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A simple dual-band metamaterial-inspired small monopole antenna is
proposed for WiFi applications. In addition to the regular monopole
resonance, the metamaterial-inspired loading is exploited to create a
second resonance for the lower WiFi band while maintaining the anten-
na’s small form-factor. The measured S parameters and radiation pat-
terns show that the proposed design is suitable for emerging WLAN
applications.

Introduction: The challenge in designing a WiFi system is to design
compact, low-cost and dual-band antennas. The planar monopole is con-
sidered a good candidate for WLAN applications because it is low
profile, etched on a single substrate and can provide the feature of
multi-band operation. In order to achieve multi-band operation, the
traditional approach is to use multi-branched strips [1], which generally
leads to a large volume or requires a large ground-plane. In [2], Kuo
et al. proposed a dual-band double T monopole antenna, which achieves
a certain miniaturisation factor but with a narrow bandwidth at the upper
WiFi band. Metamaterials (MTM), on the other hand, provide a concep-
tual route for implementing small resonant antennas [3, 4]. In this Letter,
a dual-band monopole antenna is proposed that employs metamaterial-
inspired reactive loading. The MTM-based loading creates a second
resonance covering the lower WiFi band of 2.40–2.48 GHz, in addition
to the monopole resonance over the 5.15–5.80 GHz upper WiFi band. A
prototype antenna has been fabricated and tested. The measured S
parameters and the radiation patterns are given and discussed.

Antenna design: The configuration of the proposed antenna is shown in
Fig. 1. The antenna was designed on a low-cost FR4 substrate with a
thickness of 1.59 mm. It was fed by a coplanar waveguide (CPW) trans-
mission-line, which can be easily integrated with other CPW-based
microwave circuits printed on the same substrate. It comprises a two-
arm fork-like monopole with a thin-strip inductor loaded on top of the
monopole and an interdigital capacitor loaded on the right-side arm.
Alternatively, it can be seen as a T-shaped slot cut out of the rectangular
patch with a capacitor loaded on its right. The T-shaped slot has a width
of 0.5 mm and the thin strip inductor has a width of 0.25 mm. The smal-
lest feature size of the design is 0.2 mm, which is the finger width of the
interdigital capacitor. The monopole element has dimensions of 9.2 �
5.7 mm (or 1/13.3 l0 � 1/21.4 l0 at 2.45 GHz) and the overall size
of the antenna including the ground plane is 32 � 24 mm. The proposed
design is single-layered, via-free and can therefore be easily fabricated at
a very low cost.
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Fig. 1 Geometry of proposed dual-band MTM-inspired small monopole
antenna (mm)

The reactive loading of the monopole is inspired by transmission-line
metamaterials, specifically the concept of a zero-index of refraction. The
structure only contains a single unit cell and it can therefore be argued
that the interpretation of this antenna as a ‘metamaterial’ antenna is
somewhat questionable. Nevertheless, thinking in terms of the meta-
material paradigm, useful metamaterial-inspired structures can be
conceived that contain only a few unit cells [5]. The metamaterial-
inspired loading enables the antenna to operate in two modes, covering
both WiFi bands. The first mode is a monopole mode, operating at the
upper WiFi band, where the capacitor becomes short and the inductor
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becomes open. Fig. 2 shows the HFSS-simulated current distribution
on the monopole element of the proposed antenna at both WiFi
bands. It can be seen that at the upper WiFi band, in-phase currents
are flowing along both arms of the fork-like monopole, which enables
the x-directed even-mode currents on the antenna to radiate.
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Fig. 2 HFSS-simulated surface current distribution on radiating elements of
dual-band antenna at upper and lower WiFi bands

In addition to the monopole resonance at the upper WiFi band, the
MTM-inspired reactive loading introduces a second resonance around
the lower WiFi band. At this frequency, the antenna no longer acts as
a monopole along the x-axis, but rather as a slot along the x-axis, as
shown in Fig. 2. The MTM loading forces the current to wrap around
the slot perimeter and induce an E-field distribution along the y-axis
within the slot, both contributing to the slot-mode radiation. Besides,
the loading inductor and capacitor are adjusted such that radiation effi-
ciency and bandwidth are traded off in order to meet the WiFi require-
ments while still maintaining the antenna’s small form-factor. An
alternative view to look at the operation of the proposed antenna at
the lower WiFi band is that it can be seen as a T-shaped top-loaded
monopole antenna [2, 6], but in its dual slot form. In this case,
instead of having the capacitive top loading, an inductive top-loaded
feature is realised. The loading interdigital capacitor is therefore
exploited in order to compensate the inductive imaginary part of the
input impedance and match it to 50 V.
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Fig. 3 Fabricated prototype of proposed dual-band MTM-inspired small
monopole antenna, compared with unloaded monopole antenna
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Fig. 4 Simulated and measured S11 for proposed dual-band antenna
compared with unloaded monopole antenna
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Results: The fabricated prototype is shown in Fig. 3. An unloaded
monopole antenna with the same monopole and ground plane size is
fabricated and tested for comparison. Fig. 4 shows the HFSS-simulated
and measured S parameters, where a dual-band performance can be
clearly seen from the proposed antenna against the single-band perform-
ance from the regular CPW-fed monopole antenna within the frequency
range of interest. The antenna exhibits a measured 210 dB bandwidth of
90 MHz for the lower WiFi band from 2.42 to 2.51 GHz and a band-
width of 3.2 GHz from 4.52 to 7.72 GHz for the upper WiFi band,
which agree with simulation results.
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Fig. 5 Simulated and measured radiation patterns for proposed dual-band
small monopole antenna
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The simulated and measured radiation patterns for the proposed dual-
band MTM-inspired small antenna are plotted in Fig. 5, where E-plane
and H-plane radiation patterns at 5.50 and 2.46 GHz are shown. Fig. 5a
and b show the radiation patterns at 5.50 GHz for the E-plane (xy-plane,
u ¼ 908) and the H-plane ( yz-plane, F ¼ 908). An x-directed linear
E-field polarisation is exhibited, which verifies that the antenna operates
in a monopole mode around this frequency owing to the x-directed in
phase currents along the two arms of the monopole, as shown in
Fig. 2. A small amount of the y-directed current along the thin horizontal
inductive strip have a contribution to the cross-polarisation. At
2.46 GHz, the radiation patterns in the yz-plane and xz-plane (F ¼ 08)
correspond to the E-plane and H-plane, respectively, as shown in
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Fig. 5c and d, which indicates that the structure radiates in an x-directed
slot fashion at this frequency. The y-directed slot formed by the two arms
of the monopole and the inductive strip has a contribution to the cross-
polarisation. The measured radiation efficiencies using the Wheeler cap
method are 89.2% at 5.50 GHz and 64.0% at 2.46 GHz, compared with
94.8% and 61.2%, respectively, in HFSS simulation. The size of the
Wheeler cap used in the measurements is determined such that its res-
onant frequency is well below the operating range of the dual-band
antenna. During the efficiency measurements at the two distinct resonant
frequencies, special attention was paid in order to avoid any of the cavity
resonances by slightly re-adjusting the position of the antenna within the
Wheeler cap. Since the antenna was completely enclosed by the Wheeler
cap sphere during the measurements, this eliminated any potential radi-
ation from the feed cable. The measured gains are 1.53 at 5.50 GHz and
0.71 at 2.46 GHz, compared with 1.73 and 0.91, respectively, in simu-
lation. The discrepancy is mainly due to the ferrite beads used in the
radiation pattern measurement (not in simulation), which bring in
additional losses.

Conclusion: A dual-band metamaterial-inspired small monopole
antenna is proposed for WiFi applications. The metamaterial-based
loading enables a slot resonance at the lower WiFi band in addition to
the monopole resonance. The fabricated prototype with the monopole
element size of 1/13.3 l0 � 1/21.4 l0 provides 90 MHz and 3.2 GHz
bandwidth for the lower and upper WiFi bands, respectively.
Reasonable radiation efficiencies are obtained for both bands. Fed by
the CPW transmission-line, the proposed design can be easily integrated
to CPW-based microwave circuits.
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