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Abstract We use a distortion to define the dual complex of a cubical subdivision of
R

n as an n-dimensional subcomplex of the nerve of the set of n-cubes. Motivated
by the topological analysis of high-dimensional digital image data, we consider such
subdivisions defined by generalizations of quad- and oct-trees to n dimensions. As-
suming the subdivision is balanced, we show that mapping each vertex to the center
of the corresponding n-cube gives a geometric realization of the dual complex in R

n.

Keywords Simplicial complexes · (Hierarchical) cubical subdivisions · Counting ·
Distortion · Freudenthal triangulation · Geometric realization

1 Introduction

We are interested in cubical subdivisions of R
n as a generalization of the quad-tree

and oct-tree data structures commonly used for 2- and 3-dimensional images [14,
15]. Thinking of an image as a discrete representation of a real-valued function, we
view these trees as hierarchical representations and piecewise constant approxima-
tions of the same. The extension to n ≥ 4 dimensions is motivated by the availability
of high-resolution time-series of 3-dimensional images (e.g. Stock [16] observing
the breaking of bone structure under pressure) and by the general quest to analyze
multi-variate scientific data [8, 9]. While quad-trees and their higher-dimensional
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analogues are natural and efficient hierarchical representations of image data, a con-
version to a simplicial representation facilitating a piecewise linear approximation is
sometimes advantageous. An example is the construction of level sets, which requires
a continuous function as input. In this work, we define and study such a conversion:
the dual complex of a cubical subdivision. We build on Freudenthal’s early work on
triangulations of the n-dimensional cube [7]. The main results of this paper are as
follows:

I. We introduce a distortion of the integer grid in R
n to generalize the Freudenthal

triangulation of the n-cube to the dual complex of a cubical subdivision of R
n.

II. We analyze the dual complex, giving tight bounds on its size and a detailed de-
scription of its local structure.

III. We show that using the cube centers as the vertices of the dual complex of a
balanced hierarchical cubical subdivision gives a geometric realization in R

n.

The work reported in this paper is motivated by the desire to compute the persis-
tent homology of n-dimensional images, generalizing the work of [2]. Indeed, from
the dual complex of a cubical subdivision, we get an approximation of the image’s
persistent homology using standard reduction algorithms [6]. Alternatively, the same
algorithms can be applied directly to the cubical grid [10]. Enhancements of the re-
duction algorithm based on collapses within the complex can be found in [5]. For
images of moderate size, the persistent homology can be computed directly from
the uniform cubical subdivision. While the size of this image representation may be
large, its regular structure is amenable to implicit memory referencing, leading to
implementations that are an order of magnitude faster than their counterparts for sim-
plicial complexes of similar size [17]. In this context, it is important to distinguish
between the piecewise constant approximations of a function furnished by cubical
subdivisions, and the piecewise linear approximations provided by their dual com-
plexes. The number of elements needed to achieve the same degree of approximation
can be significantly smaller for the latter. Therefore, replacing a cubical subdivision
by its dual complex can be an attractive option, in spite of the existence of algorithm
that work directly on the primary structure.

Computing a simplicial refinement of a cubical subdivision is a well-studied prob-
lem in geometry processing, especially in two and three dimensions; see [18] for an
extensive discussion with numerous references. All these approaches work by de-
composing the cubes, with the constraint that the decompositions agree on the shared
faces; see e.g. [4, Chap. 14]. In contrast, our dual complex of a cubical subdivision
is not a refinement and instead consists of simplices connecting cube centers. As a
consequence, it generally has fewer simplices than the refinements.

Outline Section 2 reviews the Freudenthal triangulation of the n-cube and counts
its simplices. Section 3 explains the distortion and uses it to define the dual of a
subdivision into unit cubes. Section 4 generalizes the construction to cubical sub-
divisions of nonuniform size. Section 5 introduces dual complexes and proves the
geometric realization for balanced hierarchical subdivisions. Section 6 concludes the
paper.
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2 Freudenthal’s Triangulation

In this section, we review the Freudenthal triangulation [7], also known as the Kuhn
subdivision [11] of the n-dimensional cube.

The n-Cube The unit n-cube is the n-fold Cartesian product of the unit interval:
U

n = [0,1]n ⊆ R
n. Picking k ≤ n of the intervals and either 0 or 1 from each of the

remaining n−k intervals, we get a k-face of U
n, which is itself a k-dimensional cube.

The number of k-faces is therefore

c̄n
k =

(
n

k

)
2n−k, (1)

for all 0 ≤ k ≤ n. To distinguish between different classes of faces, we write 0 =
(0,0, . . . ,0) and 1 = (1,1, . . . ,1) for the extreme vertices in the diagonal direction,
calling a face of U

n anchored at 0 (or 1) if it contains 0 (or 1) as one of its vertices.
Some faces are anchored at 0, some are anchored at 1, and some are anchored at
neither. Only one face of U

n is anchored at both, namely the n-cube itself, which is
its only n-face. For each choice of k unit intervals, the only k-face anchored at 0 is
the one for which the other n − k coordinates are 0. Hence, the number of k-faces
anchored at 0 is

ān
k =

(
n

k

)
, (2)

for all 0 ≤ k ≤ n. We are also interested in the silhouette of the n-cube, when viewed
along the diagonal direction. For this reason, we introduce Δ : R

n → R defined by
mapping a point x = (x1, x2, . . . , xn) to Δ(x) = ∑n

i=1 xi . We refer to Δ as the di-
agonal height function, noting that Δ−1(0) is the (n − 1)-dimensional plane normal
to the diagonal direction that pass through the origin, and Δ(x) is ±√

n times the
Euclidean distance from that (n − 1)-plane. The orthogonal projection of the n-cube
onto Δ−1(0) is an (n − 1)-dimensional convex polytope. This polytope has two de-
compositions into projections of (n − 1)-cubes, generated by the (n − 1)-faces of U

n

anchored at 0 and by the (n−1)-faces anchored at 1. The silhouette of U
n consists of

all points whose projection belongs to the boundary of that (n − 1)-polytope. A face
belongs to the silhouette iff it is neither anchored at 0 nor at 1. Indeed, each such face
is shared by an (n − 1)-face anchored at 0 and another anchored at 1. It is therefore
easy to count them. Specifically, the number of k-faces in the silhouette of U

n is

s̄n
k =

(
n

k

)(
2n−k − 2

)
, (3)

for all 0 ≤ k ≤ n − 1. Since the silhouette is (n − 2)-dimensional, the number of k-
faces vanishes for k = n − 1, n. In Table 1, we give the number of faces, anchored
faces, and silhouette faces for a few small values of n and k.
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Table 1 From left to right in each entry: the number of k-faces of the n-cube, the number of k-faces
anchored at 0 (or at 1), and the number of k-faces in the silhouette. Zeros are omitted

k = 0 1 2 3 4

n = 1 2, 1 1, 1

2 4, 1, 1 4, 2 1, 1

3 8, 1, 6 12, 3, 6 6, 3 1, 1

4 16, 1, 14 32, 4, 24 24, 6, 12 8, 4 1, 1

Fig. 1 The Freudenthal
triangulation of the 3-cube
consists of six tetrahedra,
arranged cyclically around the
space-diagonal connecting 0
with 1, and the faces of these
tetrahedra

Chains We triangulate the n-cube using increasing sequences in a partial order of its
vertices. Writing i = (i1, i2, . . . , in) and j = (j1, j2, . . . , jn), with ik, jk ∈ {0,1} for all
k, we say i precedes j if ik ≤ jk for all k. A chain is a sequence of distinct vertices in
which each vertex precedes the next one in the partial order. Its length is the number
of vertices. A chain is maximal if its length is n+1. Each chain of length k+1 defines
a k-simplex, namely the convex hull of its k + 1 vertices. Freudenthal’s triangulation
of the n-cube, denoted by F n = F (Un), is the set of all simplices defined by chains
[7]; see Fig. 1.

A maximal chain corresponds to a schedule of changing n 0’s to n 1’s, one coor-
dinate at a time. It follows that there are n! maximal chains, and similarly there are
n! n-simplices in F n. To count the k-simplices, we partition the set of n coordinate
directions into k + 2 color classes, which we label from 0 to k + 1. Here we require
that each color class between 1 and k contain at least one direction; the classes 0
and k + 1 may or may not contain directions. A maximal chain is compatible with
a (k + 2)-coloring if the coordinate directions that connect the vertices in sequence
are ordered by color, from 0 to k + 1. Note that any two maximal chains compatible
with the same (k + 2)-coloring agree on the vertices that transition from one color to
the next. We can therefore use the (k + 2)-coloring to identify a unique k-simplex,
namely the convex hull of the transition vertices, from the beginning of color 1 to the
end of color k.

The number of (k + 2)-colorings of the n coordinate directions is (k + 2)n. To
count the colorings that use each of the middle k colors at least once, we count all
(k + 2)-colorings and subtract the ones that do not use at least one of the middle
colors. Note that (k + 2 − i)n of the (k + 2)-colorings do not use some fixed subset
of i colors. Inclusion-exclusion now implies that the number of k-simplices in the
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Table 2 From left to right in each entry: the number of k-simplices in the Freudenthal triangulation of the
n-cube, the number anchored at 0, and the number in the silhouette. Zeros are omitted

k = 0 1 2 3 4

n = 1 2, 1 1, 1

2 4, 1, 2 5, 3 2, 2

3 8, 1, 6 19, 7, 6 18, 12 6, 6

4 16, 1, 14 65, 15, 36 110, 50, 24 84, 60 24, 24

Freudenthal triangulation of the n-cube is

cn
k =

k∑
i=0

(−1)i
(

k

i

)
(k + 2 − i)n, (4)

for all 0 ≤ k ≤ n. It is easy to see that this formula gives cn
0 = 2n but not quite as easy

that it gives cn
n = n!.

Anchors and Silhouettes A simplex is anchored at 0 iff color 0 is not used. We can
therefore drop color 0 and compute the number of k-simplices in the Freudenthal
triangulation of the n-cube that are anchored at 0 by counting (k + 1)-colorings as

an
k =

k∑
i=0

(−1)i
(

k

i

)
(k + 1 − i)n, (5)

for all 0 ≤ k ≤ n. If we now subtract the number of simplices anchored at 0 or at
1 from cn

k , we get the number of k-simplices that triangulate the silhouette of the
n-cube. We still need the number of k-simplices anchored at both, 0 and 1, which
we get by counting k-colorings: dn

k = ∑k
i=0(−1)i

(
k
i

)
(k − i)n, for all 0 ≤ k ≤ n. The

number of k-simplices that triangulate the silhouette is therefore

sn
k = cn

k − 2an
k + dn

k , (6)

for all 0 ≤ k ≤ n. Similar to the number of faces, we get sn
k = 0 for k = n − 1, n.

We note that sn
k = dn

k+2 because the (k + 2)-colorings count the (k + 2)-simplices
anchored at both 0 and 1, and each such (k + 2)-simplex has a unique k-face that is
anchored at neither. In Table 2, we give the number of simplices, anchored simplices,
and silhouette simplices for a few small values of n and k.

We note relations between the number of anchored simplices and the number of
simplices in the silhouette, in the same and in one higher dimension. To express the
relations without special cases, we set sn

−1 = 1 and sn
−2 = 0 for all dimensions n.

Anchor Formulas We have an
k = sn

k−1 + sn
k−2 and an

k = sn+1
k−1 /(k + 1), for all 0 ≤

k ≤ n.
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Proof We employ straightforward algebraic manipulations to prove both relations.
Using

(
k
i

) = (
k+1

i

) − (
k

i−1

)
, we get

an
k =

k∑
i=0

(−1)i
(

k + 1

i

)
(k + 1 − i)n

−
k∑

i=1

(−1)i
(

k

i − 1

)
(k + 1 − i)n.

Adding the vanishing term for i = k + 1, we note that the first sum is dn
k+1. Adding

the vanishing term for i = k + 1 and then transforming the index, we note that the
second sum is −dn

k . The first relation now follows from sn
k−1 = dn

k+1 and sn
k−2 = dn

k .

Using
(
k
i

) = k+1−i
k+1

(
k+1

i

)
, we get

an
k = k + 1 − i

k + 1

k∑
i=0

(−1)i
(

k + 1

i

)
(k + 1 − i)n.

Moving the factor k + 1 − i into the sum and adding the vanishing term for i = k + 1,
we note that the sum is dn+1

k+1 . The second relation follows from sn+1
k−1 = dn+1

k+1 . �

3 Uniform Cubical Subdivisions

The circumscribed (n − 1)-sphere of every n-simplex in F n passes through the 2n

vertices of the unit n-cube. The Freudenthal triangulation is therefore a degenerate
Delaunay triangulation. In this section, we study a distortion that selects F n among
all degenerate Delaunay triangulations.

Distortion in Diagonal Direction Write Z
n for the set of integer points in R

n, and
recall that the Voronoi diagram assigns to each point i ∈ Z

n the cell of points x ∈ R
n

for which i is a closest integer point. For i = (i1, i2, . . . , in), this cell is the Cartesian
product of the intervals [ik − 1

2 , ik + 1
2 ], for 1 ≤ k ≤ n, which is a translate of the

unit n-cube. To remove common intersections of more than n + 1 cells, we move
the integer points by slightly compressing Z

n along the diagonal direction. Choosing
0 < ε < 1, we map i to

Tεi = i − ε
Δ(i)
n

1

=
(

i1 − ε
Δ(i)
n

, i2 − ε
Δ(i)
n

, . . . , in − ε
Δ(i)
n

)
.

Here, Tε is the linear transformation defined by mapping the kth unit coordinate vec-
tor, ek , to ek − ε

n
1. It is the identify for ε = 0 and the orthogonal projection onto

Δ−1(0) for ε = 1. With this, we get Voronoi cells that are simple convex polyhe-
dra, all of the same shape, namely combinatorially the same as a truncated n-cube;
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Fig. 2 Sketch of the Voronoi
cell of an integer point after the
distortion in R

3. It has the
combinatorial structure of a
cube after truncating two
vertices and six edges

see Fig. 2 for the 3-dimensional case. As we will see shortly, the intersection of any
k + 1 Voronoi cells is either empty or an (n − k)-dimensional convex polytope, and
which case it is does not depend on the particular value of ε ∈ (0,1). The intersec-
tion of n + 2 or more Voronoi cells is necessarily empty. We can therefore take the
nerve of the set of Voronoi cells and get an n-dimensional simplicial complex: the
Delaunay triangulation of the distorted set of integer points. We draw this complex
in R

n, using the (undistorted) integer points as vertices. In other words, we draw the
complex as a degenerate Delaunay triangulation of the integer points, denoting it by
Dn(ε) = Dε(Z

n).

Triangulation We now formally prove that the nerve of the set of Voronoi cells gives
an n-dimensional simplicial complex. Moreover, we show that Dn(ε) triangulates
every integer translate of the unit n-cube by a copy of its Freudenthal triangulation.

Triangulation Theorem Dn(ε) = F n + Z
n, for every 0 < ε < 1.

Proof We give the proof in two steps, simplifying by fixing ε and dropping it from
the notation. The first step is geometric and shows that the claimed identity holds for
the 1-skeleta of Dn and F n. The second step is combinatorial and shows that if we
have the same edges, in Dn and F n + Z

n, then we must also have the same higher-
dimensional simplices. To prepare the two steps, we note that all Voronoi cells are
integer translates of each other. Hence, Dn is invariant under integer translation. It
therefore suffices to prove that Dn contains F n.

In the first step, we show that an edge connecting two integer points belongs to
Dn iff it is an integer translate of an edge in F n. It is not difficult to see that every
edge in Dn connects two vertices of an integer translate of the unit n-cube, so we
may as well assume that both endpoints are vertices of U

n. Writing V for its set of
vertices, we observe that U

n is the convex hull of V . Since the distortion is a linear
transformation, and linear transformations preserve convexity, T U

n is the convex hull
of TV . Let S be the (n − 1)-sphere that circumscribes U

n. Its center is ( 1
2 , 1

2 , . . . , 1
2 )

and its radius is 1
2

√
n. Recall that Δ−1( n

2 ) is the (n − 1)-plane orthogonal to the
diagonal that passes through the center of S. It intersects S in an (n − 2)-sphere,
E = S ∩ Δ−1( n

2 ), which we refer to as the equator of S. The image of S under the
linear transformation, TS, is an (n−1)-dimensional ellipsoid. It has one axis of length
(1 − ε)

√
n, in the direction of the diagonal, and n − 1 axes of length

√
n, all axes of

TE, which is a translate of the equator. Consider now a k-dimensional plane, P , and
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the image of its intersection with the (n − 1)-sphere: T(P ∩ S) = TP ∩ TS. Assume
first that P passes through the center of S. Then P ∩ S is a (k −1)-sphere, and unless
P is orthogonal to the diagonal direction, P ∩ E is a (k − 2)-sphere, both with radius
1
2

√
n. It follows that TP ∩ TS is a (k − 1)-dimensional ellipsoid with one axis of

length between (1 − ε)
√

n and
√

n and k − 1 axes of length
√

n. Indeed, the latter are
axes of T(P ∩ E), which is a translate of P ∩ E. The first axis is strictly shorter than√

n unless P ⊆ Δ−1( n
2 ). To understand the case in which P does not pass through

the center of S, we note that parallel k-planes give rise to homothetic ellipsoids. The
short axis of such an ellipsoid is always in the direction closest to the diagonal of R

n,
connecting the points with minimum and maximum diagonal height.

Consider now two vertices of U
n and let k be the smallest dimension such that both

belong to a common k-face of U
n, which we denote as U

k . It has 2k−1 antipodal pairs
of vertices, the chosen pair being one. The vertices of each pair differ from each other
in precisely k coordinates. Hence, there is only one antipodal pair whose vertices are
related to each other by the partial order, namely the pair u0, u1 in which u0 has 0’s
and u1 has 1’s where they differ. By definition of the Freudenthal triangulation, this
pair forms an edge in F n. To show that is also forms an edge in Dn, we let P be
the k-plane spanned by U

k and note that u0 and u1 are the orthogonal projections
of 0 and 1 onto P . For reasons of symmetry, this implies that among the points of
P ∩ S, u0 minimizes and u1 maximizes the diagonal height. It follows that u0, u1 is
the closest diagonal pair after distortion, implying that u0, u1 are the endpoints of an
edge in Dn. In summary, we proved that two vertices of U

n are connected by an edge
in Dn iff they are related to each other in the partial order. Hence, the 1-skeleton of
Dn is equal to the union of integer translates of the 1-skeleton of F n.

In the second step, we extend the result from edges to higher-dimensional sim-
plices. Of course, a simplex can belong to Dn only if all its edges belong to Dn.
Restricting ourselves to the unit n-cube, U

n, the vertices of a simplex in Dn thus
form a chain in the partial order. Since F n contains all such simplices, we just need
to show that Dn also contains all such simplices. But if it does not, then it would be
missing at least one of the n-simplices of F n, leaving a hole in the covering of R

n by
the simplices in Dn. This contradicts the Nerve Theorem, which states that Dn has
the same homotopy type as the union of Voronoi cells, namely the homotopy type of
R

n; see e.g. [6, Sect. III.2]. �

Implicit in the statement of the above theorem is that the triangulation does not
depend on the particular choice of ε in the open unit interval. It is therefore convenient
to drop the parameter from the notation and to write Dn = Dn(ε) throughout the
remainder of this paper.

Ratios of Limits of Ratios Now we know enough about Dn to count its simplices.
Since there are infinitely many, we form unions of vertex stars and consider the ra-
tio of the number of k-simplices over the number of vertices. Finally, we take the
limit, letting the number of vertices go to infinity. Recall that each simplex in Dn

has a unique lowest vertex with respect to the diagonal height function Δ, and that it
belongs to the Freudenthal triangulation of the n-cube with the same lowest vertex.
Hence, the limit of the ratio is the same as the number of k-simplices anchored at 0,
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Table 3 The ratio of the number of k-simplices in Dn over the number of k-cubes in V n, up to one
decimal position. The last column gives the ratio of the sums over all k:

∑
k an

k
/
∑

k ān
k

k = 0 1 2 3 4 5

n = 1 1.0 1.0 1.0

2 1.0 1.5 2.0 1.5

3 1.0 2.3 4.0 6.0 3.2

4 1.0 3.7 8.3 15.0 24.0 9.3

5 1.0 6.2 18.0 39.0 72.0 120.0 33.8

Fig. 3 The projection of a level
in D3 to the plane Δ−1(0), and
its triangulation

counted in (5). Summing this over all k, we get the limit ratio for the total number of
simplices over the number of vertices as

∑n
k=0 an

k .
It is instructive to compare these numbers with the corresponding ratio limits for

the subdivision of R
n into unit cubes, which we denote by V n. Each k-dimensional

cube in V n has a unique lowest vertex, at which it is anchored. The limit of the number
of k-cubes over the number of n-cubes is therefore ān

k = (
n
k

)
; see (2). In Table 3, we

show the ratios of the ratio limits for small values of n and k. For example, for k = n,
we have n! n-simplices per n-cube and therefore a ratio of n!.

Levels We gain further insight into the structure of Dn by studying its relationship
with Dn+1. For this purpose, we consider the collection of n-faces of integer trans-
lates of the unit (n + 1)-cube in R

n+1. Each such n-face has a unique lowest vertex
in the diagonal height direction of R

n+1. We define level � as the faces whose low-
est vertices have diagonal height �. Projecting the level � n-faces orthogonally onto
Δ−1(0), we get a subdivision of R

n by distorted n-cubes, which we denote as Ln
� ; see

Fig. 3. Let Dn
� be the further subdivision of Ln

� into the simplices we get by projecting
the Freudenthal triangulations of the n-faces. For n ≥ 2, we have Ln

� 	= Ln
�+j unless

j is a multiple of n + 1. In contrast, the triangulations are all the same.

Level Lemma Dn
� = Dn

�+j for all integers � and j .
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Proof It suffices to show Dn
0 = Dn

1 . Since a level consists of n-cubes in R
n+1, its

vertices come on n + 1 different diagonal heights, namely 0,1, . . . , n for level 0.
Removing the integer points at height 0 and adding the ones at height n + 1, we get
the vertices for level 1. But the integer points at heights 0 and n + 1 have the same
projections in Δ−1(0). This implies that Dn

0 and Dn
1 have the same vertices. It remains

to show that they also have the same simplices of dimension larger than zero.
Consider a simplex of Dn

0 , and assume without loss of generality that it is the
projection of a simplex in the Freudenthal triangulation of a lower n-face of U

n+1.
The vertices of that simplex have diagonal heights between 0 and n and they form a
chain in the partial order in R

n+1. If none of its vertices has height 0, this is also a
chain in level 1, hence its projection also belongs to Dn

1 . However, if 0 is one of the
vertices of the simplex, then we need to replace it by 1. The remaining vertices in the
chain all succeed 0 and they all precede 1 in the partial order. Hence, we get a chain
on level 1, which implies again that the projection of the simplex also belongs to Dn

1 ,
as required. �

Links Suppose now that i′ is the orthogonal projection onto Δ−1(0) of the integer
point i at height � = Δ(i) in R

n+1. Hence, i′ is a vertex of Ln
� , and the distorted n-

cubes that share i′ are the projections of the n+ 1 lower n-faces of U
n+1 + i. The link

of i′ in Dn
� is therefore the projection of the triangulated silhouette of that (n + 1)-

cube. By the Level Lemma, every vertex in Dn
� is combinatorially the same as every

other vertex. This implies that all links are integer translates of each other and of the
projection of the triangulated silhouette of U

n+1. It is now not difficult to prove that
a similar statement holds for the degenerate Delaunay triangulation Dn in R

n.

Link Lemma The links of the vertices in Dn are integer translates of each other, and
they are all isomorphic to the triangulated silhouette of the unit (n + 1)-cube.

Proof The n-dimensional simplicial complexes Dn
� in Δ−1(0) and Dn in R

n are
geometrically different but combinatorially the same. Specifically, Dn is the (non-
orthogonal) diagonal projection of a level in Dn+1 onto the n-dimensional plane
spanned by the first n coordinate axes. Hence, we get Dn

� as the image of Dn un-
der the linear transformation Tε , with ε = 1 − 1/

√
n + 1. This implies that Dn and

Dn
� are isomorphic, so the links of their vertices are isomorphic. The second part of

the claim follows because the vertex links in Dn
� are isomorphic to the triangulated

silhouette of U
n+1, by construction. �

Since all vertex links in Dn are isomorphic to the triangulated silhouette of the
(n + 1)-cube, we can use the results of Sect. 2 to count their simplices. Specifically,
the link of a vertex in Dn has sn+1

k k-simplices, for 0 ≤ k ≤ n − 1. It follows that the
star of a vertex in Dn has sn+1

k−1 k-simplices. Since each k-simplex belongs to k + 1
vertex stars, the ratio of the number of k-simplices over the number of vertices is
sn+1
k−1 /(k + 1). By the second Anchor Formula, this is indeed equal to an

k .
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Fig. 4 Left: a piece of a cubical subdivision of the plane with overlaid piece of the dual complex. Right:
the fractually distorted images of the squares

4 Non-uniform Cubical Subdivisions

In this section, we extend the results from uniform to non-uniform cubical subdivi-
sions, focusing on generalizations of quad- and oct-trees to hierarchical subdivisions
of R

n.

Cubical Subdivisions Recall the setting in Sect. 3, where we begin with the subdi-
vision of R

n into unit n-cubes centered at the integer points. We relax the size re-
quirement and consider subdivisions of R

n into n-cubes that are unions of these unit
n-cubes. To avoid the otherwise easy confusion between n-cubes and unit n-cubes,
we will refer to the former as cells.

Definition A cubical subdivision of R
n is a collection, C , of n-dimensional cubical

cells with disjoint interiors that cover R
n, for which we require that each unit n-cube

centered at a point in Z
n is contained in a cell in C .

See Fig. 4 for a 2-dimensional example. By definition, each cell C ∈ C with edges
of length � is the union of �n unit n-cubes, C = U1 ∪ U2 ∪ · · · ∪ U�n . Each Uj is
the Voronoi cell of an integer point i ∈ Z

n, and corresponds to a distorted truncated
cube, Uj (ε), the Voronoi cell of the integer point after distortion, Tεi ∈ TεZ

n. We call
C(ε) = U1(ε) ∪ U2(ε) ∪ · · · ∪ U�n(ε) a fractually distorted cell. Note that C(ε) is
different from TεC, as can be seen in Fig. 4. Since the Ui(ε) depend on ε, we get a 1-
parameter family of fractually distorted cells C(ε) for each C ∈ C . Assuming � ≥ 2,
C(ε) is not convex for any positive ε but has a convex limit, at ε = 0.

Distorted Intersections Let now C0,C1, . . . ,Ck be cells in a cubical subdivision,
F = ⋂k

i=0 Ci their common intersection, and F(ε) = ⋂k
i=0 Ci(ε) the common in-

tersection after distortion. Since the Ci are convex, F is either empty or convex. In
contrast, F(ε) is not necessarily convex. Furthermore, F = ∅ implies F(ε) = ∅, but
not the other way round. To describe the relationship between a face before and after
distortion, we consider the limit of F(ε), for ε going to 0. It consists of all points x

for which there are points x(ε) ∈ F(ε) such that x = limε→0 x(ε). If the Ci are unit
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n-cubes, then the limit of a non-empty F(ε) is equal to F . More generally, all points
x in the limit of F(ε) belong to F , but there can be points y ∈ F that are not in the
limit of F(ε). We now prove that such points y exist only if F(ε) = ∅.

Limit Lemma If F(ε) 	= ∅ then limε→0 F(ε) = F .

Proof We assume F(ε) 	= ∅ and note that limε→0 F(ε) ⊆ F . We prove equality indi-
rectly, assuming there is a point y ∈ F not in the limit of F(ε). The interiors of the
unit n-cubes and of their faces partition each Ci and therefore also F . Hence, there is
a unique unit cube that contains y in its interior, and we suppose its dimension is max-
imal, that is, equal to � = dimF . Let L be the �-plane that contains this unit �-cube,
and let U0,U1, . . . ,Uk be a selection of unit n-cubes with y ∈ Ui ⊆ Ci , for 0 ≤ i ≤ k.
Let N be the (n − �)-plane orthogonal to L that passes through the centers of the Ui .
We may assume that N is defined by xn−�+1 = xn−�+2 = · · · = xn = 0. The centers
of the Ui do not form a chain, else y would be in the limit of

⋂k
i=0 Ui(ε) ⊆ F(ε). It

follows that
⋂k

i=0 Ui(ε) = ∅, for ε > 0. We need to prove that the same is true for
every other selection of unit n-cubes V0,V1, . . . , Vk with Vi ⊆ Ci , for 0 ≤ i ≤ k. Note
that we do not require that y belongs to the common intersection of the Vi . To get a
contradiction, we assume the centers of the Vi form a chain. Define the rectangular
hull of Vi and Ui as the collection of unit cubes Wi such that

min{uij , vij } ≤ wij ≤ max{uij , vij }
for each 1 ≤ j ≤ n, where ui is the center of the unit n-cube Ui , uij is its j th coor-
dinate, and similar for vi, vij and wi,wij . Clearly, all Wi in the rectangular hull of
Vi and Ui belong to Ci . Let V ′

i be the unit n-cube whose center, v′
i , is the orthogonal

projection of vi onto N . In other words,

v′
ij =

{
vij for 1 ≤ j ≤ n − �,

uij for n − � < j ≤ n.

Since V ′
i belongs to the rectangular hull of Vi and Ui , it also belongs to Ci . It follows

that the V ′
i are k + 1 distinct unit n-cubes. But then, the v′

i inherit the property of

forming a chain from the vi . We have y ∈ ⋂k
i=0 V ′

i , since the v′
i all lie in N , which

contradicts the assumption that y does not belong to the limit of F(ε). Hence, the v′
i

cannot form a chain, and neither can the vi . It follows that limε→0 F(ε) = F when-
ever F(ε) 	= ∅, as claimed. �

The contrapositive form of the Limit Lemma is perhaps a more vivid description of
how a cubical subdivision relates to its fractually distorted image: if F 	= limε→0 F(ε)

then F(ε) = ∅ for ε > 0. In particular, if the dimension of F exceeds n − k then
F(ε) = ∅.

Face Structure After distortion, the unit n-cubes form a simple cell complex. It
follows that the non-empty intersection of k + 1 distorted unit n-cubes is neces-
sarily (n − k)-dimensional. Hence, F(ε) = ⋂k

i=0 Ci(ε) is either empty or (n − k)-
dimensional. In the latter case, it is not difficult to show that F(ε) is an (n − k)-
dimensional manifold with boundary, for ε > 0. In the limit, for ε = 0, the common
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Fig. 5 Left: the regular
subdivision of F into unit
�-cubes, for � = 2. Right: the
corresponding distorted �-cubes
with filled gaps between them

intersection is convex and therefore contractible. It is therefore plausible that F(ε) is
contractible also for ε > 0. This is implied by the following result.

Fractual Distortion Lemma For every 0 ≤ k ≤ n, the common intersection of the
fractually distorted images of k+1 cells in a cubical subdivision of R

n is either empty
or an (n − k)-ball.

Proof We give an explicit construction of F(ε). Supposing F(ε) 	= ∅, we can find
unit n-cubes U0,U1, . . . ,Uk , with Ui ⊆ Ci for each i, whose centers form a chain
of length k + 1. Here, we choose the indices so their ordering is consistent with the
ordering of the centers along the chain. For each pair 0 ≤ i < i′ ≤ k, there is at least
one coordinate direction, j , for which a normal (n − 1)-plane separates Ci from Ci′ .
We call j a separating coordinate direction for Ci and Ci′ . The separating directions
for C0 and C1 are distinct from those for C1 and C2, and so on. Letting S be the
collection of separating coordinate directions, we therefore have |S| ≥ k. Let T be
the complementary collection of non-separating coordinate directions, and note that
dimF = n − |S| = |T |, with F = ⋂k

i=1 Ci , as before. Writing � = |T |, we know that
F is an �-dimensional rectangular box. For each unit �-cube in its subdivision, we
have a chain in which the first vertex and the last vertex differ in n − � coordinates.
Equivalently, their unit n-cubes have n − � separating directions. The corresponding
k + 1 distorted unit n-cubes intersect in an (n − k)-dimensional face whose limit, for
ε = 0, is �-dimensional. We project these (n − k)-dimensional faces into an (n − k)-
plane, which we choose so that the images of the (n − k)-faces are disjoint, as in
Fig. 5. To construct this (n − k)-plane, we select k coordinate directions, one each
separating Ci−1 and Ci , for 1 ≤ i ≤ k. Finally, we take the distorted images of these
directions and get the (n − k)-plane as the intersection of the (n − 1)-planes normal
to the distorted directions.

In the last step of our proof, we construct the faces that fill the gaps between the
projections of the (n − k)-faces whose limits are the unit �-cubes decomposing F .
These faces can be enumerated by moving the vertices in a chain one by one in a
non-separating coordinate direction in such a way that the chain remains a chain.
In other words, we use chains in which some of the directions in T separate the
corresponding unit n-cubes. Letting the number of additional separating directions be
m ≤ �, the chain corresponds to an (n − k)-face whose limit is (� − m)-dimensional.
Using all subsets of T and, for each subset, all chains for which the directions in
the subset separate, we fill all gaps between the distorted �-cubes. We may even get
more, namely an incomplete extra layer of faces around the configuration of (n − k)-
faces whose limits are the unit �-cubes decomposing F . In any case, the collection
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of (n − k)-faces forms an (n − k)-dimensional ball whose limit, for ε = 0, is an
�-dimensional rectangular box. �

Hierarchical Cubical Subdivisions We are interested in cubical subdivisions that
arise from a hierarchical decomposition of R

n, generalizing quad-trees in R
2 and

oct-trees in R
3. To define them, we limit the set of available cells to a basis B of n-

dimensional cubes B for which there are integers � ≥ 0 and m1,m2, . . . ,mn such that
B is the union of the unit n-cubes centered at the integer points (i1, i2, . . . , in) with
2�mk + 1 ≤ ik ≤ 2�(mk + 1), for each 1 ≤ k ≤ n. We call 2� the size of B . Taking
all cubes of size 2� gives a uniform cubical subdivision of R

n. Hence, we can think
of B as a hierarchy of uniform subdivisions in which the number of cubes grows
exponentially from one level to the next.

Definition A hierarchical cubical subdivision of R
n is a cubical subdivision C ⊆ B.

Its closure, C , consists of all cubes in B that contain cubes in C , and its interior is the
closure minus the subdivision itself, C◦ = C − C .

Every hierarchical cubical subdivision has a unique closure and a unique interior.
Conversely, the closure determines the subdivision, and so does the interior. A re-
finement of C is a hierarchical cubical subdivision whose closure contains C . While
hierarchical cubical subdivisions are necessarily infinite, we can extract finite pieces.
Specifically, for each n-cube B ∈ C , we define C(B) = {C ∈ C | C ⊆ B}, referring to
it as a finite hierarchical cubical subdivision. See Fig. 4 for an example in the plane.
Accordingly, the closure and interior of C(B) are the subsets of cells in C and C◦ that
are contained in B . In the finite case, the sizes of a subdivision, its closure, and its
interior are tightly coupled:

∣∣C(B)
∣∣ = ∣∣C(B)

∣∣ + ∣∣C◦(B)
∣∣

= 2n
∣∣C◦(B)

∣∣ + 1. (7)

It should be clear that we can think of C(B) as a tree in the computer science sense.
Its cells are the nodes, distinguishing between the internal nodes in C◦(B) and the
external nodes in C(B). The children of a node are the cells of half the size contained
in it, and the parent is the cell of twice the size that contains it. Other than the root
of the tree, which is B , every node has exactly one parent, every internal node has 2n

children, and every external node has no child.

Balancing We refer to cells whose fractually distorted images have a non-empty
intersection as neighbors. Generalizing [3], we call a hierarchical cubical subdivision
of R

n balanced if any two neighboring cells are either of the same size or one is twice
the size of the other. For example, the quad-tree subdivision in Fig. 4 is not balanced
as it has neighboring squares whose sizes differ by a factor of four. It is, however,
easy to make it balanced, namely by subdividing the upper left square into four. It is
not difficult to see that every hierarchical cubical subdivision has a unique smallest
balanced refinement, which is obtained by greedily subdividing cells that violate the
balancing condition [12]. To compare C with this refinement, we adapt a result of
Moore [12]; see [4, Theorem 14.4] for the special case of n = 2.
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Balancing Lemma Let C be a hierarchical cubical subdivision of R
n and Rmin its

smallest balanced refinement. Then |Rmin(B)| ≤ 3n|C(B)| for every cell B ∈ C .

Proof Call two cells in a subdivision adjacent if they have a non-empty intersection,
and note that any two neighboring cells are adjacent but not the other way round. We
call the subdivision strongly balanced if any two adjacent cells differ in size by at
most a factor of two. Let R be the smallest strongly balanced refinement of C . Since
strong balance implies balance, it suffices to show that |R(B)| ≤ 3n|C(B)| for every
B ∈ C .

We use the language of trees to explain the proof. The key insight is the following:
if an external node is split during the refinement process, then C◦ contains a node
adjacent to and of the same size as the split node; see [12] or [4, Theorem 14.4] for
more details. It follows that every split in the process can be charged to a node of C◦.
Now, each internal node is charged at most 3n −1 times because this is the number of
adjacent nodes of same size. With every split, the number of external nodes increases
by 2n − 1, so we get

∣∣R(B)
∣∣ ≤ ∣∣C(B)

∣∣ + (
2n − 1

)(
3n − 1

)∣∣C◦(B)
∣∣

≤ ∣∣C(B)
∣∣ + (

3n − 1
)(∣∣C(B)

∣∣ − 1
)
,

because |C(B)|−1 = (2n −1)|C◦(B)|, which we get from (7). The claimed inequality
follows. �

5 Dual Complexes

In this section, we introduce the main new concept of this paper, namely the dual
complex of a non-uniform cubical subdivision. It is not necessarily a Delaunay trian-
gulation, so we have to worry about embedding it.

Triangulation Similar to the uniform case, we need the distortion to control the
explosion in dimension we otherwise get by taking the nerve of a collection of cubes.

Definition The dual complex of a cubical subdivision C of R
n is the system of sub-

sets Kn = K(C) that contains α ⊆ C if the fractually distorted images of the cells in
α have a non-empty common intersection.

We extend this notion by calling the full subcomplex of K(C) defined by a subset
of C the dual complex of the subset. Observe that the definition of the dual com-
plex is independent of the particular choice of the parameter ε ∈ (0,1) that controls
the distortion. Moreover, the dual complex can be computed purely combinatorially,
without constructing distorted cells, as in [2]. We put Kn into R

n by mapping each
cell to its (undistorted) center and drawing each subset of cells as the convex hull
of their centers. This does not necessarily give a simplicial complex, in which any
two simplices are either disjoint or intersect in a common face. However, we will
identify an important class of cubical subdivisions for which this drawing of Kn is a
geometric realization in R

n.



408 Discrete Comput Geom (2012) 47:393–414

Fig. 6 Cutting the middle
square into two creates one new
vertex and three new edges

Ratio Bounds Before addressing the question of geometric realization, we give an
upper bound on the number of simplices in a dual complex. Recall that Kn = Dn if
all n-cubes are of unit size. As shown at the end of Sect. 3, in this case the ratio of
the number of k-simplices over the number of vertices is an

k . We now show that this
is the largest ratio we can get.

Size Lemma The number of k-simplices over the number of vertices in the dual
complex of a hierarchical cubical subdivision of R

n is at most an
k .

Proof Our argument works by stepwise refinement of the subdivision C until we
arrive at V n, in which all cells are unit n-cubes. We already have a good understanding
of Dn = K(V n). Specifically, the ratio of the number of k-simplices over the number
of vertices in Dn is an

k ; see Sect. 3. We express this by saying that the average number
of k-simplices per vertex is an

k . We will prove that each refinement step adds one
vertex and at least an

k k-simplices. Since the average is an
k at the end, for V n, it cannot

be more than an
k at the beginning, for C .

We refine C by subdividing its cells in the order of non-increasing size, using
2n − 1 straight cuts to subdivide a cell into 2n cells of half the size. We do these cuts
in sequence but not consecutively, as we now explain. When we cut a cell, we get
two rectangular boxes, each with long sides of the same length as the edges of the
cell, and a short side of half the length. In general, we get boxes with n − k long
and k short sides, where k is anywhere between 0 and n. We order the cuts such that
the short sides are parallel to the first k coordinate directions and the long sides are
parallel to the last n − k coordinate directions. To compare, we say a box B is larger
than another box if the long sides of B are longer, or the long sides of the two boxes
have equal length but B has more long sides. Finally, we refine C by cutting the boxes
in the order of non-increasing size.

Let now B be a largest box and k its number of short edges. Because of the order
of the cuts, the neighbors of B are smaller than or of the same size as B . We cut B

in half, with an (n − 1)-plane normal to the (k + 1)-st coordinate direction. Cutting
the box corresponds to splitting the corresponding vertex in the dual complex; see
Fig. 6. A new edge connecting the two copies of the split vertex appears. The link of
this edge is a triangulation of the (n− 2)-sphere. We denote this link by L, observing
that it is a subcomplex of the link of the vertex before the split. If all neighbors of
B are of the same size as B , then L is isomorphic to a vertex link in Dn−1; see the
remark after the Link Lemma in Sect. 3. In this case, L has sn

k k-simplices. If some
of the neighbors of B are smaller, then the number of k-simplices in the link is at
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Fig. 7 Three cubes in R
3

whose centers span a triangle
that is not contained in the union
of the three cubes

least sn
k . The split doubles the set of simplices connecting the vertex with simplices

in L, and it triangulates the space in between. In other words, for each k-simplex in L,
we get an additional (k + 1)-simplex by doubling and an additional (k + 2)-simplex
by filling. Hence, the number of new k-simplices that appear as a result of the split
is at least sn

k−1 + sn
k−2. The result follows because this sum is equal to an

k by the first
Anchor Formula in Sect. 2. �

By the Size Lemma, an
k is the largest possible ratio between the number of k-

simplices and vertices for non-uniform cubical subdivisions. On the other hand, the
ratio between the number of k-cubes and n-cubes cannot be smaller than

(
n
k

)
. There-

fore, Table 3 gives upper bounds for the number of k-simplices in the dual complex
over the number of k-cubes in the cubical subdivision.

Counterexample to Geometric Realization We are now ready to address the ques-
tion of geometric realization. For dimension n = 2, it is fairly easy to prove that the
dual complex of a cubical subdivision is geometrically realized in R

2. The key insight
is that every edge of K2 is contained in the union of the two squares that define it;
compare with Fig. 4. While this property generalizes to R

n, it no longer implies the
geometric realization of the dual complex. Following [2], we now describe a coun-
terexample in three dimensions.

We begin with two cubes, A and B , that share a common edge of length 8. To this,
we add a cube C of size 2 such that one of its edges overlaps with the last quarter of
the shared edge of A and B; see Fig. 7. The line segment connecting the centers of A

and B passes through the midpoint of the shared edge. This midpoint lies outside C,
and the center of C lies outside A ∪ B . The line segment connecting the midpoint and
this center belongs to the triangle spanned by the three centers but it is not contained
in A ∪ B ∪ C. This implies that the triangle lies partially outside the three cubes.
Now we just need to place a unit cube on top of C so it touches both A and B . Its
center lies on the triangle and thus forms an improper intersection.

The configuration in Fig. 7 is part of a hierarchical cubical subdivision of R
3.

Note, however, that this subdivision is not balanced. In the remainder of this section,
we show that balance prohibits improper intersections between simplices in the dual
complex in all positive dimensions.
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Fig. 8 Seed configuration of a
tetrahedron in the dual complex
of a cubical subdivision of R

3.
The white dots are the centers of
the unit cubes in the seed
configuration, and the black dots
are the centers of the
corresponding cubes of twice
the size

Seed Configurations Let now C be a hierarchical cubical subdivision of R
n, and

let C0,C1, . . . ,Cn be cells in C forming an n-simplex in Kn = K(C). By the Frac-
tual Distortion Lemma, the corresponding fractually distorted cells meet in a single
common point, which we denote as Tεx. The coordinates of the corresponding undis-
torted point, x, are odd multiples of 1

2 . The point Tεx is also common to the distorted
images of n + 1 unit n-cubes, one in each Ck(ε). In other words, there is a unique
collection of unit n-cubes Uk ⊆ Ck , for 0 ≤ k ≤ n, such that

Tεx =
n⋂

k=0

Ck(ε) =
n⋂

k=0

Uk(ε);

see Fig. 8. Writing uk for the center of Uk , for each k, we call u0, u1, . . . , un the seed
configuration of the n-simplex. To study this configuration, we may assume that the
uk are vertices of U

n = [0,1]n. Writing ukj for the j th coordinate of uk , we can make
this more specific by assuming ukj = 1 if j ≤ k and ukj = 0 if k < j . The common
point of the Uk is then x = ( 1

2 , 1
2 , . . . , 1

2 ), the center of U
n.

Two orderings of the vertices of an n-simplex belong to the same orientation if
they differ by an even number of transpositions. Writing the vertices as the rows of a
matrix, in the sequence of their ordering, and adding a column of 1’s on the left, we
can use the sign of the determinant to distinguish between the two orientations. For
example, for the ordering u0, u1, . . . , un we get

det

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎦

= 1, (8)

and we say this ordered n-simplex has positive orientation. The determinant is also
n! times the signed n-dimensional volume of the n-simplex. Since the volume is a
continuous function of the n+1 points, we can move the points around and be sure the
determinant does not change its sign, unless the points pass through a configuration in
which they are affinely dependent. Because of this property, it is possible to compare
the orientations of different n-simplices, as we will do extensively below.
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Orientation In a geometrically realized dual complex, all n-simplices have the same
orientation as their seed configurations. We now prove that dual complexes of bal-
anced subdivisions have this property.

Orientation Lemma Every n-simplex in the dual complex of a balanced hierarchi-
cal cubical subdivision of R

n has the same orientation as its seed configuration.

Proof Let C0,C1, . . . ,Cn be a sequence of n-dimensional cubical cells in the bal-
anced hierarchical cubical subdivision, assume they define an n-simplex in the dual
complex, and let U0,U1, . . . ,Un be the corresponding sequence of unit n-cubes in
the seed configuration. We write ck for the center of Ck and ckj for its j th coordinate.
It is convenient to assume that the seed configuration has the special form described
above. Since the Ck come in at most two sizes, we may assume that either Ck = Uk

or Ck is twice the size of Uk . In the latter case, ck is a vertex of Uk , and we have
|ckj − ukj | = 1

2 for all j . Assuming k 	= � are indices with ck 	= uk and c� 	= u�, the
difference between the coordinates of their centers is

ckj − c�j ∈ {−2,0,2}, (9)

for each 1 ≤ j ≤ n. The difference is a multiple of 2 because Ck and C� are part of
a hierarchical subdivision, and it cannot be larger than 2 because they are corners of
neighboring unit n-cubes.

A particular choice for the center of Ck is ck = 2uk − x with x = ( 1
2 , 1

2 , . . . , 1
2 );

see the black dots in Fig. 8. Here, the coordinate vector of ck consists of k leading
3
2 ’s and n − k trailing − 1

2 ’s. We consider the case in which ck = 2uk − x, for some
indices k, and ck = uk , for others. We claim that the orientation of the n-simplex is
still positive. To see this, we consider again the matrix of vertex coordinates. The kth
row is either the same as in (8) or different in the way described above. Let m be the
smallest index for which cm 	= um. We subtract row m from each row k > m with
ck 	= uk . This way we get 2 in the diagonal position of row k followed by n − k 0’s.
Row m < n is the only remaining reason for the matrix not to be lower triangular.
To fix this, we use row n which is either all 1’s or consists of m + 1 0’s followed
by n − m 2’s. Adding half or one quarter of row n to row m, we get the matrix in
lower triangular form. The row operations do not affect the determinant, which is now
the product of the diagonal elements, which are all 1, 3

2 , or 2. This implies that the
determinant is positive and therefore has the same sign as for the seed configuration,
as claimed.

In the last step of the proof, we consider other choices for the centers of the Ck ,
reducing them to the above configuration, which we already know has positive orien-
tation. Fix the set of indices k with ck 	= uk and let m be the smallest such index, as
before. We have cmj equal to 1

2 or 3
2 for j ≤ m and equal to − 1

2 or 1
2 for m < j . Fix-

ing cm leaves only one choice for each ck 	= uk , else ck and cm would contradict (9).
In the case we already studied, we had cmj 	= 1

2 for all j . The remaining cases use
1
2 at least once as a coordinate. We claim that doing so does not change the deter-
minant. We prove this by induction over the number of 1

2 ’s in the coordinate vector
of cm. Each step decreases this number while preserving the set of rows for which
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ck 	= uk . Let j be such that cmj = 1
2 . Changing this coordinate to − 1

2 or 3
2 , whichever

is possible considering the value of umj , decreases the number of 1
2 ’s, so it suffices

to show that making that change does not affect the determinant. Indeed, the matrix
before differs from the matrix after the change only in the j th column. Under the
current assumptions, we have cj−1 = uj−1, else cj−1 would be a vertex of Uj and
Cj−1 would contain Uj . Symmetrically, we get cj = uj . It follows that subtracting
row j − 1 from row j leaves only one non-zero element in row j , namely the 1 in
column j . Using this row, we can now transform one matrix into the other by row
operations, implying that the determinant does not change. Hence, the orientation of
the n-simplex is the same as that of its seed configuration in all cases. �

It is convenient to order the vertices of the simplices such that all n-simplices
in Dn have positive orientation. Two neighboring n-simplices then induce opposite
orientations on the shared (n − 1)-simplex.

Geometric Realization We are now ready to prove that dual complexes of balanced
hierarchical subdivisions are simplicial complexes. To cope with the infinite size, we
again consider finite subsets.

Geometric Realization Theorem Let C be a balanced hierarchical cubical subdivi-
sion of R

n. Then the dual complex K(C(B)) is geometrically realized in R
n, for each

cell B ∈ C .

Proof Let Rmax be the largest refinement of C with C(B) ⊆ Rmax. We can construct
Rmax by repeatedly adding cubical cells on the outside of B , choosing the smallest
size possible without violating balance. The layers of cells around B get smaller
toward the outside until they shrink to unit size. Leaving two full layers of unit n-
cubes, we remove all cubes outside those layers and consider Rmax in this extended
box only. The two outer layers of unit cubes are useful because we understand how
unit n-cubes are connected to each other in the dual complex. In particular, the full
subcomplex defined by the subset of unit n-cubes in the two layers is geometrically
realized in R

n. Indeed, this is a subcomplex of Dn, which we analyzed in Sect. 3.
For the final step of the argument, we compactify R

n to the n-dimensional sphere,
S

n, by adding a point at infinity. Similarly, we construct Kn from K(Rmax) by
adding a new vertex at infinity and connecting it to all simplices triangulating the
outer boundary. By the Nerve Theorem applied to the fractually distorted image, the
thus modified dual complex of Rmax triangulates S

n. It follows that the drawing of
K(Rmax) ⊆ Kn in R

n defines a continuous mapping g : S
n → S

n. We use the fact
that the degree of g at a point x not in the image of any (n − 1)-simplex is the num-
ber of n-simplices that contain g−1(x), counting an n-simplex positive or negative
depending on the orientation of its image under g; see [1, p. 474] but also [13]. Since
all cells in the last two layers are unit n-cubes, the n-simplices they define all have
positive orientation. Hence, the degree is 1 if x lies inside the layer of n-simplices
formed by the two layers of unit n-cubes. However, the degree of a mapping between
manifolds without boundary is a global property and does not depend on the location
of x; see e.g. [1, p. 490]. Hence, it is 1 for any x. By the Orientation Lemma, the im-
age under g of every n-simplex has positive orientation. Hence, the degree can only
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be 1 if x lies in the interior of exactly one n-simplex. This prohibits improper inter-
sections between simplices in K(Rmax). Since K(C(B)) ⊆ K(Rmax), this implies the
claim. �

6 Discussion

The main new concept in this paper is the dual complex of a cubical subdivision
of R

n. Important examples of the latter are quad-tree subdivisions of R
2 and oct-tree

subdivisions of R
3. We count the number of simplices and prove that dual complexes

of balanced hierarchical cubical subdivisions are geometrically realized in R
n. We

predict applications of these results in the analysis of four- and higher-dimensional
images, and in particular in the computation of their persistent homology.

The detailed analysis of cubical subdivisions raises a number of technical ques-
tions. For example, the Geometric Realization Theorem applies only to balanced hi-
erarchical cubical subdivisions. We know it does not necessarily hold for unbalanced
such subdivisions of R

n, for n ≥ 3. How about balanced cubical subdivisions that are
not hierarchical?

Acknowledgements This research is partially supported by the Defense Advanced Research Projects
Agency (DARPA) under grants HR0011-05-1-0057 and HR0011-09-0065 as well as the National Science
Foundation (NSF) under grant DBI-0820624.

References

1. Alexandroff, P., Hopf, H.: Topologie I. Springer, Berlin (1935)
2. Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. IEEE

Trans. Vis. Comput. Graph. 16, 1251–1260 (2010)
3. Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. Comput. Syst. Sci. 48, 384–409

(1994)
4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry. Algorithms and

Applications, 3rd edn. Springer, Berlin (2008)
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