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Dual-camera design for 
hyperspectral and panchromatic 
imaging, using a wedge shaped 
liquid crystal as a spectral 
multiplexer
Shauli Shmilovich  1,5*, Yaniv oiknine  2,5*, Marwan AbuLeil2, ibrahim Abdulhalim  2,3, 
Dan G. Blumberg4 & Adrian Stern2

in this paper, we present a new hyperspectral compact camera which is designed to have high spatial 
and spectral resolutions, to be vibrations tolerant, and to achieve state-of-the-art high optical 
throughput values compared to existing nanosatellite hyperspectral imaging payloads with space 
heritage. these properties make it perfect for airborne and spaceborne remote sensing tasks. the 
camera has both hyperspectral and panchromatic imaging capabilities, achieved by employing a 
wedge-shaped liquid crystal cell together with computational image processing. the hyperspectral 
images are acquired through passive along-track spatial scanning when no voltage is applied to the cell, 
and the panchromatic images are quickly acquired in a single snapshot at a high signal-to-noise ratio 
when the cell is voltage driven.

Over the last decades, spectral imaging1–4 has become progressively utilized in airborne and spaceborne remote 
sensing tasks5,6, among many others. Today it is used in many fields, such as vegetation science7, urban mapping8, 
geology9, mineralogy10, mine detection11 and more. A large amount of these spectral imagers take advantage of 
the platform’s motion, and acquire the spectral data by performing along-track spatial scanning of the imaged 
object4,12. The spectral information could then be measured directly, that is, by firstly splitting it into spectral com-
ponents using a dispersive or diffractive optical element, followed by a direct measurement of each component. 
Another approach is to acquire the spectral information indirectly, incorporating multiplexed and coded spectral 
measurements. This allows to benefit from Fellgett’s multiplex advantage13,14, and achieve a significant gain in 
optical throughput, at the cost of less intuitive system design and the need for post-processing. A classic example 
of indirect spectral acquisition is Fourier transform spectroscopy, which is used both for spectrometry15 and 
spectral imaging (e.g.16,17). As conventional Fourier transform spectroscopy systems are based on mechanically 
scanned Michelson or Mach-Zehnder interferometers, they demand strict stability and precision requirements. 
Thus, in harsh aerial and space environments, significant sophistication in their mechanical construction is 
required, and high-cost translational stages are incorporated to preserve the interferometric stability18,19. Indirect 
spectral acquisition can also be achieved by utilizing voltage driven liquid crystal phase retarders20–28, evading the 
need for incorporating moving parts which result in these strict stability requirements. One such system, which 
was recently presented by our group, is the Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) 
system24,25,27. It performs spectral multiplexing by applying various voltages to a thick liquid crystal cell (LCC), 
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thus achieving distinctive wideband spectral encodings. Another system, which is described in26, alternatively 
performs spectral multiplexing by cascading several voltage driven LCCs.

In this work, we present a camera designed for dual operational modes; hyperspectral (HS) and panchro-
matic imaging. The camera utilizes a wedge shaped LCC as a spectral multiplexer and therefore consists of no 
moving parts. Hence, when compared to the previously mentioned mechanically scanned interferometers, it is 
significantly more tolerant to vibrations, and no special sophistication is required in its mechanical construction. 
Yet, as in other airborne and spaceborne cameras, system vibrations could cause blur effects and a degradation 
in image quality29–31. Compared to our CS-MUSI system, the presented camera also enjoys the advantage of 
passively acquiring the HS image, which is a key property in spaceborne and unmanned airborne tasks. Instead 
of actively applying voltages to the LCC to achieve different spectral encodings for the HS imaging process, the 
system passively encodes the spectrum through along-track scanning, by taking advantage of the motion of an 
airborne or spaceborne platform, and the wedge shape of the LCC. As the system performs spectral multiplexing 
using its LCC, it also benefits from Fellgett’s multiplex advantage and has a high optical throughput, which is very 
important in low photon-flux situations such as spaceborne tasks. Apart from the ability to passively acquire a HS 
image, the system transforms into a panchromatic snapshot camera when a voltage is shortly applied to its LCC. 
The applied voltage alters the LCC’s spectral transmission (ST) to allow the energy in all the desired wavelength 
range to pass through the cell. This allows to quickly obtain the spatial information of the imaged scene in a single 
snapshot, hence it can be operated at high frame rates and with high signal-to-noise ratio (SNR). The described 
duality permits installing a single camera on the airborne or spaceborne platform, to perform both HS and pan-
chromatic tasks, instead of two separate cameras. Therefore, it allows the use of a larger aperture for the single 
camera, which results in both a higher optical throughput, and improved optical spatial resolution. In addition, 
the spectral multiplexing achieved by the LCC is performed in the spectral domain, that is, without performing 
any optical spectral-to-spatial transformations for spectral acquisition. Therefore, there is no tradeoff between 
the spatial and spectral resolutions, and the spatial resolution achieved in the HS image is identical to the high 
spatial resolution achieved in the panchromatic image, which is determined by the chosen optics and the sensor 
array solely.

the Wedge Shaped Lcc’s Spectral Attributes
The main optical component of the imager presented in this work is its wedge shaped LCC (Fig. 1a). Such a con-
figuration for LCCs has been previously used in several studies for various applications. These include tunable 
angular shearing interferometer32, depolarizer based Cholesteric Liquid Crystal (CLC)33 and continuous spatial 
tuning of laser emissions based dye-doped CLC34. In this work, the wedge shaped LCC allows to perform both 
the necessary spectral multiplexing for the HS image acquisition during the along-track scanning, and to acquire 
a panchromatic image in one snapshot when a voltage is applied to it. The LCC is located in the image plane, 
and is optically conjugated to the imager’s two-dimensional (2D) sensor array using a 1:1 relay lens (Methods – 
Experimental optical setup). Therefore, each point in the imaged scene is spectrally encoded as it passes through 
the LCC and captured by the 2D sensor array. The spectral encoding that corresponds to each sensor pixel is 
determined by the ST of the LCC at the matching location. The ST of the wedge shaped LCC, when inserted 
between two linear crossed polarizers (Methods – LCC device), is given by35,36
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here, λ is the wavelength, V is the voltage applied to the LCC, λ∆ Vn( , ) is the effective birefringence, x and y are 
spatial coordinates, and d(x, y) is the spatially varying cell gap which has a planar profile. By defining the x and y 
axes as shown in Fig. 1a, the parameter b can be set to zero, meaning that the cell’s gap, d(x, y), linearly varies 
along the x direction solely, and can be denoted as d(x) = ax + c. As the LCC is placed in the image plane so that 
the defined x axis is aligned with the rows of the 2D sensor array, and the defined y axis is aligned with its col-
umns (Methods – Experimental optical setup), the cell gap is approximately constant per column of pixels and 
varies from column to column, that is, it varies along each single row of pixels. From Eq. (1) and owing to the 
alignment and optical conjugation of the LCC and the sensor, we can deduce that the ST of the system is identical 
at pixels located in the same column of the sensor, but varies along pixels located in the same row. Therefore, the 
ST is identical at each row of pixels and can be fully characterized by measuring it at a single row (Fig. 1b). As 
explained in the Image acquisition section, the oscillatory behavior of the ST over a broad wavelength range, 
which varies along the sensor’s columns (Fig. 1b), allows capturing multiple different spectrally encoded images 
of the imaged scene. The spectra of the imaged scene at each spatial pixel can then be computationally decoded, 
as demonstrated in the Results section. Figure 1b shows the measured ST of one row of pixels, and its measure-
ment process is explained in the Methods – Calibration section. When a suitable high voltage is applied to the 
LCC, its effective birefringence decreases, causing the argument of the cosine to reach a value close to π with low 
dispersion in the visible range. This results in a slow oscillatory behavior of the LCC’s ST. One can also operate the 
device between parallel polarizers and obtain a flat maximum ST at a high enough voltage. However, practical 
realization of such a solution requires high quality polarizers in order to avoid degradation of the modulation 
depth at zero voltage. Therefore in our demonstration we chose to use the crossed polarizers scheme. The ST can 
then be considered to be approximately constant, allowing the energy at all wavelengths and locations to pass 
through the cell equally, and can therefore be used to acquire a panchromatic image in one snapshot. Figure 1c 
shows the measured ST in the case of a voltage driven LCC.
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image Acquisition
The image acquisition process depends on whether the desired image type is HS or panchromatic. When a HS 
image is desired, no voltage is applied to the LCC, and the image is passively captured via along-track scanning 
of the desired scene. As demonstrated in Fig. 2a, the process begins by aiming the imager’s field of view so it 
passively scans the desired scene during the platform’s motion. Then, the imager is aligned so that the sensor’s 
columns are oriented along the cross-track direction, and the rows along the along-track direction. As previously 
explained, because the LCC and the sensor are aligned and optically conjugated, the ST varies from column to 
column of sensor pixels (Fig. 1b). Since the sensor is pushed along the flight direction at a fixed cross-track angle 
as the platform moves forward, each strip of the scene, which is oriented along the cross-track direction, is imaged 
upon a column of pixels. Hence, it is filtered by a certain ST which is identical for all the pixels in that column. 
This allows acquiring different spectrally multiplexed measurements of each strip of the scene as it is imaged 
upon the different columns of the sensor during the motion of the platform. Figure 2b demonstrates this process 
and shows how the strips of the scene are gradually scanned by the system and filtered when imaged upon the 
LCC. For the clarity of the explanation, we marked one strip of the scene so it is easy to follow its motion upon 
the LCC as time progresses and the platform moves. At the end of the acquisition process, the recorded images 
are registered and aligned according to the spatial context of the imaged scene, as shown in Fig. 2c. The image 
registration can be achieved either by calculating the motion of the strips in the image plane from the geometry 
of the motion, or by estimating it numerically from the sequence of recorded frames. The registration of the 
images allows arranging the acquired spatial data of the imaged scene in layers which correspond to the different 
STs used during the acquisition, as the imaged scene is scanned by each sensor column of pixels. A spectrally 
multiplexed HS data-cube (Fig. 2d) can therefore be formed, which consists of two dimensions that represent the 
spatial domain, and one dimension which represents the different STs used during the acquisition. Next, a demul-
tiplexed HS data-cube (Fig. 2d) is reconstructed from the spectrally multiplexed HS data-cube using a sparse 

Figure 1. The wedge shaped LCC and the system’s measured ST maps, at a single row of pixels, for each of the 
dual HS-panchromatic operational modes. (a) An illustration of the geometry of the wedge shaped LCC. The x 
and y axes are defined so that the cell gap, d(x, y), changes only along the x direction, as emphasized by d1 and 
d2. For a detailed description of the LCC’s layers and fabrication process see Methods – LCC device. (b) The ST 
with no voltage applied to the LCC. Different oscillatory behaviors are obtained at each column due to the 
linearly increasing cell gap of the LCC. (c) The ST of the voltage driven LCC which is used for panchromatic 
imaging. The ST is approximately constant at all columns and wavelengths.
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recovery solver such as OMP37 or TwIST38, and a sparsifying transform such as the wavelet transform or a relevant 
dictionary39,40. As shown in Fig. 2d, the demultiplexed HS data-cube consists of two dimensions which represent 
the spatial domain, and one dimension which represents the spectral domain. Additionally, if a panchromatic 

Figure 2. HS image acquisition process. (a) The imager scans the desired scene during its motion. The LCC is 
aligned with the direction of motion to perform different spectral encoding for each strip of the imaged scene. 
(b) The imaged scene gradually travels along the LCC over time, allowing recording differently spectrally 
multiplexed measurements of each strip of the scene. (c) The set of acquired images (left) is registered and 
aligned (right) according to the spatial context of the imaged scene, which is marked by a dashed red outline of 
a cube. (d) Through spectral demultiplexing, a HS data-cube of the imaged scene (right) is reconstructed from 
the acquired spectrally multiplexed HS data-cube (left) of the scene.
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image is sought, a voltage is simply applied to the LCC, and the image can be captured in one snapshot as the ST 
is approximately constant (Fig. 1c).

Results
To demonstrate the capabilities of the imager presented in this work, an experimental optical setup was assembled 
(see Methods – Experimental optical setup), containing a wedge shaped LCC which was manufactured in-house. 
During the system’s calibration process (see Methods – Calibration), the ST was measured at each column of 
sensor pixels (Fig. 1). Its measurement is crucial as the precise ST is needed for the demultiplexing process, in 
order to obtain an estimation of the original HS data-cube from the spectrally multiplexed measured data-cube. 
Additionally, the LCC and the sensor were aligned as explained in the previous section. The results of three exper-
iments and a simulation are presented. In the experiments, both emission and reflection HS and panchromatic 
imaging were carried out, and airborne HS and panchromatic imaging were simulated. All the HS images were 
acquired by creating a relative motion between the imager and the imaged objects, to gradually scan the imaged 
object as explained in Fig. 2. The panchromatic images were acquired in a single snapshot while applying a voltage 
to the LCC.

emission hyperspectral imaging experiments. The imager’s performance is firstly demonstrated in 
an emission HS imaging scenario. Two such experiments are presented. In the first experiment, three colored 
LED array light sources with a wide spectral distribution were used (Thorlabs LIU001, LIU002 and LIU003 LED 
array). The light sources transilluminated three cartoon faces with red, green and blue LED lights, as can be seen 
in Fig. 3a which was captured by a standard RGB color camera. A HS image was acquired by spatially scanning 
the objects with our imager. The spatial scanning was achieved by moving the objects relative to the imager, so 
that the sensor’s columns are oriented along the cross-track direction. A spectrally multiplexed HS data-cube 
was then obtained by capturing 251 images during the spatial scanning, and performing image registration along 
a common spatial grid with sub-pixel accuracy using a phase correlation algorithm41,42. A demultiplexed HS 
data-cube consisting of 251 spectral bands in the 450–700 nm wavelength range was then restored (full rank 
recovery) using the OMP solver37 for sparse recovery, and a dictionary39,40 as the sparsifying transform. Figure 3b 
shows a pseudo-color image obtained by projecting the obtained demultiplexed HS datacube onto the RGB color 
space, which is in great agreement with the ground truth image shown in Fig. 3a. Additionally, a panchromatic 
image of the objects, which can be seen in Fig. 3c, was acquired while applying a 2 kHz sine waveform voltage 
with a 40 V amplitude to the LCC. Figure 3d–f show the spectra obtained at three points in the demultiplexed 
HS data-cube, in comparison to the spectra of the three respective LEDs as measured with a commercial grating 
based spectrometer. Excellent accuracy is demonstrated, and very high peak signal-to-noise ratio (PSNR) values 
(52.3–69.5 dB) were obtained comparing the source and demultiplexed spectra curves.

In the second demonstrated experiment, a fluorescent light source with a spectral distribution consisting of 
several narrow spikes was used. The light source transilluminated the Ben-Gurion University (BGU) logo, as 
can be seen in Fig. 4a which was captured by a standard RGB color camera. As in the previous experiment, a 
spectrally multiplexed HS data-cube was acquired by moving the objects relative to the imager to perform the 
spatial scanning, and capturing spectrally multiplexed images. Again, 251 images were captured during the spatial 
scanning, followed by an image registration process. The demultiplexed HS data-cube, consisting of 251 spectral 

Figure 3. HS imaging of three cartoon faces transilluminated with LED light sources of different colors. 
(a) RGB color image of the objects. The image was captured with a standard RGB color camera. (b) RGB 
representation of the demultiplexed HS image, which was restored from the spectrally multiplexed image 
captured with our imager. (c) The acquired panchromatic image of the objects. (d–f) The spectra at three points 
in the demultiplexed HS data-cube (dashed line curves), compared to the spectra of the three respective cartoon 
faces as measured by a commercial grating based spectrometer (solid line curves).
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bands in the 450–700 nm wavelength range, was then restored using the OMP solver, and a dictionary as the spar-
sifying transform. In a similar manner to the previous experiment, Fig. 4b shows a pseudo-color image obtained 
by projecting the demultiplexed HS data-cube onto the RGB color space, which is in great agreement with the 
ground truth image shown in Fig. 4a. In Fig. 4c, the spectrum obtained at a single point in the demultiplexed HS 
data-cube, is compared to the spectrum of the respective fluorescent spectrum as measured with a commercial 
grating based spectrometer. Apart from the excellent agreement between the two curves, the inset of Fig. 4c shows 
a close-up of the spectrum in the 580–586 nm wavelength range, which demonstrates the imager’s spectral reso-
lution and ability to separate two spectral lines that are 2 nm apart from one another.

Reflection hyperspectral imaging experiment. The second scenario in which the imager’s performance 
was demonstrated was of reflection HS imaging. In this experiment, two objects were illuminated by sunlight, 
and the reflected light was captured by the imager. As HS imaging allows to identify different imaged materials 
and objects by observing their spectra along with the spatial information, the objects were chosen to be a real red 
apple and a fake (plastic) red apple, which could later be distinguished using the obtained HS image. Figure 5a 
shows the imaged objects as captured by a standard RGB color camera. The spatial scanning of the object for 
acquiring the spectrally multiplexed HS data-cube, and the demultiplexing process, were identical to those in 

Figure 4. HS imaging of the BGU logo transilluminated with a fluorescent light source. (a) RGB color image 
of the object. The image was captured with a standard RGB color camera. (b) RGB representation of the 
demultiplexed HS image, which was restored from the spectrally multiplexed image captured with our imager. 
(c) The spectrum at an arbitrary point in the demultiplexed HS data-cube of the transilluminated object (red 
dashed line curve), compared to the spectrum of the fluorescent light source as measured by a commercial 
grating based spectrometer (blue solid line curve). The close-up of the graph which is shown in the inset, 
demonstrates the imager’s ability to separate two close spectral lines and illustrates a 2 nm spectral resolution.

Figure 5. HS imaging of real and fake (plastic) red apples. (a) RGB color image of the objects as captured by a 
standard RGB color camera. (b) RGB representation of the demultiplexed HS image, which was restored from 
the spectrally multiplexed image captured with our imager. (c) The spectra at two points in the demultiplexed 
HS data-cube (dashed line curves), compared to the spectra of the two respective real and fake apples, as 
measured by a commercial grating based spectrometer (solid line curves).
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the previous experiments. Figure 5b shows a pseudo-color image obtained by projecting the demultiplexed HS 
datacube onto the RGB color space, which is in great agreement with the ground truth image shown in Fig. 5a. 
In Fig. 5c, the spectrum obtained at two points in the demultiplexed HS data-cube, is compared to the spectrum 
of the respective real or fake apple spectra as measured with a commercial grating based spectrometer. Excellent 
accuracy is demonstrated, and very high reconstruction PSNR values (48 dB, 59 dB) were obtained comparing the 
source and demultiplexed spectra curves.

Airborne remote sensing hyperspectral imaging simulation. As push-broom and along-track spatial 
scanning based imaging methods are naturally used in airborne and spaceborne remote sensing tasks, we decided 
to demonstrate the performance of the presented imager and the proposed method in such a scenario. Because 
the imager has not yet been installed on an airborne or spaceborne platform, such as a drone or nano-satellite, 
the image acquisition and along-track scanning process were simulated. For the simulation, real data from a HS 
airborne system43 was used. The system is loaded with an SIM.GA VNIR sensor which is a push-broom avionic 
HS instrument manufactured by Selex ES. Its spectral range is 400–1000 nm with spectral sampling of 1.2 nm, 
providing 512 spectral bands. The sensor has 1024 spatial pixels with an Instantaneous Field of View (IFOV) of 
0.499mrad, which give a total Field of View (FOV) of ±15°, and the ground sampling resolution at an altitude of 
1200 m is approximately 0.6 m.

Out of the airborne HS dataset, the “α scenario” was chosen for the simulation, which shows a parking lot in a 
suburban vegetated area, as can be seen in the RGB image in Fig. 6a. Next, some pre-processing was performed 

Figure 6. Airborne HS and panchromatic imaging simulation. (a) Original RGB color image of the “α 
scenario”. (b) RGB representation of the demultiplexed HS image, which was restored from the simulated 
spectrally multiplexed image. (c) The simulated panchromatic image obtained by spectrally filtering the HS 
image of the “α scenario”, using the panchromatic ST map (Fig. 1c). (d) Six subfigures of spectral channel pairs 
from the original and demultiplexed HS data-cubes. The wavelength corresponding to each displayed spectral 
channel (450–650 nm with steps of 40 nm), is located below each pair of images. The high precision obtained in 
each displayed spectral channel is shown in terms of a PSNR value, which is located at the bottom right of each 
subfigure. (e) A comparison between the average intensity measured by the SIM.GA VNIR sensor (blue circle) 
and the presented imager (red plus sign), in the airborne remote sensing HS imaging of the “α scenario” 
simulation. Each plotted value represents the average intensity measured in the corresponding column of spatial 
pixels, in each of the systems. The average intensity measured by the presented imager across all columns (black 
dashed line), is approximately sixty times higher than the corresponding value measured by the SIM.GA VNIR 
sensor.
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on the HS “α scenario” image to make it compatible with the measured ST (Fig. 1) of our imager. It included 
cropping and interpolating the spectral information to match the spectral grid of the ST. The along-track scan-
ning of the scene was then simulated by performing spectrally multiplexed measurements of the scene using 251 
different spectral filters. Each filter corresponds to one of the first 251 consecutive rows in the matrix representa-
tion of the ST shown in Fig. 1b. The spectrally multiplexed measurements were obtained by an element-wise 
multiplication of the spectrum of each pixel in each spatial column of the HS “α scenario” image, with each of the 
first 251 rows of the ST. This yielded a full simulated spectrally multiplexed HS data-cube of the “α scenario”, as 
would be acquired by the presented imager in similar imaging conditions, using identical aperture size and expo-
sure time. Next, using the TwIST38 solver for sparse recovery, and the Daubechies 4 wavelet basis (db4 in 
MATLAB) as the sparsifying transform, a HS demultiplexed data-cube was restored, consisting of 251 spectral 
bands in the 450–700 nm spectral range. The simulation result is visualized in Fig. 6. Figure 6b shows a 
pseudo-color image obtained by projecting the demultiplexed HS data-cube onto the RGB color space. Evidently, 
there is an excellent agreement between Fig. 6b, and the ground truth shown in Fig. 6a. Additionally, Fig. 6d dis-
plays a comparison of six different spectral channels from the original and demultiplexed data-cubes (a full com-
parison can be seen in the Supplement 1 video). The PSNR achieved in each comparison is shown as well, and an 
average PSNR of 47 dB was obtained by comparing all 251 spectral channels.

As the presented imager has panchromatic imaging capabilities as well, a simulation was performed to demon-
strate the single snapshot image acquisition when a voltage is applied to the LCC, allowing a quick acquisition of 
the spatial information of the imaged scene with a high SNR. The image acquisition was simulated by filtering the 
original HS “α scenario” data-cube using the ST map shown in Fig. 1c. Each spatial column in the HS data-cube 
was filtered using the corresponding row of the ST map. This means that the spectrum vector at each pixel in a 
spatial column of the HS data-cube, was element-wise multiplied by a spectral filter vector which is the row of the 
ST map that corresponds to that spatial column. Figure 6c shows the resulting panchromatic image of the “α 
scenario”.

As emphasized in the Introduction section, the main advantage in performing spectral multiplexing for HS 
imaging is the benefit of high optical throughput. This can be demonstrated through a comparison between the 
measured intensity values from the original and simulated spectrally multiplexed HS “α scenario” data-cubes, 
captured by the push-broom avionic HS instrument and our imager, respectively. As the channels of the original 
HS data-cube correspond to specific spectral bands, and the channels in the simulated spectrally multiplexed HS 
data-cube correspond to specific spectral multiplexing filters, an element-wise comparison would be unsuitable. 
Instead, prior to the comparison the intensity values were averaged through all channels per spatial pixel in both 
the data-cubes. This resulted in an average value for each spatial pixel in the original HS data-cube, which repre-
sents the average intensity measured in the entire 450–700 nm spectral range. In comparison, the average value 
calculated in the corresponding spatial pixels of the simulated spectrally multiplexed HS data-cube, represents the 
average intensity measured after filtering the spectrum intercepted at each spatial pixel, using all the different 
spectral filters. As our imager captures the HS image of the scene column by column of pixels, the average values 
obtained per spatial pixel were further averaged per each column of spatial pixels. This allows demonstrating the 
average gain in optical throughput per acquired spatial column in the HS data-cube. The comparison results are 
presented in Fig. 6e. It shows that an average intensity of 218.34 (arbitrary units) was measured in all the spatial 
columns of the original HS “α scenario” data-cube. In comparison, the average intensity value measured in all the 
spatial columns of the simulated spectrally multiplexed HS data-cube was 1.37e4 (arbitrary units), which is 
approximately two orders of magnitude higher, hence demonstrating the significant gain in optical throughput as 
a result of the performed spectral multiplexing. An additional visualization of the described comparison can be 
seen in Supplement 2.

Discussion
The capabilities of the presented imager were demonstrated in both experiments and a simulation. The emission 
and reflection imaging experiments have demonstrated the performance of the dual HS-panchromatic opera-
tional modes. For the HS mode, excellent precision was shown by comparing the achieved demultiplexed spectra, 
with corresponding spectra measurements acquired by a commercial grating based spectrometer. Additionally, 
panchromatic images of the imaged objects were acquired successfully. In the simulation, the high optical 
throughput of the imager was demonstrated by comparing its average measured intensity values of a remotely 
sensed scene, to the values measured by a conventional push-broom avionic HS instrument. The simulation also 
demonstrated the panchromatic imaging capabilities of the imager in airborne imaging tasks.

The significantly high optical throughput of the presented imager is a result of the performed spectral multi-
plexing. Classical HS imagers which acquire the spectral information of the imaged scene through direct spectral 
measurements, e.g. narrowband tunable filter based HS imagers44,45, allow a small portion of the spectrum at each 
spatial pixel to pass through the filter. This results in a low optical throughput when compared to HS imagers 
that perform spectral multiplexing, which allows a large portion of the spectrum to pass through at each pixel at 
the cost of post-processing for spectral reconstruction. The Supplement 3 video demonstrates the higher optical 
throughput achieved by the spectral multiplexing performed by the presented imager, in comparison to direct 
spectral measurements performed by a narrowband tunable filter. The high optical throughput of the presented 
imager provides several important benefits. The first benefit is a relatively high SNR when acquiring HS images 
in low photon-flux scenarios. This is an important advantage in airborne and spaceborne remote sensing tasks, 
where the exposure time for a single image is limited due to the fast relative motion between the imager and 
imaged object, and the desire to avoid capturing blurry images. The simulation demonstrated an approximately 
two orders of magnitude gain in optical throughput compared to the conventional push-broom avionic HS instru-
ment, implying that the presented imager could capture HS images of objects that are approximately two orders of 
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magnitude dimmer, if built with the same physical specifications. This significant gain in optical throughput still 
holds when comparing the presented imager to other HS imagers, which perform direct spectral measurements 
and no spectral multiplexing. According to the Nanosatellite & Cubesat Database46 the HyperScout47 and AaSI44 
are the only HS nanosatellite imaging payloads with space heritage, which both directly measure the spectral 
attributes of the scene. This implies that the presented imager achieves state-of-the-art optical throughput values 
when compared to HS nanosatellite imaging payloads with space heritage. A second important benefit relates to 
the fact that the spectral irradiance intercepted by an imager is proportional to the square of its numerical aper-
ture (NA)48. This means that the presented imager could be miniaturized so that its NA is significantly smaller 
than conventional HS imaging instruments, and still measure standard spectral irradiance values, as the high 
optical throughput compensates for the small NA. The imager could then be further miniaturized by attaching 
its 2D sensor array to the LCC (see Methods – Experimental optical setup) and reducing its physical volume. It 
should be mentioned that the spatial optical resolution is worsened when an imager’s aperture is reduced48 which 
for example limits the quality of drone and nano-satellite imaging.

As the presented imager performs passive along-track image acquisition, is of small size, has a high optical 
throughput and great spectral and spatial resolution, it is an excellent HS imaging payload for small airborne and 
sapceborne platforms. Additionally, although the presented camera performs along-track scanning, compared 
to the classical push-broom imaging method it collects spatial information of more than just one spatial line 
of the imaged scene at a time. This allows to prevent geometrical image distortions that are caused by system 
vibrations during acquisition, by using simple image registration algorithms. In classical push-broom cameras, 
correcting these distortions demands additional hardware49,50. Apart from the properties mentioned above, the 
presented camera has two limitations worth mentioning. The first limitation is the requirement of large process-
ing resources for the spectral demultiplexing of the acquired HS images. However, the computational running 
time can be significantly reduced by performing parallel processing, as no spatial multiplexing is performed and 
each spatial pixel in the HS image can be independently spectrally demultiplexed. The computational running 
time could then be further shortened by performing the processing offline, on the ground, using high-end GPUs 
and multi-core CPU systems. A second limitation, which exists in conventional HS push-broom imagers as well, 
relates to capturing time varying scenes. If the scene changes within the acquisition time, that is, during the 
along-track scanning process, the final demultiplexed HS image will be distorted.

As HS data requires large computational storage resources, and as the presented imager performs varying 
spectral multiplexing, it is worth exploring the possibility to compress the spectral data which is acquired by the 
presented imager, using compressive sensing (CS)51 methods. Similar to the methods presented in24,27,52–56, the 
compression could be achieved by selecting a set of spectral filters which is compatible with the CS framework, 
for performing the spectral multiplexing during the along-track scanning process.

Apart from airborne and spaceborne remote sensing tasks, the presented imager can replace push-broom 
based HS imagers used in other applications, such as microscopy57 and in production lines58. Additionally, 
although we demonstrated the image acquisition in the visible spectral range, the imager could be adapted to 
other spectral ranges, making it relevant for many interesting tasks.

In conclusion, in this paper we have presented a design of a new camera, which is able to perform both HS 
and panchromatic imaging. The camera utilizes a wedge shaped LCC which allows it to passively acquire HS 
images by performing along-track scanning and spectral multiplexing. It therefore enjoys a significant gain in 
optical throughput when compared to classical HS imaging systems, and is tolerant to vibrations. Additionally, a 
panchromatic image can be acquired in a single snapshot when a voltage is applied to the LCC. An experimental 
optical setup of the imager was assembled, and its capabilities were successfully demonstrated in experiments and 
a simulation.

Methods
Lcc device. The fabrication process of the wedge shaped LCC consists of several stages. At first, two flat glass 
plates are coated with Indium Tin Oxide (ITO) and a polyimide (NISSAN SE3510) alignment layer, forming 
electrodes that allow applying a voltage to the cell. The polyimide is spun on top of the ITO, baked and rubbed 
unidirectionally using a soft cloth. As a result, micro grooves are formed which are responsible for the alignment 
of the liquid crystal. Next, the plates are arranged in an anti-parallel geometry, and spacers of different sizes are 
applied at the corners to obtain a geometrical profile of a wedge. Glass spacers with a size of μ. m1 9  are applied at 
one edge, and small mylar sheet pieces of size m50μ  at the other edge. Lastly, a nematic BL036 mixture (Merck) 
fills the gap by capillary action, and the LCC is placed between two linear crossed polarizers, oriented at an angle 
of 45 degrees with respect to the optical axis of the LCC. The obtained LCC has a clear aperture of about 8 mm × 
8 mm.

experimental optical setup. An illustration of the experimental optical setup of the presented imager is 
shown in Fig. 7. The objective lens forms an image on the wedge shaped LCC which is optically conjugated to the 
2D sensor array using a 1:1 relay lens. Therefore, the image is firstly spectrally filtered according to the spatially 
varying ST of the LCC, and then captured by the 2D sensor array. The LCC and the 2D sensor array are aligned so 
that the LCC’s cell gap varies only along the sensor’s pixel rows and is approximately constant along the pixel 
columns. Therefore the ST, which depends on the value of the cell gap (Eq. 1), varies from column to column of 
pixels, but is identical at each row of pixels. This allows performing along-track scanning of a scene and spectrally 
encoding each of its imaged strips differently. It should be noted that the relay lens can be omitted if the sensor is 
attached to the LCC, thus reducing the system’s volume. The 2D sensor array used in the setup was a uEye CMOS 
UI-3240CP-C-HQ with 1280 × 1024 pixels, with a pixel size of 5.3 × 5.3 μm with 12-bit grayscale level radiometric 
sampling. Additionally, the setup consisted of a computer to control the image acquisition, and the voltage func-
tion generator which was used to drive a sine waveform voltage through the LCC for its panchromatic imaging 
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mode. The relative motion between the imager and the imaged objects which was needed for the along-track 
scanning process, was achieved by placing the imaged objects upon a motorized translation stage, and emulating 
spaceborne and airborne imaging motion velocities by adjusting the camera’s exposure time. The stage was 

Figure 7. Experimental optical setup. The system is comprised of an objective lens which forms an image on 
the wedge shaped LCC device (described in Fig. 1). The image is then relayed to the 2D sensor array which is 
aligned with the LCC so that the ST varies only from column to column of pixels. The imaged object was placed 
on a motorized translation stage and moved in the direction of the sensor rows.

Figure 8. LCC and 2D sensor array alignment process. (a) The normalized intensity of the spatial cosine pattern 
measured by the 2D sensor array when the system is flooded with monochromatic light, and the LCC is not 
properly aligned with the sensor. (b) Comparison between the average normalized intensity measured at rows 1:50 
(blue solid line curve) and 975:1024 (red dashed line) of (a). (c) The spatial cosine pattern obtained when the LCC 
and sensor are aligned. (d) Comparison between the average normalized intensity measured at rows 1:50 (blue 
solid line curve) and 975:1024 (red dashed line) of (c). The great agreement implies that the system is calibrated.
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constructed in-house using an Arduino-Nano board and a step-motor, and was also controlled via the computer. 
The stage was aligned so that the objects were moved along the direction of the sensor’s rows.

calibration. The calibration of the experimental optical setup is comprised of two stages. The goal of the first 
stage is to align the LCC with the 2D sensor array so that the cell gap varies only along the direction of the pixel 
rows, that is, from column to column of pixels. This is achieved by flooding the imager with monochromatic 
light using a halogen light source and a monochromator, followed by rotating the LCC in the image plane while 
observing the image obtained on the sensor plane. As the monochromatic input light is filtered by the oscillatory 
ST given in Eq. 1, a spatial cosine pattern appears on the sensor, oscillating in the direction of the varying LCC 
gap (Fig. 8a). From Eq. 1, one can observe that the frequency of the cosine pattern depends on the slope of the 
wedge, that is, the change in the cell gap, and on the wavelength of the monochromatic input light source. By 
rotating the LCC, the spatial cosine pattern can be aligned with the sensor’s rows of pixels, obtaining identical 
cosine waveforms in each row. Figure 8 demonstrates the alignment process. Figure 8a shows an unaligned spatial 
cosine pattern on the sensor array, and Fig. 8b shows the resulting difference between the averaged cosine pattern 
obtained in two different ranges of rows of pixels, one at the top and one at the bottom of the sensor. Figure 8c 
shows the aligned spatial cosine pattern, and Fig. 8d shows the averaged cosine patterns of the two ranges of rows 
of pixels used in Fig. 8b, which are in great agreement after the alignment is complete. For this stage of the calibra-
tion process, the wavelength of the monochromatic input light used was 639 nm.

The second stage of the calibration process focuses on obtaining a full spectral-spatial characterization of the 
ST of the LCC and the entire system. This stage is crucial as the ST is a required input for the solvers mentioned 
in the Results section, which are used for the spectral demultiplexing process of the acquired HS images. As the 
effective birefringence function introduced in Eq. 1 is unknown, the theoretical ST expression (Eq. 1) cannot be 
used directly and the ST must be experimentally measured. One optional method to obtain the desired character-
ization of the ST, which is explained in36,59, is to measure the ST at several locations on the LCC using a moveable 
point light source, and estimate it at all other locations. In this work, we applied an alternative method. Using the 
same halogen light source and monochromator from the previous calibration stage, the imager was flooded with 
monochromatic light which was scanned from 450 μm to 700 μm. An image of the spatial cosine pattern was cap-
tured per scanned wavelength, and the images were stacked to form a HS data-cube. The captured data-cube has 
two spatial dimensions, corresponding to the rows and columns of the sensor, and one spectral dimension, with 
each spectral channel corresponding to a specific scanned wavelength. By measuring the spectral power density 
of the halogen light source using a grating based spectrometer, and by using the captured data-cube, the normal-
ized ST was calculated per spatial pixel. As the LCC and the sensor were previously aligned, the ST was identical 
along the pixel rows. Therefore, the ST of the pixel rows was averaged to obtain better SNR in its characterization. 
Because the full ST characterization is needed for the spectral demultiplexing of the acquired HS images, the 
second stage of the calibration process was performed with no voltage applied to the LCC, and its results were 
previously shown in Fig. 1b. It should be noted that the ST map shown in Fig. 1c, which demonstrates that when 
a voltage is applied to the LCC, a ST suitable for panchromatic imaging is obtained, can be measured in a similar 
manner while driving a voltage through the LCC.
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