
344 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. 2, NO. 4, OCTOBER 2005

Dual Constrained Single Machine Sequencing to
Minimize Total Weighted Completion Time

Yunpeng Pan and Leyuan Shi, Member, IEEE

Abstract—We study a single-machine sequencing problem with
both release dates and deadlines to minimize the total weighted
completion time. We propose a branch-and-bound algorithm for
this problem. The algorithm exploits an effective lower bound and
a dynamic programming dominance technique. As a byproduct of
the lower bound, we have developed a new algorithm for the gener-
alized isotonic regression problem; the algorithm can also be used
as an (log)-time timetabling routine in earliness–tardiness
scheduling. Extensive computational experiments indicate that the
proposed branch-and-bound algorithm competes favorably with a
dynamic programming procedure.

Note to Practitioners—Real-life production systems usually
involve multiple machines and resources. The configurations
of such systems may be complex and subject to change over
time. Therefore, model-based solution approaches, which aim
to solve scheduling problems for specific configurations, will in-
evitably run into difficulties. By contrast, decomposition methods
are much more expressive and extensible. The single-machine
problem and its solution procedure studied in this paper will prove
useful to a decomposition method that decomposes multiple-
machine, multiple-resource scheduling problems into a number
of single-machine problems. The total weighted completion time
objective is relevant to production environments where inventory
levels and manufacturing cycle times are key concerns. Future
research can be pursued along two directions. First, it seems to be
necessary to further generalize the problem to consider also nega-
tive job weights. Second, the solution procedure developed here is
ready to be incorporated into a machine-oriented decomposition
method such as the shifting bottleneck procedure.

Index Terms—Branch and bound, isotonic regression, schedul-
ing, timetabling, weighted completion time (WCT).

I. INTRODUCTION

SCHEDULING problems with the total weighted time
completion objective first caught our attention during an

industrial project to develop algorithms for scheduling job
shop operations. In the job shop environment that we mod-
eled, the central managerial goal is to sustain production with
the minimum level of work-in-process and finished goods in-
ventories while delivering jobs on time. Ideally, earliness–

Manuscript received August 31, 2004; revised November 26, 2004 and Jan-
uary 30, 2005. This paper was recommended for publication by Associate Editor
C. Teo and Editor N. Viswanadham upon evaluation of the reviewers’ com-
ments.This work was supported in part by the National Science Foundation
under Grant DMI-0100220, Grant DMI-0217924, and Grant DMI-0431227, in
part by the Air Force Office of Scientific Research under Grant FA9550-04-1-
0179, and in part by John Deere Horicon Works.

The authors are with the Department of Industrial & Systems Engi-
neering, University of Wisconsin-Madison, Madison, WI 53706 USA (e-mail:
pany@cae.wisc.edu; leyuan@engr.wisc.edu).

Digital Object Identifier 10.1109/TASE.2005.853474

tardiness objectives would be desirable for this kind of ap-
plication, but no practical solution procedure was foreseeable.
Therefore, we introduced a more computationally tractable
alternative called the job shop total inventory minimization
problem (JSTIMP) [32].

As a critical step in developing a solution procedure for
JSTIMP, we needed to solve a single-machine sequencing
problem that minimizes the total weighted time completion
objective, subject to dual constraints, i.e., both release dates and
deadlines. This problem also serves as a relaxation for other job
shop problems with flow time or completion time objectives.
We formalize the problem next.

An instance of our sequencing problem comprises 4-tu-
ples: , , where desig-
nates jobs to be scheduled on a machine, and , ,

, and are the release date, processing
time, deadline, and associated weight, respectively. Job
is ready to start at time ; once started, the job will occupy
the machine exclusively for the duration of without inter-
ruption. The completion time of job is denoted by , and
the collection, , is called a schedule. A schedule
that satisfies all the release dates and deadlines is said to be
feasible. The objective is to find a feasible schedule that min-
imizes the objective function . This problem, de-
noted by with the three-field notation [19],
can be stated mathematically as follows:

(1)

(2)

or (3)

Even the problem of satisfying constraints (1)–(3) is
NP-complete [16], but it can be efficiently dealt with in practice
[8] and [27]. In the literature, only some special cases of the
weighted completion time (WCT) have been considered thus
far. has been studied by numerous authors,
including [14], [29], [30], [33]. Ahmadi and Bagchi [1] and
Chand and Schneeberger [10] investigate enumerative proce-
dures for , where is the
earliness. Bianco and Ricciardelli [7], Hariri and Potts [20],
and Belouadah et al. [6] examine . Dell’Amico
et al. [13] extend the job splitting idea of Posner [29] and
apply it to the static problem with general weights, while the
same problem was also studied by Bard et al. [5]. None of
the above authors consider both release dates and deadlines.

1545-5955/$20.00 © 2005 IEEE

PAN AND SHI: DUAL CONSTRAINED SINGLE MACHINE SEQUENCING TO MINIMIZE TOTAL WCT 345

While they model the dual-constrained situation through a flow
shop problem, Ahmadi and Bagchi [2] nevertheless assume
nonconstraining release dates in their solution approach. Only
recently has a solution procedure for the general problem, i.e.,
WCT, been proposed by Gélinas and Soumis [18] who use
dynamic programming and consider general weights. Apart
from [18], there are few relevant results for WCT. Neither lower
bounds nor branch-and-bound algorithms have been proposed
for WCT in the scheduling literature.

In this paper, we propose a branch-and-bound algorithm for
solving this problem. In Section II, we derive a new lower bound
and then reduce the task of computing the lower bound to one of
solving a linear programming problem that has special structure.
The problem is shown to be an isotone optimization problem.
In Section III, we discuss the preliminaries of isotone optimiza-
tion problems and propose a new algorithm for the generalized
isotonic regression problem with immediate application to our
lower bound calculation. Section IV discusses dominance con-
ditions and a new dynamic programming dominance technique.
The branch-and-bound algorithm is presented in Section V and
then compared with a dynamic programming algorithm through
extensive computational experiments in Section VI. Some con-
cluding remarks are given in Section VII. We begin by deriving
a lower bound.

II. LOWER BOUND

Our lower bounding technique utilizes Lagrangian relaxation
and the multiplier adjustment method first introduced by van
Wassenhove [39]. This lower bound can be viewed as a synthesis
and extension of those of Hariri and Potts [20] and Potts and van
Wassenhove [30].

A. Derivation

Two notions are necessary for our subsequent discussion.
First, a job sequence is called a nondelay sequence if it
implies a nondelay schedule, where the machine is never kept
idle while some job is waiting to be processed [4]. It should
be noted that is generated using only the release dates and
processing times, and therefore, may violate some of the
deadlines. This does not cause any problems since merely
serves as a stepping stone toward computing the lower bound.
Renumber the jobs such that . Second, we adopt
the notion of block [23]. Job is called the last job of a block
if for . Let be a set
of jobs in adjacent positions of . is called a block if (i) job

(provided that) and job are the last jobs of two
consecutive blocks, and (ii) job is not the last job of a block
for . Thus, the nondelay sequence can be
partitioned into a number of blocks.

Omitting the deadlines in WCT yields . The
nondelay sequence is optimal for if the fol-
lowing condition by Hariri and Potts [20] is satisfied.

Proposition 1: The nondelay sequence is optimal for
if the jobs within each block

are sequenced in nonincreasing order of .
To derive a lower bound for our problem, we perform a La-

grangian relaxation of each release date constraint (1) and each

deadline constraint (2). The resulting Lagrangian problem is de-
noted by , and the value of the Lagrangian is

where and are vectors
of nonnegative multipliers. Note that we have purposefully re-
tained the release date constraints (1) in .

It is easy to see that with and fixed, (after ignoring
the constant terms in the objective function) is of the same form
as , but each job has a new weight

(4)

For any choice of multipliers satisfying and ,
is a lower bound on the optimal value of our problem

WCT.
To find proper values for our multipliers, we proceed

as follows. First, we can immediately rule out those mul-
tiplier values that cause any to be negative, as it is
shown next that their values are always domi-
nated. Consider a particular choice of multipliers denoted
by such that for some

. Now define new multipliers that are identical
to except that . By construction,

, and the new multipliers are valid
since . Also, for any fixed
schedule that satisfies (1) and (3), redefining
results in an increase of (note that ,

). Minimize over all such schedules and
we have . This is repeated until all .

Second, we impose an additional restriction on the multipliers
so that the Lagrangian problem can be solved easily by applying
Proposition 1. Assume that is a given nondelay sequence with

blocks, , and that the jobs are renumbered such
that . Based on the above two considerations, we
restrict our choice of multipliers to those that satisfy

(5)

(6)

for each block . If the multipliers and are
chosen as such, then by Proposition 1, the nondelay sequence
is optimal for the Lagrangian problem, with being
an optimal schedule. Hence, we have

To get a lower bound as tight as possible, we further require
that be maximized while and satisfy (5) and (6).
Let be the contribution of the jobs in block to .
Maximizing is then equivalent to maximizing each

346 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. 2, NO. 4, OCTOBER 2005

independently, which can be accomplished by solving the fol-
lowing maximization problem :

It is interesting to note that is a linear program (LP) in
which the decision variables are the multipliers , ,

(ignore the constant terms in). The solution of
degenerates to triviality for the special cases where only

release dates or only deadlines are considered, as in [30] and
[20].

Let , , denote an optimal solution to .
We define the following lower bound for WCT:

where the dependency of LBPS on is emphasized. If is
unbounded for some , then the bound , indicating
that WCT is infeasible. Otherwise, LBPS is a valid lower bound,
since is a valid lower bound.

Because all the blocks receive the same treatment, we here-
after assume, without loss of generality, that comprises only
one block with , , . Accordingly, we
will drop all subscripts for indexing blocks; e.g., and
become and , respectively.

LBPS can be improved using a tightening technique sug-
gested in [20]. Supposed that , , is an op-
timal solution to . We sort the multipliers ,
in ascending order to get , . Define ,

, . Then, for all , and
can be rewritten as

Note that the term in the above equation
is a lower bound on , because the completion times

always satisfy the release date constraints. To obtain a
tighter lower bound, we solve an auxiliary problem of the form

, where there are jobs with unit weights.
This problem is also known to be NP-hard, but its preemptive
version is solved by the shortest-remaining-processing-time
rule [4], which permits job preemption. Suppose that the min-
imum objective value of the preemptive problem is ,
then

Therefore, is a better lower bound on
than . Define

Then, . As a result, we have a strengthened lower bound,
which we refer to as .

B. Three Nondelay Sequences

We propose to consider three nonpreemptive
heuristics, all of which can potentially be employed to generate
nondelay sequences for lower bounding purposes. The first
two are generic ones taken from the literature; they are the
earliest-due-date (EDD) rule and the weighted-shortest-pro-
cessing-time (WSPT) rule. The third is a new heuristic that we
developed specifically for WCT. It is outlined next.

We refer to this heuristic as COMP (for “composite”). Each
job is associated with a number .
If a job arrives at a time when the machine is busy, the job be-
comes a waiting job. Suppose that a job needs to be selected for
processing at time when the machine is free. If all jobs have
already arrived (i.e., for all), we sequence those jobs
that have not been processed using Smith’s backward sched-
uling rule [33]. There is a chance that at this time , some of the
waiting jobs are bound to be overdue no matter how they are se-
quenced. To account for this situation, we modify Smith’s rule
by pretending that deadlines can be extended whenever neces-
sary during the backward scheduling process. On the other hand,
if at time not all jobs have arrived, we select a job for pro-
cessing according to the following rule. Let be the set of all
the jobs currently waiting and let . If

, then set such that ;
otherwise, set such that . This
procedure can be implemented to run in time if
and are implemented using two heaps (or priority queues)
and a bitmap of elements is used to indicate whether a job has
already been processed at time . Like EDD and WSPT, COMP
generates a nondelay sequence that respects the release dates,
but may violate some deadlines. As stated before, this does not
pose any problems since the sole purpose of is for computing
the lower bound LBPS.

The heuristic COMP is designed to strike a good balance be-
tween minimizing the objective function and reducing deadline
violation. Its superior performance is later confirmed by exper-
imentation (Section VI-B), in relation to the performance of
EDD and WSPT.

C. Transformation of the LP

The remaining issue concerning the lower bound calculation
is how to solve the LP efficiently. Before developing a solution
procedure, we apply a change of variable based on the following
property ofthe LP.

Theorem 2: If the LP is bounded, then there exists an optimal
solution that satisfies

(7)

PAN AND SHI: DUAL CONSTRAINED SINGLE MACHINE SEQUENCING TO MINIMIZE TOTAL WCT 347

Fig. 1. Convexity of f (x). (a) �d � C � 0. (b) �d � C < 0.

Otherwise, for any given , there exists a solution that satisfies
(7) and yields an objective value greater than .

Proof: It suffices to show that from any given feasible so-
lution , , with , for
some , we can construct a new solution of the required form
without decreasing the objective value. Because
for all , it is easily verified that the construction below is valid

for .
Theorem 2 enables us to perform a change of variable as fol-

lows: For each , define a new variable (recall that
). The pair of variables and is then

replaced by the single variable using ,
, where if and oth-

erwise. As a result, we get

where

(8)

and

(9)

is a continuous, piecewise-linear function of with a single
kink point at . By definition, is always
nonnegative, whereas can be negative since the given
may violate the deadline . Moreover, is convex since

(see Fig. 1). It should be noted that
Problem (8) had an additional constraint ; we dropped
this constraint because doing so does not change the optimal
value (this can be easily shown using the fact that

for all). To simplify the notation in (9), we define
, , and . Then,

(9) becomes

(10)

Fig. 2. Segments of a solution to the isotone optimization problems.

with . We state without proof the following obvious
property of Problem (8) with defined by (10).

Proposition 3: Problem (8) is bounded, i.e., , if and
only if and for all .

In fact, the additivity of , convexity of , and chain
constraints in Problem (8) together charac-
terize an extensively researched class of problems called the
isotone optimization problems, which find applications in op-
erations research, statistics, and image processing. In particular,
if the functions , are assumed to be general
convex functions, Problem (8) is called the generalized isotonic
regression problem [3].

III. SOLVING ISOTONE OPTIMIZATION PROBLEMS

A. Preliminaries

The isotone optimization problems have been studied by nu-
merous authors (see [3] for a comprehensive list of references).
Thus far, the best and most general result is due to Ahuja
and Orlin [3], who study the generalized isotonic regression
problem, where each is an arbitrary convex function. It
is also assumed that (i) each can be evaluated in
time for a given , and that (ii) the optimal values of all
lie on the interval (this implies that the minimization
problem has to be bounded). Let and let be a
tolerance. These authors improve the running
time of the pool adjacent violators (PAV) algorithm [31] to

using a scaling technique.
The scaling PAV algorithm [3] can be adapted to solve

Problem (8), where is specified by (10) with .
We first determine whether Problem (8) is bounded by verifying
the conditions of Proposition 3 in time. A mapping is
then used to modify the problem so that all are mapped onto
the integers . For the modified problem, we can set

and fix to any value less than 1; thus, the algorithm
runs in time. (This mapping is suggested in [3]
for the special case when , but remains valid for our
more general problem.) A serious handicap of this approach,
however, is that it requires sorting, which enlarges the hidden
constant in the big- time bound.

To facilitate our subsequent discussion, we introduce the no-
tion of a segment. For any vector , a segment is
defined as a maximal subset of consecutive indexes

such that , where is
called the level. For example, Fig. 2 shows a feasible solution

that comprises segments, , with the
corresponding levels being .

348 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. 2, NO. 4, OCTOBER 2005

Fig. 3. Continuous, piecewise-linear, convex function with more than one kink
point.

B. New Algorithm

In order to solve Problem (8) more efficiently, we propose a
new algorithm that is different than the PAV algorithm. Unlike
the latter, which is a dual method from a linear programming
perspective and achieves primal feasibility only upon termina-
tion [9], the proposed algorithm is a primal method where the
iterates always maintain primal feasibility (i.e., the chain con-
straints are satisfied during every iteration). The proposed al-
gorithm uses fairly simple data structure and can be coded with
very little overhead (hence, the hidden constant in the big- no-
tation is very small). Another significant advantage of the pro-
posed algorithm is that it easily generalizes to cases where there
are any number of kink points for , as depicted in Fig. 3.
By contrast, the time bound of Ahuja and Orlin’s algorithm de-
teriorates under such circumstances, because the cost of eval-
uating at an is no longer (i.e., assumption (i)
of Ahuja and Orlin is violated), but generally depends on the
number of kink points.

Assume that each is a general convex function and
that is a lower bound on the optimal value of (by default,

). For any pair of and with , define a
subproblem of Problem (8) as

Hence, . The proposed algorithm sequentially solves a
series of subproblems with the th one being . Initially, we
set . Now, assume that the th
subproblem is already solved with set to appro-
priate values, and ; further, suppose
that form segments denoted by with
levels . For convenience, we initially also set

, . To solve the th subproblem, we first create
a new segment using ; hence, set , ,
and . Clearly, the feasibility is satisfied. We then at-
tempt to merge the last two segments, i.e., and . To
this end, a method of choice is applied to find an that min-
imizes the single-variable convex function over
the interval ; we update the current solution by setting

for all . Two cases arise: Either it holds that
, in which case the updated solution optimally solves

the th subproblem; or it holds that , in which case
segments and merge into one. In the latter case, we set

, . At this point, if , then the
th subproblem is solved (may be unbounded); otherwise, we

once again attempt to merge and . The th subproblem
will be solved after a finite number of mergers since every time
two segments merge, decreases by one. Because the addition
of one more variable may trigger a cascade of mergers and
the objective value associated with an iterate is
nonincreasing, we call the proposed algorithm the Cascading
Descent algorithm. An algorithmic description of this algorithm
is given below.

Algorithm. Cascading Descent
Step 0) , , , .
Step 1) Set . If , then go to 5.
Step 2) Create a new segment: Set , ,

.
Step 3) Apply any method of choice to find an that

minimizes over .
If , set and go to 1.

Step 4) Merge two segments: Set ,
. If , go to 1; otherwise, go to

3.
Step 5) Postprocessing: For each segment

and for each , set . Compute
. STOP.

Lemma 4: Let and be optimal
solutions to subproblems and , respectively. If

, then the concatenated solution is optimal to
subproblem .

Proof: By dropping the constraint in sub-
problem , we obtain a relaxed problem, which then separates
into and . Hence, is a valid lower bound for

. Since attains this lower bound and is feasible,
it must be optimal.

Lemma 5: Suppose that and
are optimal solutions to subprob-

lems and , respectively. If , then subproblem
has an optimal solution of the form .

Proof: Refer to Lemma 1 in [3].
Theorem 6: The proposed Cascading Descent algorithm is

correct.
Proof: We show through mathematical induction that (I)

after the th iteration , the algorithm correctly
solves subproblem . Furthermore, we show that (II) for

, the solution, , , optimally solves sub-
problem . The base case when is easily verified.

Now, assume that the above Part I and Part II hold after the
th iteration. Consider the first time when Step 3) is exe-

cuted for this particular value (i.e., when). By defi-
nition, minimizes over . In the first
case, we have . We claim that also minimizes
over . For the sake of drawing contradiction, assume
that there exists such that . By con-
vexity, we have

. Replacing with in the right-hand
side yields , which is a contradiction to the

PAN AND SHI: DUAL CONSTRAINED SINGLE MACHINE SEQUENCING TO MINIMIZE TOTAL WCT 349

fact that minimizes over . Hence, opti-
mally solves subproblem . Noting also the induction
assumption, it follows from Lemma 4 that subproblem is op-
timally solved. Part II evidently follows.

In the second case, we have and Step 4) is there-
fore executed to merge and . The induction assumption
states that before merger, the solution, , , op-
timally solves . From Lemma 5, it can be seen that

subproblem still has single-valued optimal solution
even after merger. This ensures that the same argument can be
used to analyze subsequent executions of Steps 3) and 4). Since
there can be only a finite number of mergers, the th iteration
eventually will terminate. This completes the induction step of
the proof.

A small technicality in the algorithm is the use of the auxil-
iary segment with level . If and in
Step 3) of the algorithm, a merger of segments and will
occur. This means that all , should take on the value
of . However, this does not necessarily imply that
since the single-variable function could be asymp-
totically a horizontal line.

We now turn to the focus of this subsection, which is to spe-
cialize the above algorithm for situations where is not
only convex, but also continuous, piecewise linear. Clearly, the
single-variable function in Step 3), which
is the summation of a finite number of such functions, is also a
continuous, piecewise-linear convex function. For this type of
function, it is easy to verify the following fact.

Lemma 7: Let be a continuous, piecewise-linear func-
tion on interval (could be). Let and

denote the left-hand and right-hand derivatives, respec-
tively. Then, the minimum of occurs in three different sce-
narios: 1) and and ; 2)

; 3) .
Because the values of and only change at kink

points, it suffices to restrict our attention to these points. Here,
it is assumed that each has kink points denoted by

; let . Note that for kink point ,
the left-hand derivative is the slope of the line segment
to the left of this point, and the right-hand derivative is
the slope of the line segment to the right of this point. Hence, all
the left-hand and right-hand derivatives are known beforehand.

The following specialized cascading descent algorithm keeps
track of kink points using a heap (also called a priority queue)
data structure. Let the heap be denoted by . An element in is
a kink point (;). Our algorithm
performs three types of operations on , i.e., INSERT (insert an
element into), MIN (return the element with the smallest key
value), and DELETE-MIN (remove from the element with the
smallest key value). Because there is no need to merge two heaps
into a new heap, such a heap data structure can be implemented
efficiently as a complete binary tree stored in an array object (see
[12] for more details). By contrast, heaps that support merge op-
erations are called mergeable heaps, whose implementations are
much more tedious and inefficient (for examples of mergeable
heap implementations, see binomial heap and Fibonacci heap
in [12] and leftist heap in [35]).

In the following algorithm, represents the right-hand
derivative of the function at .

Algorithm. Specialized Cascading Descent
Step 0) Initialization: , , , ,

, .
Step 1) Set . If , then go to 5.
Step 2) Create a new segment: Set , ,

, . INSERT each
kink point into the heap .

Step 3) Set .
While do

• If , set and terminate the while-do
loop; otherwise, let be the kink point that corre-
sponds to .

• If , set ,
; otherwise, set and

terminate the while-do loop.
• DELETE-MIN .

If , set and go to 1.
Step 4) Merge two segments: Set ,

, . If
, go to 1; otherwise, go to 3.

Step 5) Postprocessing: For each segment
and for each , set . Compute

. STOP.

To show that this specialized algorithm is correct, we only
need to argue that Step 3) correctly solves the problem of min-
imizing over interval . When a new seg-
ment is created in Step 2), the level is set to .
In the subsequent execution of Step 3), we start with

, and gradually
increase (“hopping” on kink points) until one of the following
two scenarios occurs: 1) for the first time or 2)

is reached. If scenario 1) occurs, then
holds either at (i.e., at the left boundary), or at some
kink point (hence, for some
sufficiently small); by Lemma 7, minimizes
over interval . Note that the proof so far covers the tie
situation when 1) and 2) hold simultaneously. Now, if scenario
2) occurs and , then , following from the
fact ; hence, Lemma 7 can be invoked once
again. Using the same argument, we can also show that Step 3)
correctly solves over interval for a seg-
ment resulting from a merger.

In Step 3), as passes through kink points, these points are
removed from and will never be used again; this simplifies the
problem for later iterations. It is also worth pointing out that the
kink points that belong to functions ,
do not interfere with those of segment , even though all kink
points are stored in the same heap. This is because all the kink
points associated with a segment are always above the current
level of the segment; i.e., during the execution of Step 3), we
have for any in with .

Theorem 8: The specialized Cascading Descent algorithm
runs in time.

350 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. 2, NO. 4, OCTOBER 2005

Proof: Note that there are INSERTs and consequently,
no more than DELETE-MINs. Since both types of operations
take time on a heap with at most elements [12], the
total cost of these operations is time. Also, there are

MIN operations, each taking time. The remaining
algorithmic steps can be completed in time.

As an immediate application of the specialized algorithm, we
can use it to solve, in time, the isotonic median re-
gression problem, where for all .
This time bound is an improvement over that of Pardalos et al.
[28], which is . Also, it is a significant advantage
from a practical standpoint that our algorithm does not require
merging two heaps (or balanced binary search trees in [28]). Fur-
thermore, it is difficult to adapt Ahuja and Orlin’s scaling algo-
rithm [3] to this problem and achieve a competitive time bound.
The difficulty stems from the fact cannot be evaluated in

time, with the exception when for all (Ahuja and
Orlin indeed propose an adaptation for this special case with an

time bound).
Now, with the specialized algorithm in hand, we can compute

the lower bound LBPS in time. Note that in this par-
ticular application, the functions , are de-
fined by (10). Therefore, for all and . The
total cost of computing LBPS consists of two parts. One part is
for generating the nondelay sequence , which takes
time. The other part is the cost of executing the specialized al-
gorithm for the blocks . The suggested time bound
follows from the fact that

IV. DOMINANCE CONDITIONS AND ELIMINATION

TECHNIQUE

We made some straightforward extensions of those in [6] and
[20], which deal with . It was also noted that there
is no need to consider a node that represents an infeasible in-
stance.

A. Dominance Conditions

In our dominance theorems, we implicitly assume that the
problem is feasible. However, these theorems can be applied
even if feasibility is undetermined, since nothing is lost if the
problem turns out to be infeasible. For a sequence , the notation

denotes the job in the th position of the sequence. The first
two of the following theorems extend the results of Bianco and
Ricciardelli [7] originally proposed for , so as to
take into account the deadlines . The proofs of these theorems
are straightforward and can be found in Pan [26].

Theorem 9: If and
, then there exists an optimal solution with job

preceding job for , and .
Theorem 10: If , then for some

optimal sequence , for and .
Theorem 11: Let be any feasible sequence with job

and job in the initial two positions and let be the
result of interchanging job and job in the sequence . If is

feasible and and ,
then is dominated.

Theorem 11 follows from the principle of optimality. The idea
is effectively used in [20] and [30] for their respective problems.
The proof is straightforward and requires no comment.

Unlike the dominance conditions presented thus far, the next
one does not depend on the objective function. Rather, it is
simply a feasibility check.

Theorem 12: Job can be assigned to the first position only
if there exists a feasible sequence with .

The feasibility of the subproblem with job fixed in the first
position can be determined by solving a related problem of min-
imizing the maximum lateness. The following corollary is not
as strong as Theorem 12 but can be verified quickly.

Corollary 13: Consider the subproblem in which job is
fixed in the first position and the objective is to minimize the
maximum lateness. If an optimal preemptive solution yields a
positive objective value, then job cannot be in the first position.

B. Elimination by Recursion

The above dominance conditions are not very strong after so
much adaptation to our dual-constrained problem. As a remedy,
we developed an elimination technique. It was first tried on the
static problem, since at the time, we had already implemented
Posner’s [29] branch-and-bound algorithm for to
be used as a module in our own algorithm for WCT, and incor-
porating this new feature took little effort. To our surprise, the
improved algorithm doubled the size of problems that can be
solved; problems with up to 120 jobs can now be solved effi-
ciently [25]. In the following, we discuss in detail how to apply
this technique to WCT. We hope to advocate the use of this tech-
nique through this example so that it will eventually become as
a standardized element as dominance conditions to special-pur-
pose branch-and-bound algorithms.

A search tree node corresponds to a feasible partial sequence
in which jobs in the first positions are fixed. For all ,

the completion time of job is also computed. We define
as the set of scheduled jobs and as the set

of unscheduled jobs. Under the partial sequence , no jobs in
can start before time . If jobs in
can be resequenced such that they finish by time , observe their
respective release dates and deadlines, and make a total contri-
bution to the objective function smaller than , then
the node can be eliminated from further consideration. This is a
particular application of the well-known principle of optimality
(see [15] for a general discussion of this principle applied to
branch-and-bound algorithms). Our innovation here, however,
is to provide a method to exploit this powerful property to a
much greater extent than what was achieved in the past.

We first recognize that the embedded problem of rese-
quencing jobs in is, in fact, an instance of WCT, the exact
problem that we set out to solve. More precisely, the instance
consists of jobs , , each of which has a release
date , a deadline , and a weight . We then
proceed to solve this embedded problem using the same algo-
rithm developed for WCT. The node is eliminated if we can
disprove the optimality of the partial sequence with respect
to the embedded problem.

PAN AND SHI: DUAL CONSTRAINED SINGLE MACHINE SEQUENCING TO MINIMIZE TOTAL WCT 351

What we described above is essentially a recursive process.
Several measures are taken so as to prevent excessive stalling
inside a recursion. First, the recursion depth is limited to one;
i.e., the embedded problem is solved by a stripped-down ver-
sion of the branch-and-bound algorithm that does not carry out
any further recursion. Second, the recursion returns once an
objective value less than is attained for the em-
bedded problem. Third, the recursion returns once the execution
inside the recursion exceeds a preset CPU time limit. Finally,
we define a parameter called the retrospect depth. If ,
then the embedded problem involves all those jobs; otherwise,
only the most recently fixed jobs are involved,
and the release date of job is set to

. Clearly, larger gives us a better chance of
eliminating a node, but it also means longer computation time
required for solving the subproblem.

V. BRANCH-AND-BOUND ALGORITHM

In this section, we present a complete branch-and-bound al-
gorithm for solving WCT. The lower bounds developed in Sec-
tion II are employed in this algorithm.

Algorithm. PS
Step 0) Determine the feasibility of WCT by solving

the associated problem. If the optimal
value is positive (meaning that WCT is

infeasible), then STOP. Otherwise, derive prece-
dence relations between jobs, tighten the release
dates and the deadlines , and initialize the
root node.

Step 1) Find the node with the smallest lower bound. If the
lower bound meets the upper bound or the CPU
time or memory usage reaches a preset limit, then
STOP. Otherwise, find a feasible sequence in this
node. If no feasible sequence exists, discard this
node and repeat Step 1); otherwise, improve the
feasible sequence found using an iterative pair-
wise interchange heuristic.

Step 2) Find the set of unscheduled jobs that can be put
in position . Create a new node for each job
in .

Step 3) Initialize each of the new nodes and, if not fath-
omed, add it to the search tree. Go to 1.

We discuss the algorithmic details step by step. Preprocessing
is carried out in Step 0). First, to determine the feasibility of
WCT, we solve the problem (where the due dates

and) using a procedure
suggested in [27], which improves upon Carlier’s algorithm [8].
This procedure is adapted such that it exits as soon as it finds a
sequence with (in this case, WCT is feasible). Next,
if the algorithm does not terminate due to problem infeasibility,
precedence relations between jobs are derived using the simple
fact that if then job must precede job . Mean-
while, additional precedence relations are deduced from known

ones through an updating method described in [30]. Also, we
use a method in [24] to tighten the constraints: To increase the
release date of job , we impose the requirement that job
must start exactly at time , and if this results in infeasibility,
we set the new release date to . Similarly, we may be able
to decrease the deadline . This process is repeated until dates
cannot be tightened any further.

In Step 1), we seek a feasible sequence (again using the pro-
cedure in [27]). If no feasible sequence can be found by the pro-
cedure, the subproblem represented by this node is infeasible
and the node is therefore fathomed. If a feasible sequence is
indeed found, we run a standard iterative pairwise interchange
heuristic to improve the sequence by way of swapping job pairs.
This helps attain a tight upper bound quickly, thereby limiting
the size of the search tree.

During the branching in Step 2), is the set of jobs that can
be put in position , i.e., the first free position. To keep
the cardinality of small, we first use the fact that only active
schedules need to be considered (Theorem 10). Moreover, an
unscheduled job does not belong to if putting job in po-
sition would violate the precedence relations derived in
Step 0), or if putting job and another unscheduled job in posi-
tions and in that order would cause job to violate
its deadline (Theorem 12). The set is further reduced using
Theorems 9 and 11 and Corollary 13. During the verification of
the dominance condition given by Corollary 13, the preemptive
EDD rule is applied to the 10 most imminent jobs (we arrived at
this number through experimentation). In addition, as the com-
pletion times of these jobs are determined by the preemptive
EDD rule, they are checked against the deadlines, and there is
no need to continue as soon as any deadline is violated.

Node initialization is carried out in Steps 0) and 3). Before
the initialization begins, it is assumed that jobs in the first po-
sitions are fixed (e.g., in Step 0) and that these jobs are
specified by a partial sequence . Let be the set of unsched-
uled jobs. For each job , its effective release date—the
earliest time when the job can start under the partial sequence

—is . If all , are equal, then the
node represents an instance of the static problem
and is subsequently solved using the branch-and-bound algo-
rithm of Posner [29]; the node is then fathomed. Otherwise, we
generate a nondelay sequence using the dispatching heuristic
of our choosing (to be discussed in Section VI-B) and in turn
calculate the lower bounds LBPS and . The node is fath-
omed if either of the lower bounds is greater than or equal to
the upper bound. If the sequence is feasible and leads to a
better upper bound, then the same iterative pairwise interchange
heuristic as mentioned before is applied to , in hope of finding
additional improvement. Finally, the node is examined using the
node elimination technique of Section IV-B, and it is added to
the search tree afterwards, provided that it is not fathomed. It
should be noted that during the elimination test, the embedded
problem as defined in Section IV-B is solved as a recursion
using a stripped-down version of algorithm PS.

In the stripped-down version of algorithm PS, no further re-
cursion is invoked and no attempt is made to derive any prece-
dence relations or to tighten release dates or deadlines. More-
over, in Step 1), we skip the feasibility check and the iterative

352 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. 2, NO. 4, OCTOBER 2005

pairwise interchange heuristic. To improve the detection of in-
feasibility, Corollary 13 is applied with regard to all the un-
scheduled jobs at a node. This also ensures that in the branching
step, any job in the set will satisfy its deadline, provided that
it is scheduled immediately in position .

The value of the parameter (see Section IV-B) is found
by experimentation. Preliminary experiments indicate that the
computational results are quite insensitive to the choice of the

value as long as is between 8 and 15. The best performance
is achieved when is set to 10, which is the parameter value
assumed in the subsequent numerical experiments (Section VI).

VI. COMPUTATIONAL RESULTS

We coded both our branch-and-bound algorithm (PS) and the
dynamic programming method (GS) [18] in Visual C++ and ran
them on a Pentium III 733 personal computer. The version of GS
that we implemented exploits the fact that all job weights are
nonnegative, and it uses a large hash table consisting of 500 000
entries to minimize the possibility of a collision. For both pro-
cedures, we set the maximum CPU time allowed on each test
problem to 120 s. With regard to the storage limit, PS abandons
a particular test problem if there are more than 100 000 unex-
plored nodes, and GS terminates if more than 500 000 labels
are required or the number of states exceeds 200 000 for states
of any given cardinality. Next, we explain the test problems used
in our experiments.

A. Test Problems

Three sets of problems were created. Infeasible ones were
ignored because they pose little challenge. Let be an
integer uniform distribution on interval . For problem set
(I), we took and (see [20], [30]).
The release dates were generated from ,
where the parameter . To generate the deadlines,
we followed two steps. First, we computed the earliest job
completion times (denoted by) under the first-in–first-out
(FIFO) rule, which only takes into account the release dates
and processing times. Then, we set the deadlines: For all ,
set , where with the
parameter . The deadlines, together with the
release dates, processing times, and weights, defined a feasible
problem. Ten problems were created for each combination
of the problem size , , and . This
problem set was specifically designed to test the algorithms’
responses to different input data characteristics. In addition
to varying problem size, the distribution of the release dates
was controled by the parameter . Imagine that there are two
systems that handle comparable workloads, but one with

and the other with . On average, all jobs will have
arrived by the time when half of them have been finished in
the first system. By contrast, the workload is distributed more
evenly over time in the second system; jobs arrive within a
time interval that is twice as large as that of the first system.
Clearly, jobs in the first system are bound to experience longer
waiting time, and their time windows therefore ought to be
larger in order to have a feasible schedule. Finally, it should
be pointed out that we have chosen to only report on the two

values to avoid an excess of computational
results—especially those on easy instances, where deadlines
are either very constraining or not constraining at all. The two
chosen values are most representative of the characteristics of
nontrivial instances.

Problem set (II) was created in a similar fashion as in [18]. We
only describe the parameter settings below and refer the reader
to [18] for more details. The processing times and weights were
generated from and , respectively. Let be
a parameter that controls the average of time window widths

. took on values in {150, 200, 250, 300, 400, 800},
covering a greater range of time window widths than in [18]. Ten
problems were generated for each combination of the problem
size and . We used this set of problems
to study the sensitivity of the solution procedures to increase in
the time window width.

Problem set (III) consists of problems in which release dates
and deadlines are uncorrelated. To generate the release dates,
processing times, and weights, we followed the same scheme
as in problem set (I). The deadlines were initially set to
random samples of , where
is the slackness parameter. Then, we solved the associated

problem with respect to the obtained , , and
using the procedure in [27]. Let denote the minimum

value. If the problem instance was infeasible (i.e.,), we
extended all the deadlines of WCT by setting
for all (thus, the modified instance became feasible). Clearly,
the release dates and deadlines remain uncorrelated. For each
combination of the problem size , , and

, ten problem instances were created.

B. Choice of Nondelay Sequence

Our first experiment compares the performance of EDD,
WSPT, and COMP, discussed in Section II-B for choosing the
nondelay sequence . Combining each of the heuristics with
the PS algorithm results in three variants: PS-EDD, PS-WSPT,
and PS-COMP. Problem set (I) is used in this experiment. For
each combination of the values of , , and , Table I lists
the number of unsolved problems, the mean and maximum
solution times in seconds, and the mean and maximum numbers
of nodes. Because the calculation of means and maximums
takes into account both solved and unsolved problems, their
values should be interpreted as lower bounds on the true values
if there are unsolved problems. When an algorithm attempts
to solve a difficult problem, it may halt prematurely due to
storage overflow, which quite often occurs long before the CPU
time limit is reached. This can make the mean values and the
maximum values look better, which is misleading. For this
reason, means and maximums are reported only when over half
of the test problems for any given parameter setting are solved;
otherwise, they are replaced by “—” (this rule will be followed
in our subsequent experiments as well). The performance of
PS-EDD turns out to be rather poor; the computational results
for this algorithm are therefore omitted. The results in Table I
indicate the overall dominance of PS-COMP over PS-WSPT.
Therefore, PS-COMP merits further investigation, and the PS
algorithm involved in our other experiments should be taken as
this particular variant.

PAN AND SHI: DUAL CONSTRAINED SINGLE MACHINE SEQUENCING TO MINIMIZE TOTAL WCT 353

TABLE I
COMPARISON OF PS-WSPT VERSUS PS-COMP USING PROBLEM SET (I)

TABLE II
RESULTS OF GS VERSUS PS ON PROBLEM SET (I)

C. Comparative Study of GS Versus PS

In our second experiment, we compare the performance of
GS versus our proposed algorithm PS using problem set (I). The
average time window width is measured by ,
where stands for the sample mean of a random variable

. This ratio is independent of the time unit in which the input
data is given.

The results in Table II indicate that PS performs consistently
well over the entire set of 400 problems. PS is able to solve all
the test problems to optimality, including all the 50-job prob-

354 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. 2, NO. 4, OCTOBER 2005

TABLE III
RESULTS ON PROBLEM SET (II): ALGORITHMS’ SENSITIVITY TO TIME WINDOW WIDTH

Fig. 4. Algorithms’ sensitivity to average time window width (n = 50).

lems. By contrast, GS is unable to solve 152 problems; these
unsolved problems occur with both and , and
some of them are as small as having 30 jobs. The computation
time required by PS is small and does not have as much vari-
ability as that required by GS. However, GS has some advan-
tage on problems with small time windows. It is almost always
the case that GS either solves a problem in few seconds or has
to abandon it due to excessive memory requirement.

The above experiment is repeated using problem set (II).
Individual problems in this second problem set are similar to
those problems with in problem set (I) in terms of the
average window width and the distribution of release dates,
but are generally less difficult. Because GS is able to solve a
greater portion of the problems (213 out of 280), more insights
can be drawn from the results regarding computation time. The
results in Table III indicate that the average time window width
has a much smaller impact on the computation time of PS than
on the computation time of GS. For example, with fixed
at 50, the algorithms’ sensitivity to the average time window
width is depicted by Fig. 4. For , both algorithms
perform quite well, but GS is even faster than PS. However,
this occasional speed advantage of GS over PS occurs only
when the computation time is fairly small (1–2 s) for both
algorithms [this observation is also consistent with the results
on problem set (I)].

We also tested the algorithms using problem set (III), where
the release dates are deadlines are not correlated. As indicated
by the results in Table IV, this set of problems are much more
challenging for both algorithms. However, the proposed PS al-
gorithm fares considerably better than GS, since the latter expe-
riences difficulty even for 30-job problems.

Overall, it is perhaps fair to say that our algorithm (PS) per-
forms consistently well across different types of instances, and
more importantly, it is more robust when faced with instances
that take the dynamic programming algorithm (GS) a long time
to solve.

VII. DISCUSSION AND FUTURE RESEARCH

In this paper, we introduced a lower bound for WCT and
developed a fast algorithm to compute it in time.
We also proposed several dominance conditions and used an
effective node elimination technique, to curtail the size of the
branch-and-bound search tree. Using these ingredients, we con-
structed a branch-and-bound solution procedure. The procedure
was able to effectively solve test problems of up to 50 jobs
within the time limit. Our method proves to be quite robust over
a wide range of input data characteristics, compared to a dy-
namic programming method in the literature. Clearly, the tech-
niques demonstrated here can be used to achieve superior results
in solving —a special case of WCT.

Admittedly, the proposed branch-and-bound algorithm fol-
lows the standard track of combinatorial branch-and-bound
algorithms (as opposed to -based ones). However, our
successful solution of WCT brings this paradigm into unchar-
tered territories. Combinatorial branch-and-bound previously
have not been applied to sequencing problems with nontrivial
feasibility issues. Usually, all sequences are feasible, and in
situations where there is infeasibility, all feasible sequences
can be enumerated without ever running into infeasible ones
(e.g.,). The implication of infeasibility on lower
bounds and dominance conditions has never been studied.
Meanwhile, there are indications that researchers have at least
pondered upon this due to its practical relevance (e.g., [2]).

In future research, we would incorporate the lower bound and
solution method developed for WCT into solution procedures

PAN AND SHI: DUAL CONSTRAINED SINGLE MACHINE SEQUENCING TO MINIMIZE TOTAL WCT 355

TABLE IV
RESULTS ON PROBLEM SET (III): UNCORRELATED RELEASE DATES AND DEADLINES

for JSTIMP [32] and other job shop problems with inventory
and cycle time-related objectives. Another promising direction
is to utilize our tailored algorithm within a mathematical pro-
gramming framework based on the Dantzig-Wolfe decomposi-
tion and column generation (e.g., [11], [36]–[38]).

Additionally, the isotone optimization problem defined in (8)
can be extended by adding the following bound constraints on
the variables:

(11)

where and are given lower and upper bounds on the vari-
able . It turns out that these bound constraints do not com-
plicate the problem and can be handled easily. Specifically, we
first solve the problem without taking into account the bounds;
let be the optimal solution found. The solution to the
problem with bounds can be obtained in two passes.

Algorithm. Two-Pass
Step 0) Let be an optimal solution to the

problem without bound constraints.
Backward Pass:

Step 1) Set .
Step 2) For , set

.
Forward Pass:

Step 3) Set .
Step 4) For , set . If

for any , the chain constraints and bound
constraints as a whole are not consistent, i.e., the
problem is infeasible.

This procedure clearly runs in time, and its correctness
can be shown by a fairly elementary argument.

Finally, we would like to shed some light on the relationship
between the isotone optimization problems and the timetabling
algorithms in scheduling theory. The timetabling algorithms are

also extensively researched and play an important role in sched-
uling with nonregular objectives. Take the earliness–tardiness
problem, , as an example,
where for each job , , , and denotes the
due date (which can be violated at a penalty). Suppose without
loss of generality that we are given a sequence . The
task of timetabling is to compute optimal completion times, ,

, that solve the following problem (’s are vari-
ables here):

(12)

Quite a number of authors have studied variations of the
timetabling problem (see [21] for an extensive list of refer-
ences). -time timetabling algorithms are straightforward
(e.g., the algorithm of Szwarc and Mukhopadhyay [34]).

-time implementations are often adapted from that
of Garey et al. [17], who study the unit-weight case where

for all .
In fact, the timetabling problem defined above can be

converted into one just like (8) by the following linear
transformation

This is a remarkable coincidence, considering the distinct
origins of the isotone optimization problems and timetabling
problem. It should be noted that the function associated
with the timetabling problem corresponds to the special case
depicted in Fig. 1(a), because and in the
objective function. Consequently, the optimal objective value
of the timetabling problem is bounded, whereas the isotone

356 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. 2, NO. 4, OCTOBER 2005

problem originated from our lower bound calculation can be
unbounded. After the conversion, constraint (12) results in a
lower bound constraint on , which can be handled using the
backward pass discussed above. As a result, our Specialized
Cascading Descent algorithm, together with the backward pass,
offers a new procedure for timetabling.

Although our algorithm is not the first procedure
for timetabling, it does offer a more practical alternative to the
algorithm of Garey et al. and its variations. This is because
Garey et al.’s algorithm (the -time version) requires
the so-called “meld” operation—i.e., the merger of two heaps
to form a new heap. Because there can be as many as
melds, each meld has to be done in in order to achieve
the -time bound. Unfortunately, this means that the
aforementioned mergeable heaps must be used. Due to the
difficulty and overhead in the implementation of mergeable
heaps, less efficient procedures are often used instead
(see, e.g., [22]). Our proposed procedure, on the other hand,
does not require meld operations, and therefore avoids this
difficulty.

ACKNOWLEDGMENT

The authors are grateful to the Associate Editor and two
anonymous referees, whose critiques and suggestions have
greatly influenced the content and presentation of this paper,
in particular, to the Associate Editor who brought isotone
optimization problems to their attention, and to one referee who
led them to the study of problem set (III).

REFERENCES

[1] R. H. Ahmadi and U. Bagchi, Just-in-time scheduling in single machine
systems, Dep. of Manag., Univ. of Texas, Austin, 1986.

[2] , “Minimizing job idleness in deadline constrained environments,”
Oper. Res., vol. 40, pp. 972–985, 1992.

[3] R. K. Ahuja and J. B. Orlin, “A fast scaling algorithm for minimizing
separable convex functions subject to chain constraints,” Oper. Res., vol.
49, no. 5, pp. 784–789, 2001.

[4] K. R. Baker, Introduction to Sequencing and Scheduling. New York:
Wiley, 1974.

[5] J. F. Bard, K. Venkatraman, and T. A. Feo, “Single machine scheduling
with flow time and earliness penalties,” J. Global Optim., vol. 3, no. 3,
pp. 289–309, 1993.

[6] H. Belouadah, M. E. Posner, and C. N. Potts, “Scheduling with release
dates on a single machine to minimize total weighted completion time,”
Discr. Appl. Math., vol. 36, no. 3, pp. 213–231, 1992.

[7] L. Bianco and S. Ricciardelli, “Scheduling of a single machine to mini-
mize total weighted completion time subject to release times,” Nav. Res.
Logist. Q., vol. 29, pp. 151–167, 1982.

[8] J. Carlier, “The one-machine sequencing problem,” Eur. J. Oper. Res.,
vol. 11, pp. 42–47, 1982.

[9] N. Chakravarti, “Isotonic median regression: a linear programming ap-
proach,” Math. Oper. Res., vol. 14, no. 2, pp. 303–308, 1989.

[10] S. Chand and H. Schneeberger, “Single machine scheduling to minimize
weighted earliness subject to no tardy jobs,” Eur. J. Oper. Res., vol. 34,
pp. 221–230, 1988.

[11] Z.-L. Chen and W. B. Powell, “Solving parallel machine scheduling
problems by column generation,” INFORMS Comp., vol. 11, pp. 78–94,
1999.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 1997.

[13] M. Dell’Amico, S. Martello, and D. Vigo, “Minimizing the sum of
weighted completion times with unrestricted weights,” Discr. Appl.
Math., vol. 63, no. 1, pp. 25–41, 1995.

[14] H. Emmons, “A note on a scheduling problem with dual criteria,” Nav.
Res. Logist. Q., vol. 22, pp. 615–616, 1975.

[15] S. French, Sequencing and Scheduling: An Introduction to the Mathe-
matics of the Job Shop. Chichester, U.K.: Horwood, 1982.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA: Freeman,
1979.

[17] M. R. Garey, R. Tarjan, and G. Wilfong, “One-processor scheduling with
symmetric earliness and tardiness penalties,” Math. Oper. Res., vol. 13,
pp. 330–348, 1988.

[18] S. Gélinas and F. Soumis, “A dynamic programming algorithm for
single machine scheduling with ready times,” Ann.Oper. Res., vol. 69,
pp. 135–156, 1997.

[19] R. Graham, E. Lawler, J. Lenstra, and A. H. G. Rinnooy Kan, “Optimiza-
tion and approximation in deterministic sequencing and scheduling: A
survey,” Ann. Discr. Math., vol. 5, pp. 287–326, 1979.

[20] A. M. A. Hariri and C. N. Potts, “Algorithm for single machine se-
quencing with release dates to minimize total weighted completion
time,” Discr. Appl. Math., vol. 5, pp. 99–109, 1983.

[21] J. J. Kanet and V. Sridharan, “Scheduling with inserted idle time:
Problem taxonomy and literature review,” Oper. Res., vol. 48, no. 1, pp.
99–110, 2000.

[22] C. Koulamas, “Single-machine scheduling with time windows and earli-
ness/tardiness penalties,” Eur. J. Oper. Res., vol. 91, no. 1, pp. 190–202,
1996.

[23] B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Minimizing
maximum lateness on one machine: computational experience and some
applications,” Stat. Neerland., vol. 30, pp. 25–41, 1976.

[24] P. D. Martin and D. B. Shmoys, “A new approach to computing optimal
schedules for the job-shop scheduling problem,” Lect. Notes Comp. Sci.,
vol. 1084, pp. 389–403, 1996.

[25] Y. Pan, “An improved branch and bound algorithm for single machine
scheduling with deadlines to minimize total weighted completion time,”
Oper. Res. Lett., vol. 31, no. 6, pp. 492–496, 2003.

[26] , “Production Scheduling for Suppliers in the Extended Enterprise,”
Ph.D. dissertation, Dep. of Ind. Eng., Univ. of Wisconsin-Madison,
Madison, WI, 2003.

[27] Y. Pan and L. Shi, “Branch-and-bound algorithms for solving hard in-
stances of the one-machine sequencing problem,” Eur. J. Oper. Res.,
2004.

[28] P. M. Pardalos, G. Xue, and L. Yong, “Efficient computation of
an isotonic median regression,” Appl. Math. Lett., vol. 8, no. 2,
1995.

[29] M. Posner, “Minimizing weighted completion times with deadlines,”
Oper. Res., vol. 33, no. 3, pp. 562–574, 1985.

[30] C. N. Potts and L. N. van Wassenhove, “Algorithm for single machine
sequencing with deadlines to minimize total weighted completion time,”
Eur. J. Oper. Res., vol. 12, pp. 379–387, 1983.

[31] T. Robertson and P. Waltman, “On estimating monotone parameters,”
Ann. Math. Stat., vol. 39, pp. 1030–1039, 1968.

[32] L. Shi and Y. Pan, “Minimizing job shop inventory with on-time delivery
guarantees,” J. Syst. Sci. Syst. Eng., vol. 12, no. 4, pp. 449–469, 2003.

[33] W. E. Smith, “Various optimizers for single-stage production,” Nav. Res.
Logist. Q., vol. 3, pp. 59–66, 1956.

[34] W. Szwarc and S. K. Mukhopadhyay, “Optimal timing schedules in ear-
liness–tardiness single machine sequencing,” Nav. Res. Logist. Q., vol.
42, pp. 1109–1114, 1995.

[35] R. Tarjan, Data Structures and Network Algorithms. Philadelphia, PA:
SIAM, 1983, vol. 44.

[36] J. M. van den Akker, J. A. Hoogeveen, and S. L. van de Velde, “Parallel
machine scheduling by column generation,” Oper. Res., vol. 47, no. 6,
pp. 862–872, 1999.

[37] J. M. van den Akker, C. A. J. Hurkens, and M. W. P. Savels-
bergh, “Time-indexed formulations for machine scheduling problems:
column generation,” INFORMS Comp., vol. 12, no. 2, pp. 111–124,
2000.

[38] M. van den Akker, H. Hoogeveen, and S. van de Velde, “Combining
column generation and lagrangean relaxation to solve a single-machine
common due date problem,” INFORMS Comp., vol. 14, no. 1, pp. 37–51,
2002.

[39] L. N. van Wassenhove, “Special-Purpose algorithms for one-machine
sequencing problems with single and composite objectives,” Ph.D. dis-
sertation, Katholieke Univ., Leuven, Belgium, 1979.

PAN AND SHI: DUAL CONSTRAINED SINGLE MACHINE SEQUENCING TO MINIMIZE TOTAL WCT 357

Yunpeng Pan received the B.S. degree in compu-
tational mathematics from Nanjing University, Nan-
jing, China, in 1995, the M.S. degree in operations re-
search from the University of Delaware, Newark, in
1998, and the M.S. degree in computer sciences, and
the Ph.D. degree in industrial engineering from the
University of Wisconsin-Madison, in 2001 and 2003,
respectively.

He is a Research Associate in the Department of
Industrial and Systems Engineering, University of
Wisconsin-Madison. His current research interest

is hybrid combinatorial and mathematical programming-based approaches to
practical shop scheduling problems that arise from extended enterprise supply
chain networks. His work appears in Operational Research Letters, IEEE
TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, the European
Journal of Operational Research, and the Journal of Systems Science and
Systems Engineering.

Dr. Pan is a member of INFORMS.

Leyuan Shi (M’92) received the B.S. degree in
mathematics from Nanjing Normal University,
Nanjing, China, in 1982, the M.S. degree in applied
mathematics from Tsinghua University, Beijing,
China, in 1985, and the M.S. degree in engineering,
and Ph.D. degree in applied mathematics from
Harvard University, Cambridge, MA, in 1990, and
1992, respectively.

She is a Professor in the Department of Industrial
and Systems Engineering, University of Wisconsin-
Madison. She has been involved in undergraduate and

graduate teaching, as well as research and professional service. Her research is
devoted to the theory and applications of large-scale optimization algorithms,
discrete event simulation and modeling and analysis of discrete dynamic sys-
tems. She has published many papers in these areas. Her work has appeared in
Discrete Event Dynamic Systems, Operational Research, Management Science
and in IEEE and IIE Transactions.

Dr. Shi is currently a member of the editorial board for Journal of Manu-
facturing and Service Operations Management, and is an Associate Editor of
Journal of Discrete Event Dynamic Systems. She is a member of INFORMS.

	toc
	Dual Constrained Single Machine Sequencing to Minimize Total Wei
	Yunpeng Pan and Leyuan Shi, Member, IEEE
	I. I NTRODUCTION
	II. L OWER B OUND
	A. Derivation
	Proposition 1: The nondelay sequence σ is optimal for $1\

	B. Three Nondelay Sequences
	C. Transformation of the LP
	Theorem 2: If the LP is bounded, then there exists an optimal so

	Fig. 1. Convexity of $f_{j}(x_{j})$. (a) $\bar{d}_{j}-C_{j}^{\s
	Proof: It suffices to show that from any given feasible solution

	Fig.€2. Segments of a solution to the isotone optimization probl
	Proposition 3: Problem (8) is bounded, i.e., $\bar{z}>-\infty$,
	III. S OLVING I SOTONE O PTIMIZATION P ROBLEMS
	A. Preliminaries

	Fig.€3. Continuous, piecewise-linear, convex function with more
	B. New Algorithm
	Lemma 4: Let (x_{u},\ldots,x_{v}) and (x_{v+1},\ldots,x_{w})
	Proof: By dropping the constraint $x_{v}\geq x_{v+1}$ in subprob

	Lemma 5: Suppose that $(x_{u},\ldots,x_{v})=(a,\ldots,a)$ and $(
	Proof: Refer to Lemma 1 in [3] . $\hfill\blackbox$

	Theorem 6: The proposed Cascading Descent algorithm is correct.
	Proof: We show through mathematical induction that (I) after the

	Lemma 7: Let $F(x)$ be a continuous, piecewise-linear function o
	Theorem 8: The specialized Cascading Descent algorithm runs in $
	Proof: Note that there are m INSERT s and consequently, no mor

	IV. D OMINANCE C ONDITIONS AND E LIMINATION T ECHNIQUE
	A. Dominance Conditions
	Theorem 9: If $w_{t}/p_{t}=\max_{i=1}^{n}\{w_{i}/p_{i}\}$ and $\
	Theorem 10: If $r_{t}+p_{t}=\min_{i=1}^{n}\{r_{i}+p_{i}\}$, then
	Theorem 11: Let $\pi=ji\pi^{1}$ be any feasible sequence with jo
	Theorem 12: Job i can be assigned to the first position only i
	Corollary 13: Consider the subproblem in which job i is fixed

	B. Elimination by Recursion

	V. B RANCH - AND -B OUND A LGORITHM
	VI. C OMPUTATIONAL R ESULTS
	A. Test Problems
	B. Choice of Nondelay Sequence σ

	TABLE€I C OMPARISON OF PS-WSPT V ERSUS PS-COMP U SING P ROBLEM
	TABLE€II R ESULTS OF GS V ersus PS ON P ROBLEM S ET (I)
	C. Comparative Study of GS Versus PS

	TABLE€III R ESULTS ON P ROBLEM S ET (II): A LGORITHMS ' S ENSIT
	Fig.€4. Algorithms' sensitivity to average time window width $(n
	VII. D ISCUSSION AND F UTURE R ESEARCH

	TABLE€IV R ESULTS ON P ROBLEM S ET (III): U NCORRELATED R ELEAS
	R. H. Ahmadi and U. Bagchi, Just-in-time scheduling in single ma
	R. K. Ahuja and J. B. Orlin, A fast scaling algorithm for minimi
	K. R. Baker, Introduction to Sequencing and Scheduling . New Yor
	J. F. Bard, K. Venkatraman, and T. A. Feo, Single machine schedu
	H. Belouadah, M. E. Posner, and C. N. Potts, Scheduling with rel
	L. Bianco and S. Ricciardelli, Scheduling of a single machine to
	J. Carlier, The one-machine sequencing problem, Eur. J. Oper. Re
	N. Chakravarti, Isotonic median regression: a linear programming
	S. Chand and H. Schneeberger, Single machine scheduling to minim
	Z.-L. Chen and W. B. Powell, Solving parallel machine scheduling
	T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
	M. Dell'Amico, S. Martello, and D. Vigo, Minimizing the sum of w
	H. Emmons, A note on a scheduling problem with dual criteria, Na
	S. French, Sequencing and Scheduling: An Introduction to the Mat
	M. R. Garey and D. S. Johnson, Computers and Intractability: A G
	M. R. Garey, R. Tarjan, and G. Wilfong, One-processor scheduling
	S. Gélinas and F. Soumis, A dynamic programming algorithm for si
	R. Graham, E. Lawler, J. Lenstra, and A. H. G. Rinnooy Kan, Opti
	A. M. A. Hariri and C. N. Potts, Algorithm for single machine se
	J. J. Kanet and V. Sridharan, Scheduling with inserted idle time
	C. Koulamas, Single-machine scheduling with time windows and ear
	B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan, Minimizi
	P. D. Martin and D. B. Shmoys, A new approach to computing optim
	Y. Pan, An improved branch and bound algorithm for single machin
	Y. Pan and L. Shi, Branch-and-bound algorithms for solving hard
	P. M. Pardalos, G. Xue, and L. Yong, Efficient computation of an
	M. Posner, Minimizing weighted completion times with deadlines,
	C. N. Potts and L. N. van Wassenhove, Algorithm for single machi
	T. Robertson and P. Waltman, On estimating monotone parameters,
	L. Shi and Y. Pan, Minimizing job shop inventory with on-time de
	W. E. Smith, Various optimizers for single-stage production, Nav
	W. Szwarc and S. K. Mukhopadhyay, Optimal timing schedules in ea
	R. Tarjan, Data Structures and Network Algorithms . Philadelphia
	J. M. van den Akker, J. A. Hoogeveen, and S. L. van de Velde, Pa
	J. M. van den Akker, C. A. J. Hurkens, and M. W. P. Savelsbergh,
	M. van den Akker, H. Hoogeveen, and S. van de Velde, Combining c
	L. N. van Wassenhove, Special-Purpose algorithms for one-machine

