bands have almost similar FWHM. In Fig. 4 (b), while the resonance mode M1 shifts linearly to blue, 

the M2 shifts to red. Dielectric spacer is also critical for optimization during design consideration because 

the spacer thickness controls radiation damping. As shown in Fig. 4c, for S = 400 nm and 600 nm, the 

optimum absorption can be achieved when t = 290 nm and deviation from this value dwarfs the peaks. 

Contrary to one’s research with different optimum t for various offset [43], our result shows same 

optimum t for different S. Their cross-shaped structure reaches maximum absorbance at different MgF2 

thickness due to the coupling strength of two modes brought about by asymmetry. Owing to the symmetry 

in our simulation, this ring-shaped structure have potential on practical application with simplification. 

To achieve average maximum absorbance above 80%, the t can be tuned from 150~550 nm for S = 400 

nm and 175~550 nm for S = 600, allowing deviation with fabrication flexibility. Fig. 4d demonstrates 

peaks in MIR and FIR with tunability at interested wavelengths. The two clearly resolved absorption 

peaks were selected arbitrarily within 3-5 and 8-14 μm for our proof-of-concept by modifying R and n. 

For ideal dielectric spacer, the resonant wavelength is only influenced by radius of ring. It is worth noting 

that the individual ring leads to blueshift of the resonant frequency, different from presence of two rings 

simultaneously. This phenomenon can be attribute to the anti-parallel surface current oscillation in the 

neighboring rings and can be relieved by increasing the ring distance S. However, modification of one 

ring has no effect on another resonant band for two rings structure.  

 

Fig. 4 Resonant wavelength and maximum absorption dependence of dual-band 

MMPA with S, R and t. a Absorbance spectra with increasing S at t = 280 nm. b 

Relationship between two excited modes with increasing S . c Relationship between 
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maximum absorbance and t. d R and n for customizing at t = 250 nm. For a~c, dielectric 

spacer is silicon dioxide and for d, the n of spacer is set to 1.4 and 1.5  

To interpret the mechanism behind this enhancement, Fig. 5 and Fig. 6 show the spatial distribution 

of electric (E) and magnetic (H) fields for structure plotted in Fig. 4d (black line). The enhancement 

factor, E/E0 and H/H0, provides insight into the mechanism behind the enhancement where E and H, E0 

and H0 are the intensity of electric field and magnetic field respectively at given position and that would 

occur at the same position in the absence of gold ring. It can be seen from Fig. 5 and Fig. 6 that magnetic 

field and electric field are enhanced dramatically at resonant wavelengths 4332 nm and 9890 nm 

respectively. The local field intensity is even 20~140 times larger than the ring-absent structure. The 

electric component of the plane wave can couple the electric field strongly because two gold rings afford 

local surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs). For magnetic 

component, it gives rise to antiparallel surface current on the rings and the ground metal plane, leading 

to the magnetic coupling and the response, as shown in Fig. 7. Utilizing the surface plasmon (SP) mode, 

various nanostructured absorbers have been achieved, such as nano-apertures [47], nano-antennas [43], 

micro-scale cavity [44], nano shaped resonator/granting [35] and convex groove [48]. 

 

Fig. 5 Maps of electric and magnetic fields at resonant mode (M1) corresponding to 

Fig. 4 d (black line). a Enhancement factor, E/E0 in the x-y plane at z = 5 nm. b 

Enhancement factor, H/H0 in the x-y plane at z = 5 nm. c Spatial map of logarithmic 

electric intensity. d Spatial map of logarithmic magnetic intensity 

Fig. 5c and d (also in Fig. 6) show the logarithmic electric and magnetic field intensity. It mirrors 

the energy field distribution around the rings. For the M1 resonance, electric and magnetic field are 

squeezed in the inner ring and the gap between two rings. Unlike the M1 resonance, the M2 resonance 

has slight distinction. Electric and magnetic field are confined in the gap between two rings while opened 

on the outside of the external ring for M2. This explained that the M2 peak (0.929 or -0.32 dB) is slightly 
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weaker than M1 (0.973 or -0.12 dB) because of the out-coupling of M2. At M1 resonance, most of the 

energy is focused in the inner ring. Therefore, the FWHM of M1 is sharper than M2. The E and H 

distribution reveal that the energy of the incidence is almost absorbed by the rings structure as illustrated 

by the marked color map. 

 

Fig. 6 Maps of electric and magnetic fields at resonant mode (M2) corresponding to 

Fig. 4 d (black line). a Enhancement factor, E/E0 in the x-y plane at z = 5 nm. b 

Enhancement factor, H/H0 in the x-y plane at z = 5 nm. c Spatial map of logarithmic 

electric intensity. d Spatial map of logarithmic magnetic intensity 
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Fig. 7 Charge density and current density distribution of x-y plane at z = 100 nm depths 

at two resonant modes corresponding to Fig. 4 d (black line). a, b for M1. c, d for M2 

For the M1 mode the current flow is confined almost entirely in the inner ring and region under ring, 

while the M2 mode is mainly associated with the external ring, as shown in Fig. 7b and d. The current 

underneath the excited ring (not shown in figure) is caused by image charge, which forms the loops and 

further triggers magnetic response. This means that two absorption peaks are caused by ohmic loss and 

dielectric loss. Such phenomenon is observed in fishnet-shaped [49], cross-shaped [43] and H-shaped 

[15] structure. Fig. 7a and c illustrate the charge density of x-y plane at z = 100 nm. They are agree with 

the near-field enhancement as plotted in Fig. 5 and Fig. 6 with strong charge buildup at two sides of the 

ring, confined to the edge of the metal. The current flow in ring and gold film is generated by magnetic 

response while the leakage current in spacer is caused by electric field. Thus electric and magnetic 

response depicts the perfect absorption of majority of energy with x-polarized electric field and y-

polarized magnetic field. This suggests that symmetrical ring couples the electromagnetic wave with no 

energy loss at resonant frequency by large near-field enhancement capacitance provide by the gap 

between two rings for electric filed component and anti-parallel current flow for magnetic field 

component. 

Though other resonators, such as patches, discs, demonstrate high absorptivity with polarization-

nearly insensitive performance, they lack of scalability. In some cases, most of the possible light 

containing arbitrarily polarized components needs to be absorbed. The proposed split-ring resonator is 

completely polarization-independent because of its symmetry. Additionally, in our structure, adding an 

extra ring to achieve three absorption peaks are plotted in Fig. 8 a. Three peaks are distributed in MIR 

and FIR region, slightly influenced with each other. Therefore, it is flexible with tunable absorption peaks 

via controlling the number of the rings. 

 

Fig. 8 Absorption spectra of the triple-band absorber 

 

4. Conclusion 

Overall, the MMPA structure incorporating the nano-rings achieves high absorptivity at targeted 

frequencies greater than 90% or -0.46 dB for a plane wave and is polarization-insensitive. Numerical 

full-wavelength FDTD simulations reveals that incident light is strongly absorbed within the two 
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resonant bands. The plasmonic nano-ring provides a large near-field enhancement which is 20~140 times 

larger than the non-plasmonic case. The work exhibits a significant progress toward achieving high-

efficiency MMPAs that suppress the reflection at multiple bands within MIR and FIR region, though 

with trade-off between FWHM and desired wavelength. Our calculations show that the double-ring 

MMPA design is promising for MIR and FIR applications and exhibits excellent tunability over a broad 

spectral region, especially for multi-color photodetectors. 
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