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Figure 1: A temple undergoing destructive modi£cations. Both models were generated by dual contouring a signed octree whose edges

Abstract

This paper describes a new method for contouring a signed grid
whose edges are tagged by Hermite data (i.e; exact intersection
points and normals). This method avoids the need to explicitly iden-
tify and process ”features” as required in previous Hermite contour-
ing methods. Using a new, numerically stable representation for
quadratic error functions, we develop an octree-based method for
simplifying contours produced by this method. We next extend our
contouring method to these simpli£ed octrees. This new method
imposes no constraints on the octree (such as being a restricted oc-
tree) and requires no ”crack patching”. We conclude with a simple

tion.
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1 Introduction

In the spring of 2001, 17 students in an advanced computer graphics
class set out on a semester-long group project to develop a cutting-
edge computer game. One of the primary goals for the game was to

game geometry. (In gaming terminology, such geometry is referred
to as ”destructible”.) The geometric engine for the resulting game
was based on implicit modeling with the environment modeled as
the zero contour of a 3D grid of scalar values. Our choice of this
representation was guided by the fact that CSG operations are par-
ticularly simple to implement for implicit models. Although this
game was a relative success, we noted that our implicit approach to
modeling had several disadvantages. During a post-project review,

• Due to the use of a uniform grid, we were restricted to rela-

3 due to
the requirement that the game run in real-time.

• The resulting environment lacked the sharp edges found in
most polyhedral models. Although we could simulate a small
class of shapes such as rooms and hallways by cleverly ma-

metrically simple in comparison to those modeled using BSP
trees.

• The polyhedral meshes produced by contouring often con-

polygons in our model and often overwhelmed the graphics
card used for the game.
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contain Hermite data. The modified model on the right was computed from the lefthand model in real-time.

test for preserving the topology of the contour during simplifica-

quadratic error functions, polyhedral simplification

we identified several problems:

The tiling of these flat regions trivially inflated the number of

nipulating the sign field, the resulting environment was geo-

process environments defined using grids of size 64

tained large flat regions tiled by numerous small polygons.

tively small grid sizes. In particular, the final game could only

incorporate technology that allowed real-time modification of the
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In preparation for the next version of the gaming class, the in-
structor and three members of the class (the authors) decided to pur-
sue a yearlong project to rewrite the game engine to address these

recently developed modeling technology for our program. Each of
these pieces addresses one of the problems:

• First, we use an octree in place of a 3D uniform grid. In partic-
ular, our octree is inspired by those used in Adaptive Distance
Fields [Frisken et al. 2000; Perry and Frisken 2001] in which
signs are maintained at corners of cubes in the octree.

• At the leaves of the octree, we tag those edges with sign
changes by exact intersection points and their normals from
the contour. This choice is inspired by the Extended March-
ing Cubes method of [Kobbelt et al. 2001]. Adding normals
allows this method to exactly reproduce a wide class of poly-
hedral shapes as well as curve or sharp edges on the contour.

• Third, we use these normals to de£ne a quadratic error func-
tion (QEF) for each leaf of the octree. These QEFs are then

ilar to that of [Lindstrom 2000]. Our method uses the added

cubes in the octree to preserve the topology of this contour

The resulting representation is an octree whose leaf cubes have
signs at their corners with exact intersections and normals tagging

2 for an example). Interior nodes in the octree contain QEFs used
This representation can accurately approxi-

mate implicit shapes as well as parametric shapes such as subdivi-
sion surfaces. (These parametric shapes are imported as polygonal
approximations and scan converted into a signed octree.) The adap-
tive structure of the octree allows for real-time approximate CSG

Given that we are building on several pieces of previous work,
we should make clear our original contributions in this paper. First,
we propose a new method for contouring a 3D grid of Hermite data
that avoids the need to explicitly identify and process ”features”
as done in the Extended Marching Cubes method. After extend-

demonstrate how to model textured contours. We also introduce a
new, numerically stable representation for quadratic error functions
that we use in a standard octree-based method for simplifying these
contours and their textured regions. We then develop a version of

straints on the octree (such as being a restricted octree) and requires
no ”crack patching”. We conclude with a simple new test for pre-
serving the topology of both the contour and its textured regions

2 Dual contouring on uniform grids

Although our ultimate goal is to develop a simple contouring

ods for contouring signed uniform grids. The upper left portion of

edges of the grid that exhibit a sign change are tagged by Hermite
data consisting of exact intersection points and normals from the
contour. This Hermite data can be computed directly from the im-

onal mesh.

Figure 2: A signed grid with edges tagged by Hermite data (up-
per left), its Marching Cubes contour (upper right), its Extended
Marching Cubes contour (lower left), and its dual contour (lower
right).

2.1 Previous contouring methods

Cube-based methods such as the Marching Cubes (MC) algorithm
and its variants generate one or more polygons for each cube in the
grid that intersects the contour. Typically, these methods generate
one polygon for each portion of the contour that interest a particu-
lar cube with the vertices of these polygons being positioned at the
intersection of the contour with the edges of the cube. The upper

ure 3 shows a 3D example of a sphere generated as the zero contour
of the function f [x,y,z] = 1− x2

− y2
− z2. This contour consists

of a collection of polygons that approximate the restriction of the
contour to individual cubes in the grid.

Dual methods such as the SurfaceNets algorithm of [Gibson
1998] generate one vertex lying on or near the contour for each cube
that intersects the contour. For each edge in the grid that exhibits
a sign change, the vertices associated with the four cubes that con-
tain the edge are joined to form a quad. The result is a continuous
polygonal surface that approximates the contour. The right-hand

using the SurfaceNets method. Note that the polygonal mesh pro-
duced by the SurfaceNets method is dual to the mesh produced by
MC in the standard topological sense: vertices of the SurfaceNets
mesh correspond to faces of the MC mesh and vice versa. Dual
methods typically deliver polygonal meshes with better aspect ra-
tios since the vertices of the mesh are free to move inside the cube
as opposed to being restricted to edges of the grid as in cube-based
methods. 1

1Note that other methods such as [Wood et al. 2000] contour without

We focus our attention on grid-based

used in an octree-based polyhedral simplification method sim-

during simplification.

edges that exhibit sign changes. (See the upper left portion of figure

during simplification.

information specified by the signs attached to the corners of

deficiencies. In particular, we focused on adapting three pieces of

operations and simplification of the resulting shapes.

our contouring method for simplified octrees that imposes no con-

during simplification.

method that is suitable for octrees, we first consider various meth-

figure 2 shows a typical example of a signed uniform grid. Those

plicit definition of the contour or by scan converting a closed polyg-
respect to the underlying fine grid.

side of figure 3 shows an example of the same sphere contoured

generated from the signed grid to its left. The left-hand side of fig-
ing this contouring method to the case of multiple materials, we right portion of figure 2 shows a 2D example of the MC contour
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Figure 3: A sphere contoured using the Marching Cubes method
(left) and the SurfaceNets method (right).

The Extended Marching Cubes (EMC) method is a hybrid be-
tween a cube-based method and a dual method. The EMC method
detects the presence of sharp ”features” inside a cube by examin-
ing normals associated with the intersection points on the edges of
the cube.
cone are deemed to be featureless. In this case, the EMC method
generates a polygon(s) using standard MC. For those cubes that do
contain a feature, the method generates a vertex positioned at the
minimizer of the quadratic function

E[x] = ∑
i

(ni · (x− pi))
2 (1)

where the pairs pi,ni correspond to the intersections (and unit nor-
mals) of the contour with the edges of the cube. Once this vertex has
been positioned, the method generates a triangle fan to the edges on
the boundary of the cube. Finally, if two adjacent cubes both con-
tain feature vertices, then the pair of triangles generated by the fan

contour generated by EMC.

2.2 Dual contouring of Hermite data

The main advantage of the EMC method is that it uses Hermite
data and QEFs in positioning the vertices associated with cubes
that contain features. This Hermite approach can generate contours
that contain both sharp vertices and sharp edges. One drawback of
this method is the need to explicitly test for such features and to
then perform some type of special processing in these cases. As
an alternative to the EMC method, we propose the following dual
contouring method for Hermite data:

1. For each cube that exhibits a sign change, generate a vertex
positioned at the minimizer of the quadratic function of equa-
tion 1.

2. For each edge that exhibits a sign change, generate a quad
connecting the minimizing vertices of the four cubes contain-
ing the edge.

This method is an interesting hybrid of the EMC method and
the SurfaceNets method. It uses the EMC method’s feature ver-
tex rule for positioning all vertices of the contour while using the
SurfaceNets method to determine the connectivity of these vertices.
(Note that the SurfaceNets method uses a completely different rule

methods like the ones above since this grid structure is the basis of our fast

CSG operations.

Figure 4: A mechanical part generated by dual contouring Hermite
data on a 643 grid.

for positioning vertices on the contour.) By using QEFs to position
all of the vertices of the contour, this method avoids the need to
explicit test for features. Vertices on the contour are simply posi-
tioned to be consistent with the normals associated with the data.

contour generated by the Hermite data in the upper left portion of

Figure 4 shows a 3D example of a mechanical part modeled by
dual contouring Hermite data on a 643 grid. The left image shows
a smooth shaded version of the part while the right image shows
the polygonal mesh produced by dual contouring. The intersection
points and normals for the model were generated from a closed

model was computed using a standard scan conversion algorithm as
described in [Foley et al. 1995].

2.3 Representing and minimizing QEFs

At this point, we should make a few comments concerning how we
represent and minimize quadratic error functions. The function E[x]
of equation 1 is constructed from a collection of intersection points
pi and normals ni. This function E[x] can be expressed as the inner

product (Ax−b)T (Ax−b) where A is a matrix whose rows are the
normals ni and b is a vector whose entries are ni · pi. Typically, the
quadratic function E[x] is expanded into the form

E[x] = xT AT Ax−2xT AT b+bT b (2)

where the matrix AT A is a symmetric 3×3 matrix, AT b is a column
vector of length three and bT b is a scalar. The advantage of this ex-
pansion is that only the matrices AT A, AT b and bT b need be stored

Further-
more, a minimizing value x̂ for E[x] can be computed by solving

the normal equations AT Ax̂ = AT b.
One drawback of this representation is that it is numerically un-

ing point arithmetic when the intersection points and normals used

2563 T b can be on the order of
6

zero), the resulting value has an error on the order of 1.
One possible solution to this problem is to use double precision

T A, AT b and bT b. Us-

Those cubes whose normals lie inside a user-specified

The lower right portion of figure 2 shows a 2D example of the dual

the figure.

to their common face has its common edge flipped to form a feature
subdivision surface. A sign field denoting the inside/outside of the

edge. The lower left portion of figure 2 shows a 2D example of the

(10 floats), as opposed to storing the matrices A and b.

stable. For example, consider computing the value of E[x] in float-

in constructing E[x] are sampled from a flat area. For a grid of size

10 . Since floats are only accurate to six decimal digits, if E[x] is

numbers instead of floats in representing A

evaluated at points on the original flat area (where E[x] should be

(as in figure 1), the magnitude of b

341



of 10−6. Of course, the main drawback of using doubles in place
For

our application, we found this solution to be problematic since our
program tended to be space bound as opposed to being time bound.
(See the last section for details.)

An alternative representation for QEFs that delivers the accuracy

sition [Golub and Van Loan 1989]. If (A b) is the matrix formed
by appending the column vector b to the matrix A, the idea behind
this decomposition is to commpute an orthogonal matrix Q whose
product with (A b) is an upper triangular matrix of the form















x x x x
0 x x x
0 0 x x
0 0 0 x
0 0 0 0
. . . . . . . . . . . .















=







Â b̂
0 r
0 0
. . . . . .






. (3)

Here, Â is an upper triangular 3× 3 matrix, b̂ is a column vector
of length 3 and r is a scalar. This matrix Q can be expressed as
the product of a sequence of Givens rotations where each rotation
zeroes a single entry in the lower part of (A b).

Since any orthogonal matrix Q satis£es the relation QT Q = I,
E[x] can be rewritten as

(Ax−b)T (Ax−b) = (Ax−b)T QT Q(Ax−b)

= (QAx−Qb)T (QAx−Qb)

= (Âx− b̂)T (Âx− b̂)+ r2

To evaluate E[x] in this form, we compute the product of the vector

Âx− b̂ with itself and then add r2.
example, we note that b has entries on the order of 103 and therefore

Âx− b̂ has entries that are on the order of 10−3 when x is chosen

on the order of 10−6.
If Â is non-singular, the minimizing x̂ can be computed by solv-

ing Âx̂ = b̂ using back substitution. However, during dual con-
touring, Â is often computed from noisy normals that are nearly
coplanar. In this case, the matrix Â is nearly singular. As a result,

To solve
this problem, we compute the SVD decomposition of Â and form
its pseudo-inverse by truncating its small singular values as done
in [Kobbelt et al. 2001; Lindstrom 2000]. Based on experimenta-
tion, we typically truncate those singular values with a magnitude
of less than 0.1. Using the resulting pseudo-inverse, we then ap-

proximately solve Âx̂ = b̂ while minimizing the distance of x̂ to the
centroid of the intersection points pi.

2.4 Modeling textured contours

both contouring algorithms produced surfaces that
bounded the transition from negative (empty) space to positive
(solid) space. In a realistic environment, solids are not composed of
a single homogeneous material. In practice, solids are composed of
a collection of materials; each of which induces a region with a dis-
tinct texture on the contour. Figure 5 shows an example of a cube
consisting of two materials, a gold material formed by extruding a
Chinese character through the cube and a red material forming the
remaining portion of the cube. Note that the gold material is a true
solid (and not a surface texture) since the gold character extends all
the way through the cube (as evidenced by the cube after a spherical
cut on the right).

This partition of solids into distinct materials can be modeled
implicitly by replacing the signs − and + (corresponding to empty

Figure 5: A solid cube undergoing a sequence of CSG operations.

Figure 6: The dual contour for a three-index grid (left), treating the
two solid (dark) indices as single index(right)

and solid space) by a material index. In this representation, each
grid point has an index corresponding to a distinct material.(See
[Bloomenthal and Ferguson 1995; Bonnell et al. 2000] for exam-
ples of similar approaches.) Figure 6 shows a 2D grid with three
distinct indices; the gray and black grid points denote distinct solid
materials while white grid points denote empty space. As before,
edges that exhibit index changes are also tagged by exact intersec-
tion points and normals. During contouring, this Hermite data is

grid. Next, for each edge that exhibits a index change, dual contour-
ing generates a quad connecting the minimizers of the QEFs for the

the dual contour that separates the three materials.

If the viewer is restrict to empty space, we can optimize this
contouring method for solids that consist several different materials.
In particular, quads generated by solid/solid edges are not visible
from empty space. The remaining quads correspond to solid/empty
edges and can be textured using the material properties of the solid
endpoint of the edge 2.
three material; empty space, gold material, and red material. The
resulting dual contour consists of red quads generated by red/empty
edges and gold quads generated by gold/empty edges. Red/gold
edges do not generate quads.

2Each material has an associated ”black box” de£ned during the mate-

rial’s addition to the model that converts 3D geometric coordinates into 2D

texture coordinates.

ing doubles, the value of E[x] in our flat example now has an error

of floats is that the space require to store a QEF is doubled.

of doubles while using only floats is based on the QR decompo-

Returning to our previous flat

from the flat regions. Therefore, the computed value of E[x] will be

the minimizing x̂ may lie far outside the defining cube.

In figure 3,

In figure 5, the underlying grid contains

four cubes containing the edge. The left portion of figure 6 shows

used in equation 1 to define a QEF associated with each cube in the
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When three or more materials meet inside a single cube, dual
contouring places the minimizing vertex at or near their intersection
point. This positioning allows the outlines of letters and characters
embossed on a surface to be reproduced very accurately. (The right-

Cube-based contouring methods constrain the vertices of the con-

achieve.
The move to the multi-material case allows for several interest-

ing variations on the CSG operations used in the two-material case.
In place of the standard CSG operations, we use a single operation
Add that overwrites a portion of the existing model with a new ma-
terial. Subtractive operations such as the spherical cut in the upper

space to the model. Another useful variant of Add is the operation
Replace that overwrites only the solid portion of the model. This
operation can also be used to simulate texturing a portion of the

of the solid replaced by a blue material and then subsequently cut
by a sphere.

3 Adaptive dual contouring

The previous algorithm for dual contouring has the obvious disad-
vantage of being formulated for uniform grids. In practice, most of
a uniform grid is devoted to storing homogeneous cubes (i.e; cubes
whose vertices all have the same sign). Only a small fraction of the
cubes are heterogeneous and thus, intersect the contour. One way
to avoid this waste of space is to replace the uniform grid by an
octree. In this section, we describe an adaptive version dual con-
touring based on simplifying an octree whose leaves contain QEFs.
This method is essentially an adaptive variant of a uniform simpli-

Our method has three
steps:

• Generate a signed octree whose homogeneous leaves are max-
imally collapsed.

• Construct a QEF for each heterogeneous leaf and simplify the
octree using these QEFs.

•

Note that our method also differs from Lindstrom’s method in that
we generate polygons from the signed octree instead of collapsing
polygons in an existing mesh.

forward. For implicit or polygonal models, this octree can be con-
structed recursively in a top-down manner by spatially partitioning
the models. For signed data on a uniform grid, this octree can be
generated in a bottom-up manner by recursively collapsing homo-
geneous regions. The next two subsections examine the second and
third parts of this process in more detail. (Note that the adaptive
method described here works for multi-material case without mod-

3.1 Octree simplification using QEFs

Our approach to the second step of the adaptive method is to con-
struct a QEF associated with each heterogeneous leaf using equa-
tion 1. Note that the residual associated with the minimizer of this
QEF estimates how well the minimizing vertex approximates the
original geometry [Garland and Heckbert 1998]. Our approach to
simplifying the resulting octree is to form QEFs at interior nodes
of the octree by adding the QEFs associated with the leaves of the
subtree rooted by the node. Those interior nodes whose QEFs have
a residual less than a given tolerance are collapsed into leaves.

Figure 7: Closeups of two polygonal approximations to the temple
computed using the standard (left) and QR (right) representation for
QEFs.

our internal representation for QEFs to take advantage of the QR
decomposition discussed in the previous section. To this end, we

of the upper triangular matrix of equation 3. Adding two QEFs cor-
responds to merging the rows of their two upper triangular matrices
to form a single 8×4 matrix of the form





















x x x x
0 x x x
0 0 x x
0 0 0 x
x x x x
0 x x x
0 0 x x
0 0 0 x





















and then performing a sequence of Givens rotations to bring the
matrix back into upper triangular form of equation 3. Due to the or-
thogonality of the Givens rotations, the QEF for the merged system
is the sum of QEFs associated with the unmerged systems. Note
that bringing the merged system back into upper triangular form
is slower (around 150 arithmetic operations) than simply adding

proved stability of the representation leads to better simpli£cations.

Figure 7 gives a concrete illustration of the advantage of the QR

mesh was computed using the standard representation for QEFs, the

3 unit
grid.) Due to the numerical error introduced by the instability of the
standard representation, the mesh on the left contains 78K polygons
while the mesh on the right has 36K polygons.

3.2 Polygon generation for simplified octrees

gon generation phase of dual contouring appropriately. For cube-
based methods, this problem of generating contours from octrees
has been extensively studied [Bloomenthal 1988; Wilhelms and
Gelder 1992; Livnat et al. 1996; Shekhar et al. 1996; Westermann
et al. 1999; Frisken et al. 2000; Cignoni et al. 2000]. Typically,
these methods restrict the octree to have neighboring leaves that
differ by at most one level (i.e; ”restricted” octrees) and usually per-
form some type of ”crack repair” to ensure a closed contour. [Perry
and Frisken 2001] describes a variant of the SurfaceNets algorithm
for signed octrees based on enumerating the edges associated with
leaves of the octree. In particular,

• For each edge that exhibits a sign change, generate all trian-
gles that connect the vertices associated with any three distinct
cubes containing the edge.

hand portion of figure 12 shows a close-up example of this effect.)

tour to lie on the edges of the 3D grid making this effect difficult to

contour. For example, the lower images in figure 5 show a portion

right of figure 5 can be represented as adding a sphere of empty

fication method due to [Lindstrom 2000].

Recursively generate polygons for this simplified octree.

Generating the signed octree in the first step is relatively straight-

ification.)

Given this simplified octree, our next task is to modify the poly-

(To give a sense of scale, the temple was defined over a 256

10 floats as done in the standard representation. However, the im-

The only modification that we make to this method is to change

represent a QEF in terms of 10 floats corresponding to the entries

representation’s stability. The meshes in this figure show two sim-

right mesh was computed using the QR representation for QEFs.

plifications of the temple from figure 1 to an error of 0.014; the left
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To avoid generating redundant triangles, this method culls some
of the generated triangles based on the relative positions of their

corresponds to either one or two triangles (a quad) on the resulting
contour. The main disadvantage of this method (as acknowledged
by the authors) is that it occasionally yields contours with cracks.

by performing extra subdivision on the octree.
We propose a simpler rule for dual contouring signed octrees

that avoids this need for extra subdivision. The rule is based on the
observation that only those edges of leaf cubes that do not properly
contain an edge of a neighboring leaf should generate a polygon.
We refer to such edges as the minimal edges of the octree. Thus,
our rule for polygon generation is

• For each minimal edge that exhibits a sign change, generate
a polygon connecting the minimizing vertices of cubes that
contain the edge.

This rule has the property that it always produces a closed polyg-

the mesh is contained by an even number of polygons. To prove
this fact, we observe that edges in the dual contour are generated
by pairs of face-adjacent leaf cubes. The minimal edges tiling the
boundary of their common square face always exhibit an even num-
ber of sign changes since the boundary of the square is a closed
curve. Therefore, the rule always generates an even number of poly-
gons containing the edge. For example, the common square face
always consists of four consecutive edges in the uniform case. This
chain of four edges can exhibit either two or four sign changes and
consequently generate two or four polygons containing the com-
mon edge. (It is possible to construct signed octrees that generate
dual contours with 6 or more polygons share a common edge.) Fig-

Note that the rightmost mesh has undergone a topology change.
This rule generates triangles instead of quads in transitional areas

cubes. Minimal edges in the middle of the shared coarse face are
contained by only three cubes and generate triangles that form a

Figure 7 shows
many examples of such transition triangles produced by contouring

Figure 9: Recursive functions faceProc (black) and edgeProc
(gray) used in enumerating pairs of leaf squares that contain a com-
mon edge.

Note that the Perry/Frisken rule enumerates edges in the octree
and then locates those cubes that contain the edge. This neighbor

maintaining links between neighboring cubes. Instead of enumer-

method for enumerating those sets of cubes that contain a common
minimal edge. For the sake of simplicity, we explain this enumera-
tion method for quadtrees while noting that a similar method works
for octrees.

The key to this enumeration procedure are two recursive func-
tions faceProc[q] and edgeProc[q1,q2]. Given an interior node
q in the quadtree, faceProc[q] recursively calls itself on the four
children of q as well as calling edgeProc on all four pairs of edge-
adjacent children of q. Given a pair of edge-adjacent interior nodes
q1 and q2, edgeProc[q1,q2] recursively calls itself on the two
pairs of edge-adjacent children spanning the common edge between
q1 and q2. Figure 9 depicts the mutually recursive structure of these
two functions.

The recursive calls to edgeProc[q1,q2] terminate when both
q1 and q2 are leaves of the quadtree. At this point, the call to
edgeProc has all of the information necessary to generate the seg-
ment associated with the minimal edge shared by q1 and q2. Note
the running time of this method is linear in the size of the quadtree
since there is one call to faceProc for each square in the quadtree
and one call to edgeProc for each edge in the quadtree.

Contouring octrees requires three functions cellProc[q] ,
faceProc[q1,q2] and edgeProc[q1,q2,q3,q4] . The func-
tion cellProc spawns eight calls to cellProc, twelve calls
to faceProc and six calls to edgeProc. faceProc spawns
four calls to faceProc and four calls to edgeProc. Finally,
edgeProc spawns two calls to edgeProc. The recursive calls to
edgeProc[q1,q2,q3,q4] terminate at minimal edges of the oc-
trees where all of the qi’s are leaves.

4 Simplification with topology safety

Simpli£cation methods such as [Rossignac and Borrell 1993; Lind-
strom 2000] have the property that the topological connectivity of

More so-
phisticated methods such as [Stander and Hart 1997; Gerstner and
Pajarola 2000; Wood et al. 2000; Guskov and Wood 2001] were
developed to maintain the connectivity of the mesh during simpli-

Unfortunately, in our setting, not only can the topolog-

also the connectivity of its textured regions.

nize. While these topological changes are not always undesirable,
we wish to have the option of maintaining the topological connec-
tivity of the contour and its textured regions during simpli£cation.

Figure 8: Three simplified versions of the mechanical part.

corresponding edges inside a leaf cube. In the final mesh, each edge

The authors identify these problem configurations and avoid them

In particular, every edge inonal mesh for any simplified octree.

ure 8 shows three simplified approximations to the mechanical part.

of the octree where a single coarse cube is face-adjacent to four fine

transition between coarse quads and fine quads.

a simplified octree.

of the Chinese character have merged making it difficult to recog-

The left side of fig-

fication.

the polygonal mesh may change during simplification.

ical connectivity of the contour change during simplification, but

ure 12 shows an example of a simplification in which distinct parts

ating edges and trying to find neighbors, we propose a recursive

finding entails either walking up and down the octree or explicitly
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Speci£cally, given an interior node in the octree whose eight chil-

the corners of these leaves that guarantees that the topological con-
nectivity of the dual contour and its textured regions is preserved
during collapse of the node.

4.1 The two-signed case

Consider a coarse cube consisting of eight leaf cubes. The signs

Our goal is to develop a

grid is topologically equivalent to the dual contour generated by the
coarse grid 3.

Before presenting the test, we recall that a d-dimensional con-
tour is locally a manifold if it is topologically equivalent to a d-
dimensional disc. Since a cube has twelve edges, dual contouring
can generate up to twelve polygons that meet at the central vertex

How-
ever, there exist sign con£gurations for which the dual contour is
non-manifold.
ous” sign con£gurations in standard cube-based methods.) Given
this de£nition, the safety test has three checks:

1. Test whether the dual contour for the coarse cube is a mani-
fold. If not, stop.

2.
a manifold. If not, stop.

3.
coarse contour on each of the sub-faces of the coarse cube. If
not, stop; otherwise safely collapse.

fold dual contours. (Note that the second check can be dropped if

contours are manifold with non-manifold contours usually arising

Pajarola 2000] describe a simple test for determining whether the
contour associated with a single cube is a manifold. The idea is to
repeatedly collapse the edges of the cube whose corners have the
same sign to a single vertex. Now, the contour associated with the
cube is manifold if and only if the result of this reduction is a single
edge. The result of this test can be pre-computed for all possible

table of size 28.
The third check tests topological equivalence of the coarse and

equivalence on the edges of the coarse cube. Next, the method
checks for topological equivalence on the faces of the coarse cube.
Finally, the method checks for equivalence on the interior of the
coarse cube. These checks can be implemented as a sequence of
sign comparisons on the 3×3×3 grid of signs.

• The sign in the middle of a coarse edge must agree with the
sign of at least one of the edge’s two endpoints.

• The sign in the middle of a coarse face must agree with the
sign of at least one of the face’s four corners.

• The sign in the middle of a coarse cube must agree with the
sign of at least one of the cube’s eight corners.

3Two shapes are topologically equivalent if they can be deformed into

each other by a continuous, invertible mapping.

Figure 10: Three signed quadtrees and their dual contours.

Figure 10 shows three signed quadtrees that are candidates for

is non-manifold. The dual contour for the middle quadtree also has
two distinct components. In this case, the third check rejects the

The signs for the rightmost quadtree satisfy all three

The proof of correctness for these sign checks is based on estab-
lishing topological equivalence for subfaces of the coarse cube in

dergone a topology change that disconnects the mesh. The middle

tion.

4.2 The multi-material case

cussed in the previous sections is that these methods handle the
Luckily,

the safety test described in the previous subsection also generalizes
to the contours of multi-material regions with one small change.

are inherently non-manifold in the two-material sense. For exam-

three materials. Two of the contours have a vertex where three ma-
terials meet. Note that if we consider the boundary of each mate-
rial’s region separately, we can still classify whether this portion of

contour is a quasi-manifold if the boundary of each material’s re-
gion is a manifold. In the two-material case, being a quasi-manifold
is equivalent to being a manifold.

Now, the multi-material safety test determines whether it is topo-
logically safe to simplify dual contours that are quasi-manifolds.
As before, this restriction is not particularly problematic since most
portions of a multi-material contour are quasi-manifold. This new
test again consists of three phases and is identical to the two-

checks for whether the contour inside a single cube is a manifold
by an equivalent test for whether the contour is a quasi-manifold.
The index tests in phase three remain unchanged.

In analogy with the manifold case, the quasi-manifold test for
a multi-material cube involves collapsing each edge of the cube
whose endpoints have the same index. Now, the dual contour asso-
ciated with the cube is a quasi-manifold if and only if the collapsed
edge graph is a simplex (i.e; a point, a segment, a triangle or a tetra-
hedron). As in the two-sign case, the values of this function can
be pre-computed and stored in a lookup table of size 48. (If a cube
has 5 or more distinct indices, its edge graph cannot collapse to a

index on the cube and treating all of the remaining indices as being
equivalent. Since the resulting edge graph collapses to a segment,

test for determining whether the dual contour generated by this fine

dren are leaves, we desire a test based on the signs (or indices) at

corners defined a 2× 2× 2 coarse grid.
at the corners of the eight leaf cubes define a 3×3×3 grid whose

associated with the cube. For most common sign configurations on

(These configurations correspond to the ”ambigu-

the cube, these polygons define a manifold at this vertex.

Test whether the dual contour for each individual fine cube is

Test whether the fine contour is topologically equivalent to the

The first two checks restrict the simplification process to mani-

the fine leaf cubes are themselves the results of a previous collapse.)

due to unsafe simplification. For the first two checks, [Gerstner and

In practice, this restriction is acceptable since most fine resolution

sign configurations associated with a single cube and stored in a

fine contours as follows: First, the method checks for topological

simplex.) The correctness of this test can be verified by selecting an

material test with the exception that we replace the first and second

the dual contour is a manifold. Specifically, a multi-material dual

ple, figure 11 shows three examples of dual contours separating the

An apparent difficulty is that the contours of multi-material regions

case of multiple materials without any extra difficulty.

One nice feature of the contouring and simplification methods dis-

tion with the topology checks preventing further unsafe simplifica-

example of a simplified version of the mechanical part that has un-
order of increasing dimension. The right mesh in figure 8 shows an

mesh in figure 8 shows an example of the part after safe simplifica-

tinct connected components. In this case, the first check rejects the

simplified.

simplification. The dual contour for the left quadtree has two dis-

simplification as unsafe since the contour for the collapsed quadtree

checks and therefore the quadtree can be safely simplified.

simplification since the left edge of the quadtree cannot be safely
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Figure 11: Three multi-material quadtrees and their dual contours.

the portion of the contour corresponding to the chosen index is a
manifold.

Figure 11 shows two multi-material quadtrees that are candidates

fails on the bottom edge of the quadtree. The middle quadtree
passes all three checks and collapses to the quadtree on the right.
Note that the contour for this collapsed quadtree is a quasi-manifold
since the collapsed edge graph for this square is a triangle.

type of topological safety. Note that the disjoint components of the
Chinese character have fused together. The right version has been

5 Results

The current version of our geometric program runs on a consumer-
grade PC equipped with a GeForce 3 video card. The program per-
forms adaptive dual contouring on an indexed octree. The table
below shows the number of quads generated by our method for var-

times to simplify the initial octree (with topological safety) and then

to compute.

model # quads time (MS) space (MB)

part 643 2578 44 1.3

Chinese cube 1283 1646 636 32

temple 2563 39201 3586 156

david 5123 143533 2948 91
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Figure 12: The Chinese cube after unsafe simplification (left) and

for simplification. The left quadtree is rejected since the third check

safe simplification (right). Note that distinct parts of the character

from figure 5.

have merged during unsafe simplification.

safely simplified using the multi-sign test with separate regions of

Figure 12 shows two simplified versions of the Chinese cube

the character remaining distinct after simplification.

The left version has been simplified without any

ious examples after simplification to an error tolerance of 0.01. (All

generate polygons from the simplified octree. The CSG operations

grids have unit spacing.) The time field represents the sum of the

(spheres of radius 6) in figure 1 took approximately 30 milliseconds

LINDSTROM, P. 2000. Out-of-core simplification of large polygonal models. In Pro-

tively sampled distance fields:
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