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Abstract

We review a class of recently-proposed linear-cost network flow methods which are amenable to

parallel implementation. All the methods in the class use the notion of c-complementary slackness,

and most do not explicitly manipulate any "global" objects such as paths, trees, or cuts.
Interestingly, these methods have also stimulated a large number of new serial computational

complexity results. We develop the basic theory of these methods and present two specific

methods, the E-relaxation algorithm for the minimum-cost flow problem, and the auction algorithm

for assignment problem. We show how to implement these methods with serial complexities of
O(N3 log NC) and O(NA log NC), respectively. We also discuss practical implementation issues

and computational experience to date. Finally, we show how to implement e-relaxation in a

completely asynchronous, "chaotic" environment in which some processors compute faster than

others, some processors communicate faster than others, and there can be arbitrarily large
communication delays.
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1. Introduction

This paper considers a number of recent developments in network optimization, all of which

originated from efforts to construct parallel or distributed algorithms. One obvious idea is to have

a processor (or virtual processor) assigned to each node of the problem network. The intricacies of

coordinating such processors makes it awkward to manipulate the "global" objects - such as cuts,

trees, and augmenting paths - that are found in most traditional network algorithms. As a

consequence, algorithms designed for such distributed environments tend to use only local

information: the dual variables associated with a node and its neighbors, and the flows on the arcs

incident to the node. For reasons that will become apparent later, we call this class of methods

dual coordinate ascent methods. Their appearance has also stimulated a flurry of advances in serial

computational complexity results for network optimization problems.

Another feature of this class of algorithms is that they all use a notion called e-complementary

slackness. As we shall see, this idea is essential to making sure that a method that uses only local

information does not "jam" or halt at a suboptimal point. However, e-complementary slackness is

also useful in the construction of scaling algorithms. The combination of scaling and e-

complementary slackness has given rise to a number of computational complexity results, most of

them serial. Some of the algorithms behind these results use only local information, but others use

global data, usually to construct augmenting paths.

In this paper, we will concentrate on local algorithms, since they are the ones which hold the

promise of efficient parallel implementation, and show how they can be regarded as coordinate

ascent or relaxation methods in an appropriately-formulated dual problem. We will then take a

detailed look at what is perhaps the generic algorithm of the class, the e-relaxation algorithm, and

give both scaled and unscaled complexity results for it. We will also consider a related algorithm

for assignment problems, which we call auction, along with its scaled and unscaled complexities.

We discuss the practical performance of these algorithms, based on preliminary experimentation.

Finally, we will present an implementation of e-relaxation that works in a completely

asynchronous, chaotic environment.
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2. Basic Concepts

2.1. Duality

We first introduce the minimum-cost flow problem and its dual. Consider a directed graph with

node set N and arc set A, with each arc (i, j) having a cost coefficient aij. Letting fij be the flow of

the arc (i, j), the classical min-cost flow problem ([36], Ch.7) may be written

minimize X(ij)eA aijfij (MCF)

subject to

Z(i,j)eA fij - C(j,i)eA fji = Si V i E N (1)

bij < fij < cij ~V (i, j) E A, (2)

where aij, bij, ci, and si, are given integers. In order for the constraints (1) to be consistent, we

require that liEN Si = 0. We also assume that there exists at most one arc in each direction

between any pair of nodes, but this assumption is for notational convenience and can be easily

dispensed with. We denote the numbers of nodes and arcs by N and A, respectively. Also, let C

denote the maximum absolute value of the cost coefficients, max(i, j)e A laijl.

In this paper, aflow f will be any vector in RA, with elements denoted fij, (i, j) E A. A

capacity-feasible flow is one obeying the capacity constraints (2). If a capacity-feasible flow also

obeys the conservation constraints (1), it is afeasible flow.

We formulate a dual problem to (MCF) by associating a Lagrange multiplier Pi with each

conservation of flow constraint (1). Letting f be a flow and p be the vector with elements Pi,

i e N, we can write the corresponding Lagrangian function as

L(f, p) = ](i,j)EA (aij + Pj - Pi) fij + XiEN SiPi (3)

One obtains the dual function value q(p) at a vector p by minimizing L(f, p) over all capacity-

feasible flows f. This leads to the dual problem

maximize q(p) (4)

subject to no constraint on p,

with the dual functional q given by

q(p) = minf{L(f, p) I bij < fij < cij, (i, j) EA}



4

= (i,j)EA qij(Pi - Pj) + lieN SiPi (5a)

where

qij(Pi - pj) = min fij {(aij + Pj - Pi)fij I bij < fij < cij } (5b)

The function qij is shown in Figure 1. This formulation of the dual problem is consistent with

conjugate duality frameworks [39], [40] but can also be obtained via linear programming duality

theory [32], [36]. We henceforth refer to (MCF) as the primal problem, and note that standard

duality results imply that the optimal primal cost equals the optimal dual cost. We refer to the dual

variable Pi as the price of node i.

The results of this paper admit extension to the case where some or all of the cij are infinite,

introducing constraints into the dual problem. We omit these extensions in the interest of brevity.

2.2. Primal-Dual Coordinate Ascent: the Up and Down Iterations

We have now obtained a dual problem which is piecewise-linear and unconstrained. A

straightforward approach to distributed unconstrained optimization is to have one processor

responsible for maximization along each coordinate direction. However, the nondifferentiability of

the dual function q presents special difficulties.

Because of these difficulties, the algorithms we will examine in this paper are in fact primal-dual

methods, in that they maintain not only a vector of prices p, but also a capacity-feasible flow f such

that f and p jointly satisfy (perhaps approximately) the complementary slackness conditions

fij < cij Pi- Pj < aij V(i, j) e A (6a)

bij < fij Pi- Pj > aij V (i,j) E A . (6b)

Standard linear programming duality theory gives that f and p are jointly optimal for the primal and

dual problems, respectively, if and only if they satisfy complementary slackness and f is feasible.

Appealing to conjugate duality theory ([39] and [40]), there is a useful interpretation of the

complementary slackness conditions (6a-b). Referring to Figure 1, the complementary slackness

conditions on (i, j) and the capacity constraint bij < fij < cij are precisely equivalent to requiring that

-fij be a supergradient of the dual function component qij at the point Pi-Pj. This may be written

-fij E aqij(pi-pj). Adding these conditions together for all arcs incident to a given node i and

using the definition of the dual functional (5a), one obtains that the surplus of node i, defined to be

gi = (j,i)eA fji - X(i,j)eA fij + si , (7)
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is in fact a supergradient of q(p) considered as a function of Pi, with all other node prices held

constant. We may express this as gi E aqi(Pi; p), where qi( ; p) denotes the function of a single

variable obtained from q by holding all prices except the ith fixed at p. The surplus also has the

obvious interpretation as the flow into node i minus the flow out of i given by the (possibly

infeasible) flow f. Thus a flow f is feasible if and only if the corresponding surpluses gi are zero

for all iE N. (Note that the sum of all the surpluses is zero for any flow.)

We make a few further definitions: we say that an arc (i, j) is

Inactive if Pi < aij + Pj (8a)

Balanced if Pi = aij + Pj (8b)

Active if Pi > aij + Pj . (8c)

The combined condition -fij e aqij(pi-pj) may then be reexpressed as

fij = bij, if (i, j) active (9a)

bij <fij < cij, if (i, j) balanced (9b)

fij = cij, if (i, j) active . (9c)

Figure 2 displays the form of the dual function along a single price coordinate Pi. The breakpoints

along the curve correspond to points where one or more arcs incident to node i are balanced. Only

at the breakpoints is there any freedom in choosing arc flows; on the linear portions of the graph,

all arcs are either active or inactive, and all flows are determined exactly by (9a) and (9c).

It is now clear how to maintain a pair (f, p) satisfying complementary slackness while altering a

single dual variable Pi. Each time Pi passes through a breakpoint, one simply sets each arc incident

to i to its upper flow bound if it has become active, or to its lower flow bound if it has become

inactive. Often, however, it is useful to perform a somewhat more involved calculation that takes

advantage of the supergradient properties of the surplus gi. This calculation also supplants any

direct computation the directional derivatives of q. Suppose that we have (f, p) satisfying

complementary slackness, some node i for which gi > 0, and we are at a breakpoint in the dual

cost. Since gi is a supergradient of qi(pi; p), decreasing Pi must decrease the dual objective value

q, so either the current value of Pi is optimal or it should be increased. We then try to decrease the

surplus gi of i by "pushing" flow on the balanced arcs incident to i - that is, increasing the flow

on balanced outgoing arcs and decreasing the flow on incoming balanced arcs, to the extent

permitted by the capacity constraints (2). If the surplus can be reduced to zero in this way, we

conclude that Oe aqi(Pi; p), and hence that the current value of Pi is optimal. Otherwise, we set all

outgoing balanced arcs to their maximum flow, and all incoming balanced arcs to their minimum.

The resulting surplus gi is then the minimal member of aqi(pi; p), and hence (by the concavity of
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q) the directional derivative of q in the positive Pi direction. Consequently, we may improve the

dual objective by increasing Pi until we reach the next breakpoint, that is, until another arc becomes

balanced. At this point, we repeat the entire procedure, stopping only when we obtain gi = 0.

What we have just described is the basic outline of what we call the up iteration, which is central

to all dual coordinate ascent methods. It maximizes q along the Pi coordinate by increasing Pi,

while maintaining the capacity constraints and the complementary slackness of f and p. It reduces

the surplus of the node i to zero. There is also an entirely analogous down iteration that applies to

nodes with gi < 0, reduces the variable Pi, and increase gi to zero.

2.3. Jamming and the RELAX Approach

At this point, it may seem appealing to consider maximizing the dual function by starting with

some arbitrary pair (f, p) satisfying (9a-c) and repeatedly applying up and down iterations until all

nodes have zero surplus. It would then follow that the final f and p obtained would be primal and

dual optimal, respectively. Unfortunately, as shown in Figure 3, a nondifferentiable function such

as q, although continuous and concave, may have suboptimal points where it cannot be improved

by either increasing or decreasing any single variable. If this naive algorithm were to encounter

such a point, it would perform an infinite sequence of changes to the flow fij without ever halting

or changing the dual prices p. We call this phenomenon jamming.

One way of avoiding the jamming problem is embodied in the RELAX family of serial

computer codes (see [11], [13], [43]). Essentially, these codes make dual ascents along directions

that have a minimal number of non-zero components, which means that they select coordinate

directions whenever possible. Only when jamming occurs do they select more complicated ascent

directions. These codes have proved remarkably efficient in practice; however, they are not

particularly suitable for massively parallel environments because of the difficulties of coordinating

simultaneous multiple-node price change and labelling operations.

Note that jamming would not occur if the dual cost were differentiable. If the primal cost

function is strictly convex, then the dual cost is indeed differentiable, and application of coordinate

ascent is straightforward and well-suited to parallel implementation. Proposals for methods of this

type include [41], [19], [35], [21], and [33]. [45] contains computational results on a simulated

parallel architecture, and [44] results on an actual parallel machine. [14] and [15] contain

convergence proofs.
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2.4. The Auction Approach

A different, more radical approach to the jamming problem is to allow small price changes, say

by some amount £, even if they worsen the dual cost. This idea dates back to the auction algorithm

([8],[9],[10]), a procedure for the assignment (bipartite matching) problem that actually predates

the RELAX family of algorithms. In this algorithm, one considers the nodes on one side of the

bipartite graph to be "people" or agents placing bids for the "objects" represented the nodes on the

other side of the graph. The dual variables pj co:responding to the "object" nodes may then be

considered to be the actual current prices of the objects in the auction. The phenomenon of

jamming in this context manifests itself as two or more people submitting the same bid for an

object. In a real auction, such conflicts are resolved by people submitting slightly higher bids, thus

raising the price of the object, until all but one bidder drops out and the conflict is resolved (we

give a more rigorous description of the auction algorithm later in this paper).

This idea of resolving jamming by forcing (small) price increases even if they worsen the dual

cost is also fundamental to the central algorithm of this paper, which we call c-relaxation. First,

we must introduce the concept of E-complementary slackness.

2.5. e-Complementary Slackness

The e-complementary slackness conditions are obtained by "softening" the two inequalities of the

conventional complementary slackness conditions (6a-b) by an amount £ 2 0, yielding:

fi < cij Pi - Pj < aij + £ (10a)

bij < fij ~ Pi - pj 2 aij - £ . (10b)

The "kilter diagrams" of Figure 4 display the relationship imposed between Pi - pj and fij by both

e-complementary slackness and regular complementary slackness. We say that the arc (i, j) is

e-Inactive if Pi < aij + Pj- (1la)

E--Balanced if pi = aij + Pj - ( lb)

E-Balanced if aij + pj - £ < Pi < aij + pj + £ (11c)

£+-Balanced if Pi = aij + Pj +p (1 ld)

e-Active if Pi > aij ++ £ (1 le)

Note that e--balanced and £+-balanced are both special cases of e-balanced The e-complementary

slackness conditions (combined with the arc capacity conditions) may now also be expressed as

fij = bij if (i, j) is e-inactive (12a)

bij < fij • cij if (i, j) is £-balanced (12b)
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fij = cij if (i, j) is c-active . (12c)

The usefulness of £-complementary slackness is evident in the following proposition:

Proposition 1: If £ < 1/N, f is primal feasible (it meets both constraints (1) and (2)), and f and

p jointly satisfy c-CS, then f is optimal for (MCF).

Proof: If f is not optimal then there must exist a simple directed cycle along which flow can be

increased while the primal cost is improved. Let Y+ and Y- denote the sets of arcs of forward and

backward arcs in the cycle, respectively. Then we must have

(i,j)Ey+ aij - (ij)Y- aij < 0 (13a)

fi < cij for (i, j)e Y+ (13b)

bij < fij for (i,j) E Y-. (13c)

Using (10a-b), we have

Pi < pj + aij + £ for (i,j) e Y+ (14a)

Pj < Pi- aij + £ for (i,j) e Y-. (14b)

Adding all the inequalities (14a) and (14b) together and using the hypothesis e < 1/N yields

(ij) y+ aij - (ij) Y- aij > - Ne > -1

Since the aij are integral, this contradicts (13a). QED.

A strengthened form of Proposition 1 also holds when the arc cost coefficients and flow bounds

are not integer, and is obtained by replacing the condition e<1/N with the condition

£ < A min I Length of arc Lengthof Y < 0 (15)
All directed cycles Y Number of arcs in Y

where

Length of cycle Y = yi(ij)EY+ aij - J(ij)e y- aij (16)

The proof is obtained by suitably modifying the last relation in the proof of Proposition 1. A very

useful special case is that f is optimal if e < d/N, where d is the greatest common divisor of all the

arc costs. When all arc costs are integer, we are assured that d > 1.

The notion of e-complementary slackness was used in [8], [9], and introduced more formally in

[13], [14]. It was also used in the analysis of [42] (Lemma 2.2) in the special case where the flow

vector f is feasible. A useful way to think about e-complementary slackness is that if the pair (f, p)

obey it, then the rate of decrease in the primal cost to be obtained by moving flow around a directed
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cycle Y without violating the capacity constraints is at most IYle. It limits the steepness of descent

along the elementary directions (using the terminology of [39]) of the primal space.

2.6. The Basics of the e-Relaxation Method

We are now ready to describe the outlines of the e-relaxation algorithm. It starts with any

integer flow f and prices p satisfying e-complementary slackness. Such a pair may be constructed

by choosing p arbitrarily and then constructing f so as to obey (12a-c). The algorithm then

repeatedly selects nodes i with positive surplus (gi > 0) and performs up iterations at them. Unlike

the basic up iteration described above, though, these iterations set Pi to a value e above the

maximizer of the dual cost with respect to Pi. The flow is adjusted to maintain integrality and e-

complementary slackness, but not necessarily regular complementary slackness. As we shall

prove below, this process will eventually drive all the nodes' surpluses to zero, resulting in a pair

(f, p) satisfying the conditions of Proposition 1 (presuming e < 1/N). It avoids jamming by

following paths such as those depicted in figure 5. If e > d/N, where d is the greatest common

divisor of the arc costs, the algorithm will still terminate with a feasible flow, but this flow may not

be optimal.

2.7. The Goldberg-Tarjan Maximum Flow Method

Another important algorithm belonging to the dual coordinate ascent class is the maximum flow

method of Goldberg and Tarjan ([26] and [27]). This algorithm was developed roughly

concurrently with, and entirely independently from, the RELAX family of codes. The original

motivation for this algorithm seems to have been quite different than the theory we have developed

above; it appears to have been originally conceived of as a distributed, approximate computation of

the "layered" representation of the residual network that is common in maximum flow algorithms

[23]. However, it turns out that the first phase of this two-phase algorithm, in its simpler

implementations, is virtually identical to e-relaxation as applied to a specific formulation the

maximum flow problem. This connection will become apparent later. Basically, the distance

estimates of the maximum flow algorithm may be interpreted as dual variables, and the method in

fact maintains e-complementary slackness with e=1.

The connection between the Goldberg-Tarjan maximum flow and c-relaxation provided two

major benefits: e-relaxation gives a natural, straightforward way of reducing the maximum flow

method to a single phase, and much of the maximum flow method's complexity analysis could be

applied to the case of e-relaxation.
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2.8. Complexity Analysis

There are several difficulties in adapting the maximum flow analysis of [26] and [27] to the case

of c-relaxation. The first is in placing a limit on the amount that prices can rise. The approach

taken here synthesizes the ideas of [7] with those of [28]-[30]. This methodology can also be

applied directly to solving maximum flow problems with arbitrary initial prices.

Another problem is that offlow looping. This is discussed in Section 4.4 (see figure 7), and

refers to a phenomenon whereby small increments of flow move an exponential number of times

around a loop without any intermediate price changes. To overcome this difficulty one must

initialize the algorithm in a way that the subgraph of arcs along which flow can change is acyclic at

all times. In the max-flow problem this subgraph is naturally acyclic, so this difficulty does not

arise. Flow looping is also absent from the assignment problem because all arcs may be given a

capacity of 1, and (as we shall see) the algorithm changes flows by integer amounts only.

Section 4.4 also discusses the problem of relaxing nodes out of order. The acyclic subgraph

mentioned above defines a partial order among nodes, and it is helpful to operate on nodes

according to this order. This idea is central in the complexity analysis of [7], and leads to a simple

and practical implementation that maintains the partial order in a linked list. We call this the sweep

implementation. This analysis, essentially given in [7], provides an O(N23/£) complexity bound

where 3 is a parameter bounded by the maximum simple path length in the network where the

length of arc (i, j) is laijl. Maximum flow problems can be formulated so that 3/£=O(N), giving an

O(N3 ) complexity bound for essentially arbitrary initial prices. For other minimum cost flow

problems, including the assignment problem, the complexity is pseudopolynomial, being sensitive

to the arc cost coefficients. The difficulty is due to a phenomenon which we call price haggling.

This is analogous to the ill-conditioning phenomenon in unconstrained optimization, and is

characterized by an interaction in which several nodes restrict one another from making large price

changes (see section 6 and 7.1). This paper emphasizes degenerate price rises, which are critical to

overcoming price haggling, and shows that they can be implemented in a way that does not alter

the e-relaxation method's theoretical complexity.

2.9. Developments in Scaling

e-complementary slackness is also useful in constructing scaling algorithms, which conversely

help to overcome the problem of price haggling. We first distinguish between two kinds of

scaling: cost scaling and e-scaling. In cost scaling algorithms (which have their roots in [23]), one

holds e fixed and gradually introduces more and more accurate cost data; in e-scaling, the cost data



are held fixed and e is gradually reduced. In both cases, the solutions obtained at the end of each

scaling phase (except the last) may not be optimal for the cost data used for that phase, because e

may be greater than or equal to d/N. Computational experiments on e-scaling in the auction

algorithm were done in 1979 [8] and again in 1985 [9]. The method of c-scaling was first

analyzed in [28], where an algorithm with O(NAlog(N)log(NC)) complexity was proposed, and a

contrast with the method of cost scaling was drawn. The complexity of this algorithm was fully

established in [29] and [30], where algorithms with O(N 5/3A 2/31og(NC)) and O(N3 1og NC)

complexity were also given, and parallel versions were also discussed. The first two algorithms

use complex, sophisticated data structures, while the O(N31og(NC)) algorithm makes use of the

sweep implementation. Both also employ a variation of e-relaxation we call broadbanding, which

will be described later in this paper. Independent discovery of the sweep implementation (there

called the wave implementation) is claimed in [30]. These results improved on the complexity

bounds of all alternative algorithms for (MCF), which in addition are not as well suited for parallel

implementation as the e-relaxation method. Scaling analyses similar to [28] appeared later in such

works as [24], [25], and [2].

In this paper we show how to moderate the effect of price haggling by using a similar but more

traditional cost scaling approach in place of e-scaling. This, in conjunction with the sweep

implementation, leads to a simple algorithm with an O(N 31ogNC) complexity. This approach also

bypasses the need for the broadbanding modification to the basic form of the e-relaxation method,

introduced in [28]-[30] in conjunction with e-scaling.

Usually the most challenging part of scaling analysis ([18], [23], [28]-[30], [34], [38], [42]) is

to show how the solution of one subproblem can be used to obtain the solution of the next

subproblem relatively quickly. Here, the main fact is that the final price-flow pair (p, f) of one

subproblem violates the e-CS conditions for the next one by only a small amount. A way of taking

advantage of this was first proposed in Lemmas 2-5 of [28] (see also [29], [30]). A key lemma is

Lemma 5 of [28], which shows that the number of price changes per node needed to obtain a

solution of the next subproblem is O(N). There is a similar lemma in [18] that bounds the number

of maximum flow computations in a scaling step in an O(N4logC) algorithm based on the primal-

dual method. Our Lemma 5 of this paper is a refinement of Lemma 5 of [28], but is also an

extension of Corollary 3.1 of [7]. We introduce a measure 3(pO) of suboptimality of the initial

price vector pO, whereas [28]-[30] use an upper bound on this measure. This extension allows the

lemma to be used in contexts other than scaling.
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3. The £-Relaxation Method in Detail

To discuss e-relaxation in detail, we must first be more specific about when the method is

actually allowed to change the flow along an arc.

3.1. The Admissible Graph

When the e-relaxation algorithm is performing an up iteration at some node i, it only performs

two kinds of flow alterations: flow increases on outgoing e+-balanced arcs (i, j) with fij < cij, and

flow decreases on incoming e--balanced arcs (j, i) with fji > bji. We call these two kinds of arcs

admissible. The admissible graph G* corresponding to a pair (f, p) is the directed (multi)graph

with node set N, an edge (i, j) for each e+-balanced arc (i, j) in A with fij < cij, and a reverse edge

(j, i) for each e--balanced arc (i, j) in A with fij > bij. It is similar to the residual graph

corresponding to the flow f which has been used by many other authors (see [36], for example),

but only contains edges corresponding to arcs that are admissible.

3.2. Push Lists

To obtain an efficient implementation of c-relaxation, one must store a representation of the

admissible graph. We use a simple "forward star" scheme in which each node i stores a linked list

containing all the arcs corresponding to edges of the admissible graph outgoing from i - that is,

all arcs whose flow can be changed by iterations at i without any alteration in p. We call this list a

push list. Although it is possible to maintain all push lists exactly at all times, doing so requires

manipulating unnecessary pointers; it is more efficient to allow some inadmissible arcs to creep

onto the push lists. However, all push lists must be complete: that is, though it may contain some

extra arcs, i's push list must contain every arc whose flow can be altered by iterations at i without

a price change.

The complexity results in most of the earlier work on the dual coordinate ascent class of

algorithms ([26],[27],[28],[7]) implicitly require push lists or something similar. The first time

push lists seem to have been discussed explicitly is in [30], where they are called edge lists.

3.3. The Exact form of the Up Iteration

Assume that f is a capacity-feasible flow, the pair (f, p) obeys E-complementary slackness, a

push list corresponding to (f, p) exists at each node, and all these lists are complete. Let ie N be a

node with positive surplus (gi > 0).
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Up Iteration:

Step 1: (Find Admissible Arc) Remove arcs from the top of i's push list until finding one

which is still admissible (this arc is not deleted from the list). If gi > 0 and the arc so found

is an outgoing arc (i, j), go to step 2. If gi > 0 and the arc found is an incoming arc (j, i),

go to step 3. If the push list has become empty, go to Step 4. If an arc was found but

gi= 0, stop.

Step 2: (Decrease surplus by increasing fij) Set

fij := fij + 6

gi := gi -

gj := gj + ,

where 5 = min{g i, cij - fij}. If 6 = cij - fij, delete (i, j) from the i's push list (it must be the

top item). Go to step 1.

Step 3: (Decrease surplus by reducing fji) Set

fji:= fji- a

gi := gi - 6

gj := gj + ,

where 6 = min{g i, fji - bji}. If 6 = fji - bji, delete (i, j) from the i's push list (it must be

the top item). Go to step 1.

Step 4: (Scan/Price Increase) By scanning all arcs incident to i, set

pi :=min{{pj + aij+e [ (i,j) E A andfij < cij} u

{pj - aji + (j, i) E A and bji < fji}} (17)

and construct a new push list for i, containing exactly those incident arcs which are

admissible with the new value of Pi. Go to Step 1. (Note: If the set over which the

minimum in (17) is taken is empty and gi > 0, halt with the conclusion that the problem is

infeasible - see the comments below. If this set is empty and gi = 0, increase Pi by £ and

stop.)

The serial e-relaxation algorithm consists of repeatedly selecting nodes i with gi > 0, and

performing up iterations at them. The method terminates when gi < 0 for all iE N, in which case it

follows that gi = 0 for all ie N, and that f is feasible.
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3.4. Basic Lemmas

To see that execution of step 4 must lead to a price increase note that when it is entered,

fij = cij for all (i, j) such that Pi > Pj + aij + e (18a)

bji = fji for all (j, i) such that Pi > pj - aji + e, (18b)

which may be obtained by combining that the push list is empty and complete with e-

complementary slackness. Therefore, when Step 4 is entered we have

Pi < min{pj + aij + e I (i, j) E A and f ij < cij} (19a)

Pi < min{pj - aji + e [ (j, i) E A and bji < fji} . (19b)

It follows that step (4) must increase Pi, unless gi > 0 the set over which the minimum is taken is

empty. In that case, fij = cij for all (i, j) outgoing from i and bji = fji for all (j, i) incoming to i, so

the maximum possible flow is going out of i while the minimum possible is coming in. If gi > 0

under these circumstances, then the problem instance must be infeasible.

Lemma 1. The e-relaxation algorithm preserves the integrality of f, the e-complementary

slackness conditions, and the completeness of all push lists at all times. All node prices are

monotonically nondecreasing throughout the algorithm.

Proof: By induction on the number of up iterations. Assume that all the conditions hold at the

outset of an iteration at node i. From the form of the up iteration, all changes to f are by integer

amounts and 8-complementary slackness is preserved. By the above discussion, the iteration can

only raise the price of i. Only inadmissible arcs are removed from i's push list in steps 1, 2, and 3,

and none of these steps change any prices; therefore, steps 1, 2, and 3 preserve the completeness

of push lists. In step 4, i's push list is constructed exactly, so that push list remains complete.

Finally, we must show that the price rise at i does not create any new admissible arcs that should

be on other nodes' push lists. First, suppose (j, i)e A becomes e+-balanced as a result of a price

rise at i. Then (j, i) must have been formerly e-active, hence fji =cji, and (i, i) cannot be

admissible. A similar argument applies to any (i, j) that becomes 8--balanced as a result of a price

rise at i. We have thus shown that all edges added to the admissible graph by step 4 are outgoing

from i. QED.

Lemma 2. Suppose that the initial prices Pi and the arc cost coefficients aij are all integer

multiples of e. Then every execution of step 4 results in a price rise of at least e, and all prices

remain multiples of e throughout the 8-relaxation algorithm.

Proof: It is clear from the form of the up iteration that it preserves the divisibility of all prices by

E. Thus any price increase must be by at least e, and the above discussion assures that every
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execution of step 4 results in a price increase. The lemma follows by induction on the number of

up iterations. QED.

We henceforth assume that all arc costs and initial prices are integer multiples of £. A

straightforward way to do this, considering the standing assumption that the aij are integer, is to let

£ = l/k, where k is a positive integer, and assume that all Pi are multiples of 1/k. If we wish to

satisfy the conditions of proposition 1, a natural choice for k is N+1.

Lemma 3. An up iteration at node i can only increase the surplus of nodes other than i. Once a

node has nonnegative surplus, it continues do so for the rest of the algorithm. Nodes with

negative surplus have the same price as they did at the outset of the algorithm.

Proof: The first statement is a direct consequence of the statement of steps 2 and 3 of the up

iteration. The second then follows because each up iteration cannot drive the surplus of node i

below zero, and can only increase the surplus of adjacent nodes. For the same reasons, a node

with negative surplus can never have been the subject of an up iteration, and so its price must be

the same as at initialization, proving the third claim. QED.

3.5. Finiteness

We now prove that the £-relaxation algorithm terminates finitely. Since we will be giving an

exact complexity estimate in the next section, this proof is not strictly necessary. However, it

serves to illuminate the workings of the algorithm without getting involved in excessive detail.

Proposition 2: If problem (MCF) is feasible, the pure form of the e-relaxation method

terminates with (f, p) satisfying e-CS, and with f being integer and primal feasible.

Proof: Because prices are nondecreasing (lemma 1), there are two possibilities: either (a) the

prices of a nonempty subset N°° of N diverge to +oo, or else (b) the prices of all nodes in N

remain bounded from above.

Suppose that case (a) holds. Then the algorithm never terminates, implying that at all times there

must exist a node with negative surplus which, by lemma 3, must have a constant price. Thus, N-

is a strict subset of N. To preserve e-CS, we must have after a sufficient number of iterations

fij = cij for all (i, j) E A with i e N°°, j X N ° (20a)

fji = bji for all (j, i) e A with i E N° , j X No (20b)

while the sum of surpluses of the nodes in No is positive. This means that even with as much

flow as arc capacities allow coming out of N° to nodes j X N-° , and as little flow as arc capacities

allow coming into N °° from nodes j o N°°, the total surplus I{gi I i E N °°} of nodes in N °° is
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positive. It follows that there is no feasible flow vector, contradicting the hypothesis. Therefore

case (b) holds, and all the node prices stay bounded.

We now show that the algorithm terminates. If that were not so, then there must exist a node

i E N at which an infinite number of iterations are executed. There must also exist an adjacent £--

balanced arc (j, i), or £+-balanced arc (i, j) whose flow is decreased or increased (respectively) by

an integer amount during an infinite number of iterations. For this to happen, the flow of (j, i) or

(i, j) must be increased or decreased (respectively) an infinite number of times due to iterations at

the adjacent node j. This implies that the arc (j, i) or (i, j) must become £+-balanced or e--balanced

from e-balanced or £+-balanced (respectively) an infinite number of times. For this to happen, the

price of the adjacent node j must be increased by at least 2e an infinite number of times. It follows

that pj--o which contradicts the boundedness of all node prices shown earlier. Therefore the

algorithm must terminate. QED.

3.6. Variations

3.6.1. Degenerate Price Rises

Note that when the push list is empty, the price Pi of the current node will be raised at the end of

an up iteration even when gi = 0. We call such a price rise degenerate. Such price rises can be

viewed as optional, and do not affect the finiteness or complexity of the algorithm. It is possible to

omit them completely, and halt the up iteration as soon as gi = 0. However, our computational

experience has shown that degenerate price rises are a very good idea in practice. Similar price

changes are very useful in the RELAX family of algorithms.

Following the analysis of directional derivatives and supergradients of section 2.3, one may

show that at the end of the iteration, Pi equals e plus the largest value that maximizes the dual cost

with respect to Pi with all other prices kept fixed. An exception is when Step 4 terminates with

gi = 0 and the set in (17) empty. In this case, one can show that the dual cost is constant as Pi

increases without bound, and there is no largest real value of Pi maximizing the dual cost. We can

thus interpret the algorithm as a relaxation method, although "approximate relaxation" may be a

better term. If degenerate price rises are omitted, then the up iteration leaves Pi at e plus the

smallest maximizer of the dual objective with the other prices held fixed (refer to figure 6). Except

in the above exceptional case, each execution of step 4 corresponds to moving from the

neighborhood of one breakpoint of the dual cost to the next.

3.6.2. Partial Iterations

Actually, it is not necessary to approximately maximize the dual cost with respect to Pi. One can

also construct methods that work by repeatedly selecting nodes with positive surplus and applying
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partial up iterations to them. A partial up iteration is the same as an up iteration, except that it is

permitted to halt following any execution of step 2, 3, or 4. Such algorithms are not constrained to

reducing gi to zero before turning their attention to other nodes. It turns that out that these

algorithms retain the finiteness and most of the complexity properties of e-relaxation, but it might

be more appropriate to call them approximate descent methods. They become important when one

analyzes synchronous parallel implementations of c-relaxation.

3.6.3. Broadbanding

Another useful variation on the basic up iteration, which we call broadbanding, is due to

Goldberg and Tarjan [28]-[30]. In our terminology, broadbanding amounts to redefining the

admissible arcs to be those that are active and have fij < cij, along with those that are inactive and

have fij > bij. Using c-complementary slackness (6a-b), it follows that the admissible arcs consist

of

(i, j) such that fij < cij and Pi - pj E (aij, aij + £] (21a)

(j, i) such that fji > bji and pj - pj E [aji - £, aij) . (21b)

We use the name broadbanding because arcs admissible for flow changes from their "start" nodes

can have reduced costs anywhere in the band [--, 0), whereas in regular e-relaxation the reduced

cost must be exactly -e. A similar observation applies to admissible arcs eligible for flow changes

from their "end" nodes.

Broadbanding makes it possible to drop the condition that c divide all the arc costs and initial

prices, yet still guarantee that all price rises are by at least £, which is useful in e-scaling.

3.6.4. Down Iterations

It is possible to construct a down iteration much like the above up iteration, which is applicable

to nodes with gi < 0, and reduces (rather than raises) Pi. Unfortunately, if one allows arbitrary

mixing of up and down iterations, the e-relaxation method may not even terminate finitely.

Although experience with the RELAX methods ([11], [13], [14]) suggests that allowing a limited

number of down iterations to be mixed with the up iterations might be a good idea in practice, our

computational experiments with down iterations in c-relaxation have been discouraging. Although

we do not see these results as conclusive, we henceforth assume that the algorithm consists only of

up iterations.
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4. Basic Complexity Analysis

We now commence a complexity analysis of e-relaxation. We will develop a general analysis

for that will apply both to the (pure) e-relaxation algorithm we have already introduced, and to the

scaled version we will discuss later.

4.1. The Price Bound 3(p)

We now develop the price bound P[(p), which is a function of the current price vector p, and

serves to limit the amount of further price increases. For any path H, let s(H) and t(H) denote the

start and end nodes of H, respectively, and let H+ and H- be the sets of arcs that are positively and

negatively oriented, respectively, as one traverses the path from s(H) to t(H). We call a path simple

if it is not a circuit and has no repeated nodes. For any price vector p and simple path H we define

dH(p) = max { 0, (i,j)E H+ (Pi - Pj - aij) - (i,j)E H- (Pi - Pj - aij) I

= max{O 0, Ps(H)- Pt(H) - (ij)EH+ aij + X(iJ)e H- aij} I (22)

Note that the second term in the maximum above may be viewed as a "reduced cost length of H",

being the sum of the reduced costs (Pi - pj - aij) over all arcs (i, j)E H+ minus the sum of

(pi -Pj - aij) over all arcs (i, j)e H-. For any flow f, we say that a simple path H is unblocked

with respect tof if we have fij < cij for all arcs (i, j) E H+ , and we have fij > bij for all arcs (i, j) E

H-. In words, H is unblocked with respect to f if there is margin for sending positive flow along H

(in addition to f) from s(H) to t(H) without violating the capacity constraints.

For any price vector p, and feasible flow f, define

D(p, f) = max{dH(p) I H is a simple unblocked path with respect to f}. (23)

In the exceptional case where there is no simple unblocked path with respect to f we define D(p, f)

to be zero. In this case we must have bij = cij for all (i, j), since any arc (i, j) with bij < cij gives

rise to a one-arc unblocked path with respect to f. Let

D(p) = min{D(p, f) I feZA is feasible flow) . (24)

There are only a finite number of values that D(p, f) can take for a given p, so-the minimum in

(24) is actually attained for some f. The following lemma shows that P(p) provides a measure of

suboptimality of the price vector p. The computational complexity estimate we will obtain shortly is

proportional to 3(p0), where pO is the initial price vector.

Lemma 4: (a) If, for some y > 0, there exists a feasible flow f satisfying y-CS together with p

then
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0 < (p) < (N-1)y. (25)

(b) p is dual optimal if and only if 3(p) = 0.

Proof: (a) For each simple path H which is unblocked with respect to f and has IHI arcs we have,

by adding the y-CS conditions given by (6a-b) along H and using (22),

dH(P) < IHIy _ (N-l)y, (26)

and the result follows from (23) and (24).

(b) If p is optimal then it satisfies complementary slackness together with some primal optimal

vector f, so from (26) (with y= 0) we obtain [3(p) = 0. Conversely if 3(p) = 0, then from (24) we

see that there must exist a primal feasible f such that D(p, f) = 0. Hence dH(p) = 0 for all unblocked

simple paths H with respect to f. Applying this fact to single-arc paths H and using the definition

(16) we obtain that f together with p satisfy complementary slackness. Hence p and f are optimal.

QED.

4.2. Price Rise Lemmas

We have already established that 3(p) is a measure of the optimality of p that is intimately

connected with c-complementary slackness. We now show that 3(p) also places a limit on the

amount that prices can rise in the course of the e-relaxation algorithm. Corollary 3.1 of [7] is

adequate for establishing such a limit for the unscaled algorithm, but a more powerful result is

required for the analysis of scaling methods. The first such result is contained in Lemmas 4 and 5
of [28], but does not use a general suboptimality measure like 1(p). The following lemma

combines the analysis of [28] with that of [7], and is useful in both the scaled and unscaled cases.

Lemma 5. If (MCF) is feasible, the number of price increases at each node is O(D(p0)/e + N).

Proof: Let (f, p) be a vector pair generated by the algorithm prior to termination, and let f0 be a

flow vector attaining the minimum in the definition (24) of 13(pO). The key step is to consider

y = f- f0, which is a (probably not capacity-feasible) flow giving rise to the same surpluses

{gi, ie N} as f. If gt > 0 for some node t, there must exist a node s with gs < 0 and a simple path

H with s(H) = s, t(H) = t, and such that Yij > 0 for all (i, j) E H+ and Yij < 0 for all (i, j) E H-.

(This follows from Rockafellar's Conformal Realization Theorem, [39], p. 104.)

By the construction of y, it follows that H is unblocked with respect to f0. Hence, from (23) we

must have dH(pO) < D(pO, f0O) = P(pO), and by using (22),

Ps0 -P -Pt (i,j)e H+ aij + X(ij)e H- aij -< 3(p0) (27)
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The construction of y also gives that the reverse of H must be unblocked with respect to f.

Therefore, e-complementary slackness (6a-b) gives pj < Pi - aij + e for all (i, j)e H + and

Pi < pj + aij + £ for all (i, j)e H-. By adding these conditions along H we obtain

-Ps+ Pt + (ij)EH+ aij - (i,j)EH- aij < IHI £ < (N-1)£ , (28)

where IHI is the number of arcs of H. We have ps0 = Ps since the condition gs < 0 implies that the

price of s has not yet changed. Therefore, by adding (27) and (28) we obtain

Pt - PtO < 3(p0) + (N - 1)e (29)

throughout the algorithm for all nodes t with gt > 0. From the assumptions and analysis of the

previous section, we conclude that all price rises are by at least e, so there are at most 3(pO)/A +

(N- 1) price increase at each node through the last time it has positive surplus. There may be one

final degenerate price rise, so the total number of price rises is 1(p0)/e + N per node. QED.

In some cases, more information can be extracted from f - f0 than in the above proof. For

instance, Gabow and Tarjan [25] have shown that in assignment problems it is not only possible to

bound the price of the individual nodes, but also the sum of the prices of all nodes with positive

surplus. They use this refinement to construct an assignment algorithm with complexity

O(N1/ 2A log NC); however, the scaling subroutine used by this algorithm is a variant of the

Hungarian method, rather than a dual coordinate ascent method. Ahuja and Orlin [2] have adapted

this result to construct a hybrid assignment algorithm that uses the auction algorithm as a

subroutine, but has the same complexity as the method of [25]. This method switches to a variant

of the Hungarian method when the number of nodes with positive surplus is sufficiently small.

This bears an interesting resemblance to a technique used in the RELAX family of codes ([1 1],

[13], [43]), which, under certain circumstances typically occurring near the end of execution,

occasionally use descent directions corresponding to a more conventional primal-dual method.

4.3. Work Breakdown

Now that a limit has been placed on the number of price increases, we must limit the amount of

work involved associated with each price rise. The following basic approach to accounting for the

work performed by the algorithm dates back to Goldberg and Tarjan's early maximum flow

analysis ([26], [27]): we define:

Scanning work to be the work involved in executing step (4) of the up iteration - that is,

computing new node prices and constructing the corresponding push lists. We also

include in this category all work performed in removing items from push lists.
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Saturating Pushes are executions of steps 2 and 3 of the up iteration in which an arc is set to

its upper or lower flow bound (that is, 6 = cij - fij in step 2, or 6 = fji - bji in step 3).

Nonsaturating Pushes are executions of steps 2 and 3 that set an arc to a flow level strictly

between its upper and lower flow bounds.

Limiting the amount of effort expended on the scanning and saturating pushes is relatively easy.

From here on we will write f3 for [3(pO) to economize on notation.

Lemma 6. The amount of work expended in scanning is O(A([/£e + N)).

Proof: We already know that 0([/£ + N) price rises may occur at any node. At any particular

node i, step 4 can be implemented so as to use O(d(i)) time, where d(i) is the degree of node i. The

work involved in removing elements from a push list built by step 4 is similarly O(d(i)). Thus the

total (sequential) work involved in scanning for all nodes is

O( [lieN d(i)] ([/E + N)) = O(A(3/£ + N)) . (30)

QED.

Lemma 7. The amount of work involved in saturating pushes is also O(A(D/£ + N)).

Proof: Each push (saturating or not) requires O(1) time. Once a node i has performed a

saturating push on an arc (i, j) or (j, i), there must be a price rise of at least 2e by the node j before

another push (necessarily in the opposite direction) can occur on the arc. Therefore, O(f3/E + N)

saturating pushes occur on each arc, for a total of O(A(/£e + N)) work. QED.

4.4. Node Ordering and the Sweep Algorithm

The main challenge in the theoretical analysis of the algorithm is containing the amount of work

involved in nonsaturating pushes. There is a possibility of flow looping, in which a small amount

of flow is "pushed" repeatedly around a cycle of very large residual capacity. Figure 7 illustrates

that this can in fact happen. As we shall see, the problem can be avoided if the admissible graph is

kept acyclic at all times. One way to assure this is by having e < 1/N. In that case, one can easily

prove that the admissible graph must be acyclic by an argument similar to proposition 1.

However, we also have the following:

Lemma 8. If the admissible graph is initially acyclic, it remains so throughout the executions of

the e-relaxation algorithm.

Proof: All "push" operations (executions of steps 2 and 3) can only remove edges from the

admissible graph; only price rises can insert edges into the graph. Note also that in lemma 1, we
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proved that when edges are inserted, they are all directed out of the node i at which the price rise

was executed. Consequently, no cycle can pass through any of these edges. QED.

Thus, it is only necessary to assure that the initial admissible graph is acyclic.

If it is acyclic, the admissible graph has a natural interpretation as a partial order on the node set

N. A node i is called a predecessor of node j in this partial order if there is a directed path from i to

j in the admissible graph. If i is a predecessor of j, then j is descendent of i. Each push operation

moves surplus from one node to one of its immediate descendents, and surplus only moves

"down" the admissible graph in the intervals between price changes.

The key to controlling the complexity of nonsaturating pushes is the interaction between the

order in which nodes are processed and the order imposed by the admissible graph. The

importance of node ordering was originally recognized in the max-flow work of [26] and [27], but

the particular ordering used there does not work efficiently in the minimum-cost flow context.

To proceed with the analysis, we must first prohibit partial up iterations (see section 3.6.2):

every up iteration must drive the surplus of its node to zero. Secondly, we assume that the

algorithm be operated in cycles. A cycle is a set of iterations in which all nodes are chosen once in

a given order, and an up iteration is executed at each node having positive surplus at the time its

turn comes. The order may change from one cycle to the next.

A simple possibility is to maintain a fixed node order. The sweep implementation, given except

for some implementation details in [7], is a different way of choosing the order, which is

maintained in a linked list. Every time a node i changes its price, it is removed from its present list

position and placed at the head of the list (this does not change the order in which the remaining

nodes are taken up in the current cycle; only the order for the subsequent cycle is affected). We

say that a given (total) node order is compatible with the order imposed by the admissible graph if

no node appears before any of its predecessors.

Lemma 9. If the initial admissible graph is acyclic and the initial node order is compatible with it,

then the order maintained by the sweep implementation is always compatible with the admissible

graph.

Proof: By induction over the number of flow and price change operations. Flow alterations only

delete edges from the admissible graph, so the preserve compatibility. After a price rise at node i, i

has no predecessors (by the proof of lemma 1), hence it is permissible to move it to the first

position. So price rises also preserve compatibility. QED.
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Lemma 10. Under the sweep implementation, if the initial node order is acyclic and the initial

node order is compatible with it, then the maximum number cycles is O(N(1/e + N)).

Proof: Let N+ be the set of nodes with positive surplus that have no predecessor with positive

surplus, and let NO be the set of nodes with nonpositive surplus that have no predecessor with

positive surplus. Then, as long as no price increase takes place, all nodes in NO remain in NO, and

the execution of a complete up iteration at a node iE N+ moves i from N+ to N0. If no node

changed price during a cycle, then all nodes of N+ will be added to NO by the end of the cycle,

implying that the algorithm terminates. Therefore there will be a node price change during every

cycle except possibly for the last cycle. Since the number of price increases per node is O(3/e +

N), this leads to an estimate of a total of O(N(3/e + N)) cycles. QED.

Lemma 11. Under the same conditions as lemma 10, the total complexity of nonsaturating

pushes is O(N2([3/e + N)).

Proof: Nonsaturating pushes necessarily reduce the surplus of the current node i to zero, so there

may be at most one of them per up iteration. There are less than N iterations per cycle, giving a

total of O(N2 (P/E + N)) possible nonsaturating pushes, each of which takes 0(1) time. QED.

Figure 8 depicts the sweep implementation.

Proposition 3. Under the sweep implementation, if the initial admissable graph is acyclic and

the initial node order is compatible with it, then the total complexity of the sweep implementation is

O(N2(0/e + N)).

Proof: Combining the results of lemmas 6, 7, and 11, we find that the dominant term is

O(N2([3/e + N)), corresponding to the nonsaturating pushes (since we assume at most one arc in

each direction between any pair of nodes, A = O(N2 )). The only other work performed by the

algorithm is in maintaining the linked list, which involves only 0(1) work per price rise, and

scanning down this list in the course of each cycle, which involve O(N) work per cycle. As there

are O(N2 (1/e + N)) price rises and O(N(f/e + N)) cycles, both these leftover terms work out to

O(N2 (3P/e + N)). QED.

A straightforward way of meeting the conditions of proposition 3 is to choose p arbitrarily and

set fij = cij for all active (as opposed to e-active) arcs and fij = bij for all inactive ones. Then there

will be no admissible arcs, and the initial admissible graph will be trivially acyclic. The initial node

order may then be chosen arbitrarily.

The above proof also gives insight into the complexity of the method when other orders are

used. At worst, only one node will be added to NO in each cycle, and hence that there may be
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Q(N) cycles between successive price rises. In the absence of further analysis, one concludes that

the complexity of the algorithm is a factor of N worse.

An alternate approach is to eschew cycles, and simply maintain a data structure representing the

set of all nodes with positive surplus. [30] shows that a broad class of implementations of this

kind have complexity O(NA(3/£ + N)). (Actually, these results are embedded in a scaling

analysis, but the outcome is equivalent.)

We now give an upper bound on the complexity of the pure (unscaled) e-relaxation algorithm,

using the sweep implementation. Suppose we set the initial price vector pO to zero and choose f so

that there are initially no admissible arcs. Then a crude upper bound on 1 is NC, where C is the

maximum absolute value of the arcs costs, as in section 2. Letting e = 1/(N + 1) to assure

optimality upon termination, we get an overall complexity bound of O(N4 C). Figure 9

demonstrates that the time taken by the method can indeed vary linearly with C, so the algorithm is

exponential.

Note also that any upper bound P* on [3 provides a means of detecting infeasibility: If the

problem instance (MCF) is not feasible, then the algorithm may abort in step 4 of some up

iteration, or some group of prices may diverge to +oo. If any price increases by more than

3* + N£, then we may conclude such a divergence is happening, and halt with a conclusion of

infeasibility. Thus, the total complexity may be limited to O(N2(f*/e + N)), even without the

assumption of feasibility. NC is always a permissible value for 3*.

5. Application to Maximum Flow

For classes of problems with special structure, a better estimate of 1(pQ) may be possible. As an

example, consider the max-flow problem formulation shown in Figure 10. The artificial arc (t, s)

connecting the sink t with the source s has cost coefficient -1, and flow bounds bts = 0 and cts =

Lie N Csi . We assume that aij = 0 and bij = O < cij for all other arcs (i, j), and that si = 0 for all i.

We apply the e-relaxation algorithm with initial prices and arc flows satisfying e-complementary

slackness, where £ = l/(N+1). The initial prices may be arbitrary, so long as there is on 0(1)

bound on how much they differ. Then we obtain dH(p0) = 0(1) for all paths H, 1(p0) = 0(1), and

an O(N3) complexity bound. Note we may choose any positive value for £ and negative values for

ats, as long as £ = -ats/(N+l) (more generally £ = -ats/(l+ Largest number of arcs in a cycle

containing (t,s))).

Applied like this to the maximum flow problem, e-relaxation yields an algorithm resembling the

maximum flow algorithm of [26]-[27], and having the same complexity. However, it has only one
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phase. The first phase of the procedure of [26]-[27] may in hindsight considered to be an

application of e-relaxation with £ = 1 to the (infeasible) formulation of the maximum flow problem

in which one considers all arcs costs to be zero, ss = -o, and st = + oo.

6. Scaling Procedures

In general, some sort of scaling procedure ([ 18], [23], [38]) must be used to make the c-

relaxation algorithm polynomial. The basic idea is to divide the solution of the problem into a

polynomial number of subproblems (also called scales or phases) in which £-relaxation is applied,

with 3(pO)/c being polynomial within each phase. The original analysis of this type, as we have

mentioned, is due to Goldberg ([28] and, with Tarjan, [30]), who used e-scaling. In order to be

sure that all price rises are by gQ(£) amounts, both these papers use the broadbanding variant of e-

relaxation as their principal subroutine (though they also present alternatives which are not dual

coordinate ascent methods). Here, we will present an alternative cost scaling procedure that results

in an overall complexity of O(N3 log NC).

6.1. Cost Scaling

Consider the problem (SMCF) obtained from (MCF) by multiplying all arc costs by N+1,

that is, the problem with arc cost coefficients

aij' = (N+1)aij for all (i, j). (31)

If the pair (f ', p') satisfies 1-complementary slackness (namely e-complementary slackness with

£2= 1) with respect to (SMCF), then clearly the pair

(f, p)=(f', p'/(N+l)) (32)

satisfies (N+1)-l-complementary slackness with respect to (MCF), and hence f' is optimal for

(MCF) by Proposition 1. In the scaled algorithm, we seek a solution to (SMCF) obeying 1-

complementary slackness.

Let

M = Llog 2 (N+1)CJ + 1 = O(log(NC)) . (33)

In the scaled algorithm, we solve M subproblems, in each case using the sweep implementation of

c-relaxation. The mth subproblem is a minimum cost flow problem where the cost coefficient of

each arc (i, j) is

aij(m) = Trunc( aij'/ (2M - m) ), (34)

where Trunc( · ) denotes integer rounding in the direction of zero, that is, down for positive and up

for negative numbers. Note that aij(m) is the integer consisting of the m most significant bits in the
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M-bit binary representation of aij'. In particular, each aij(l) is 0, +1, or -1, while aij(m+l) is

obtained by doubling aij(m) and adding (subtracting) one if the (m+l)st bit of the M-bit

representation of aij' is a one and aij' is positive (negative). Note also that

aij(M) = aij', (35)

so the last problem of the sequence is (SMCF).

For each subproblem, we apply the unscaled version of the algorithm with e = 1, yielding upon

termination a pair (ft(m), pt(m)) satisfying 1-complementary slackness with respect to the cost

coefficients aij(m).

The starting price vector for the (m+1)st problem (m = 1, 2, .... , M-1) is

pO(m+1) = 2pt(m). (36)

Doubling pt(m) as above roughly maintains complementary slackness since aij(m) is roughly

doubled when passing to the (m+l)st problem. Indeed it can be seen that every arc that was 1 -

balanced (1 - active, 1 - inactive) upon termination of the algorithm for the mth problem will be 3 -

balanced (1 - active, 1 - inactive, respectively) at the start of the (m+1)st problem.

The starting flow vector fO(m+l) for the (m+l)st problem may be obtained from ft(m) in any

way that obeys 1-complementary slackness, keeps the admissible graph acyclic, and allows

straightforward construction of a compatible node order. The simplest way to do this is to set

f0ij(m+l) = ftij(m) for all balanced arcs (i, j), (37a)

foij(m+l) = cij for all active arcs (i, j), and (37b)

f0ij(m+l) = bij for all inactive arcs (i, j). (37c)

This procedure implies that the initial admissible graph for the (m+l)st problem has no edges, and

so an arbitrary node order (such as the one from the end of the last subproblem) may be used. A

procedure that does not alter as many arc flows (and hence likely to generate fewer nodes with

nonzero surplus) is to set

f0ij(m+l) = cij for all 1 - active arcs (i, j),

f0ij(m+l) = bij for all 1 - inactive arcs (i, j),

f0ij(m+l) = cij for all 1+ - active arcs (i, j) that were not admissible at the end

of the previous phase,

f0 ij(m+l) = bij for all 1- - active arcs (i, j) that were not admissible at the end

of the previous phase, and
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f0ij(m+l) = ftij(m) for all other arcs (i, j).

In this case, the edge set of the new admissible graph will be a subset of that prevailing at the end

of subproblem m, hence the new graph will be acyclic. Furthermore, the node order at the end of

phase m will be compatible with the new admissible graph, and may be used as the starting node

order for phase m+l. For the first subproblem, however, there is no prior admissible graph, so

the procedure (37a-c) must be used, and the initial node order can be arbitrary. The starting prices

may be arbitrary so long as there is an O(N) bound on how much they can differ.

6.2. Analysis

Using the analysis of section 4, it is now fairly straightforward to find the complexity of the

scaled form of the algorithm as outlined above.

Proposition 4. The complexity of the scaled form of the c-relaxation algorithm is

O(N 3 log NC).

Proof: Using Proposition 3 and e = 1, the complexity of the scaled form of the algorithm is

O(N 2B + N 3M) where

M

B = X, m(p0(m)) (38)
m= 1

and [3m(-) is defined by (22) - (24) but with the modified cost coefficients aij(m) replacing aij in

(22). We show that

3m(p0(m)) = O(N) for all m, (39)

thereby obtaining an O(N3 log NC) complexity bound, as M = O(log NC).

At the beginning of the first subproblem, we have

pi-Pj=O(l), aij(l) = O(l) for all arcs (i, j), (40)

so we obtain dH(p 0(l)) = O(N) for all H, and l3 (pO(1)) = O(N). The final flow vector ft(m)

obtained from the m-th problem is feasible, and together with pO(m+l) it may be easily seen to

satisfy 3-complementary slackness. It follows from Lemma 4(a) that

13m+l(p 0(m+l)) < 3(N-1) = O(N) . (41)

It then follows that B = O(NM), and the overall complexity is O(N3 log NC). QED.

Of course, many variations are possible. For example, it is not necessary to use the sweep

implementation to achieve polynomial complexity. Also, it is possible to increase the accuracy of

the cost data by factors other than two. Our limited computational experiments on the NETGEN
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family of problems seems to indicate that it is more efficient to increase accuracy by a factor

between 4 and 8 between consecutive subproblems.

6.3. Further Developments in Scaling

Other recent developments in scaling include Gabow and Tarjan's [25], which is also a cost

scaling method. Ahuja and Orlin, working jointly with Goldberg and Tarjan, have also developed

a double scaling method which scales not only £, but also surpluses and arc capacities, and has

complexity O(NA (log log U) log NC), where U is the maximum arc capacity cij [3] .

Furthermore, analysis in [30], drawing on some ideas of Tardos [42], shows that a strongly

polynomial bound (that is, one polynomial in N and A) may be placed on a properly implemented

scaling algorithm.

7. The Auction Algorithm

7.1. Motivation

Despite the good theoretical complexity bounds available for the scaled form of e-relaxation and

its relatives, dual coordinate algorithms have not yet proven themselves to be good performers in

practice. Although nonsaturating pushes are the theoretical bottleneck in the algorithm, they

present little problem in practice. We have observed that typically there are only a few flow

alterations between successive price rises. The real problem with the algorithm is the tendency of

prices to rise at the theoretically minimum rate - by only £ or 2e per price change. This is the

phenomenon of price haggling. Essentially, the algorithm is following a "staircase" path in the

dual (such as in figure 5), where the individual steps are very small.

Without scaling, the amount of price haggling can be exponential (as in figure 9), so scaling is

clearly necessary to make e-relaxation efficient. However, even with scaling, our computational

experiments have shown that haggling is still a serious difficulty. It often manifests itself in a

prolonged "endgame" at the close of each subproblem, in which only a handful of nodes have

positive surplus at any given time. Our experiments have also shown that degenerate price rises

cause a dramatic decrease in price haggling, often by orders of magnitude; we contend that they

will be necessary in any practical implementation of algorithms of this type.

Even with scaling and degenerate steps, however, we have found e-relaxation to be several

orders of magnitude slower than state-of-the-art sequential codes such as RELAX for large

problems. We have not yet experimented with broadbanding and c-scaling as opposed to cost

scaling; although these techniques may offer some speed-up, we suspect it will not be dramatic.

Also, the potential speed-up obtainable by a parallel implementation, as roughly indicated by the



29

average number of nodes that simultaneously have positive surplus, appears to be only an order of

magnitude or less. To make e-relaxation algorithms viable, even on massively parallel machines,

more work will need to be done to overcome price haggling.

The auction algorithm for the assignment problem, however, when combined with scaling,

seems to have only limited difficulties with price haggling, and appears competitive with state-of-

the-art codes even without any benefit from parallelism. Indeed, it has proved faster on a limited

set of test problems. We will now develop the theory of this more specialized algorithm.

7.2. Constructing Auction from e-Relaxation

We now develop the auction algorithm as a variant of e-relaxation. Note that the converse is

also possible: by converting a minimum-cost flow problem to an assignment problem, and

applying the auction algorithm, one may obtain a generic version of e-relaxation. For a derivation

of the auction method from first principles, refer to [9] and [10].

Consider a feasible assignment problem with n sources, n sinks, and an arbitrary set A of

source-to-sink arcs. We say that source i is assigned to sink j if (i, j) has positive flow. All arcs

are given capacity 1, so a flow change always sets an arc to its upper or lower bound, and all

pushes are saturating. Thus, if one keeps track of the set of positive-surplus nodes such that the

work of finding a node to iterate upon is always 0(1), then the complexity of the pure e-relaxation

algorithm (using push lists, of course) is reduced to O(A(3/e + N)), regardless of the order in

which nodes are processed. Scaling therefore yields an O(NA log NC) algorithm. We now

consider an algorithm in which up iterations are paired into "bids". Between bids (and also at

initialization), only source nodes i can have positive surplus. Each bid does the following:

(I) Finds any unassigned source i (that is, one with positive surplus), and performs an up

iteration at i.

(II) Takes the sink j to which i was consequently assigned, and performs an up iteration at

j, even ifj has zero surplus. If j has zero surplus, such an up iteration may just consist

of a degenerate price rise. If the presence of an admissible arc on j's push list indicates

that no price rise is possible, then this step takes just 0(1) time, aside from the work of

removing inadmissible arcs from j's push list, which is "charged" against earlier

scanning steps.

More specifically, a bid by node i works as follows:

(a) Source node i sets its price to pj + aij + e, where j minimizes pk + aik + e over all k for

which (i,k)e A. It then sets fij=l, assigning itself to j.
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(b) Node i then raises its price to pj, + aij + E, where j' minimizes Pk + aik + e for k;j,

(i,k)e A.

(c) If sink j had a previous assignment fij=l, it breaks the assignment by setting fij := 0

(one can show inductively that if this occurs, pj = Pi, - aij + c).

(d) Sink j then raises its price pj to

Pi - aij + £ = Pj' + aij - aij + 2e. (42)

It is possible to rewrite the description of the bidding operation so that the prices of sinks do not

explicitly appear. For compatibility with [9] and [10], we also formulate the assignment problem
as a maximization by reversing the signs of all the aij. Let y = 2£, and define the value vij of a sink

j to a source i to be aij - pj. The rewritten bid iteration becomes

(1) Choose a person i who is unassigned.

(2) Find an objectj* that offers maximum value to i, that is

aij - pj* = max(i, j) E A I aij - Pj I. (43)

Also, find the best value offered by objects other than j*, namely

wij* = max(i,j) EA,j j* { aij -Pj } (44)

(3) Compute the bid price

bij* = aii* - wij* + y, (45)

and raise the price pj* of j* to this level. Assign i to j*, and break any prior assignment

that j* may have had.

What we have just described is the Gauss-Seidel or sequential version of the auction algorithm

of [9]-[10]. Those papers, also show that several source nodes may place bids simultaneously. In

that case, each sink node that receives more than one bid awards itself (provisionally) to the highest

bidder. Hence the name "auction algorithm".

We may think of each node i as an agent who is trying to assign itself to an object j that comes
within y of offering the highest value to i. Once i has found the most desirable object j*, it bids

j*'s price up to the highest level that still satisfies this criterion. In an actual auction involving real

money, doing this would be foolish; however, we believe that this feature is instrumental in

reducing price haggling and is precisely what makes the algorithm converge well in practice.
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7.3. Push Lists and Complexity

If we implement the auction algorithm as a variation of e-relaxation with a special node

ordering scheme, as described above, then proper attention to push lists will insure an

O(A(j3/s + N)) unscaled complexity. The only detail one must worry about is that up iterations

begun at nodes with zero surplus (as in (II) above) do not add to the overall effort. The discussion

in (II) above establishes this. Applying scaling then gives a complexity of O(NA log NC).

However, as in (a-d), it is actually possible to state the auction algorithm without reference to

any of the source node prices Pi. We now present an implementation of auction that does not

maintain source node prices, yet retains the complexity O(NA log NC).

Given any prices p on the sink nodes, define an artificial price ni of each source node i by

Xi=-max(i,j)eA { aij-pj } (46).

The reader may confirm that the prices x, p and the current flow (assignment) f always obey y-

complementary slackness. The reader may also refer to [10] for a proof that if f is feasible (that is,

it is a complete assignment) and (f, x, p) satisfy y-complementary slackness with y< l/n = 2/N,

then f is optimal. This accords with proposition 1 and the definition y = 2e.

Suppose there is a limit 3P* on the amount that any single pj can rise. From (a-d) above, all

prices are by at least y, so there are at most 3*/y price rises at any sink, or - by (46) - at any

source.

Each source node i maintains a push list consisting of all nodes except j* that were tied for

offering the value wij* the last time i scanned its incident arcs. Along with each node is stored the

price pj' that prevailed for j at the time the last scan was done. The bids are performed as follows

(note that, as in e-relaxation, all prices are nondecreasing):

(1) Locate an unassigned source node i.

(2) Examine the elements 0(, pj') of push list of i, starting at the top. Discard any for which

pj' < pj. Continue until reaching the end of the list, or the second element for which

pj'= pj. If the end is reached, go to step (4).

(3) Let j* be the first element on the list for which pj' =pj. Discard the contents of the list

up to, but not including, the second such element. Place a bid on j* at price level

pj + y, assigning i to j* and breaking any prior assignment of j*. Stop.

(4) Scan the incident arcs of i, determining an element j* with maximum value, the next

best value wij*, as defined above, and all elements (other than j*) tied at value level
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wij*. Let the new push list of i be a list of all nodes j other than j* tied at value level

wij*, coupled with their present prices. Submit a bid for j* at price level bij*, assigning

i to j* and breaking any prior assignment ofj*. Stop.

This method has complexity O(A3'*Iy). We omit the details of the proof, but the key

observation is that (4) can performed in O(d(i)) time, and that between for every two consecutive

executions of (4) at a given node i, there must be an increase in the artificial price lni of i. Placed in

a scaling context where prices cannot rise by more than 3*/y = O(n) times per node in each

subproblem, one can derive an overall complexity of O(NA log NC). However, it is not clear

whether the overhead of keeping push lists in the auction algorithm is actually justified in practice.

A simpler implementation that has i scan its incident arcs once per bid, whether or not there has

been a change in ni, can be shown to have complexity O(N3 log NC).

7.4. Computational Results

In this section we discuss limited computational experience with a serial FORTRAN code called
AUCTION, which implements the auction algorithm using e-scaling. The initial sink prices were

pj = mini aij for all j; this is a common choice for dual assignment algorithms. At the end of the kth

subproblem, AUCTION checks the current assignment to see if it is optimal for the subproblem

k+l, using the current prices i,p. (Note that this check is much less elaborate than the procedure

proposed in [30] for the scaled e-relaxation algorithm. There, a shortest-path type of calculation is

used to try and "fit" prices to the current flow. This is an interesting idea which we have not

experimented with.) If the current assignment does not obey e-complementary slackness with x, p

using the new value of e, all assignments along e-inactive arcs are deleted, and the auction is run

again.

The version of AUCTION discussed here uses a Gauss-Seidel scheme, in which only one node

bids at a time. For computational results with a Jacobi version of AUCTION, which simulates all

unassigned nodes bidding simultaneously, refer to [10]. The Gauss-Seidel version is faster, but of

course not as amenable to parallel implementation.

Test problems were generated using the 1987 release version of the widely-used public domain

generator NETGEN [31]. The AUCTION code was compared with the relaxation FORTRAN

code RELAX-II [18], [20]. To give AUCTION truly state-of-the-art competition, we should have

used the specially adapted version of RELAX-II, RELAX-IIA. However, experience has shown

that RELAX-ILA is only about 15% to 20% faster than RELAX-II. Both codes were run on a

MicroVAX II CPU under the VMS 4.6 operating system.
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Our results are summarized in figures 11-13. In all runs, the initial value of £ was nC/2, and e

was reduced by a factor of 6 for each subproblem. Figure 11 gives the solution times for five

problems with equal density (1.5%). Figure 12 gives times for five problems in which the average

node degree was 5. Figure 13 shows times for five problems with the same number of nodes, but

varying numbers of arcs.

A Jacobi version of the auction algorithm has also been independently implemented and tested

on dense assignment problems by Professor J. Kennington and Mr. L. Hatay at Southern

Methodist University using a Sequent Balance 21000 computer - a shared memory parallel

machine. Figure 14 shows their results with a multiple processor implementation and, the speedup

they obtained as a function of the number of CPUs employed. The efficiency of the algorithm for a

small number of processors appears quite satisfactory. Note that the speedup with one processor

is less than one because, even on a single processor, their parallel code is not as efficient as their

serial code.

8. Asynchronous Implementation of e-Relaxation

So far as we know, nobody has been able to show how a theoretical speedup of either the

auction or e-relaxation algorithms may be obtained by a simple synchronous parallel

implementation. In this section we will do something quite different: we demonstrate that there is a

version of the e-relaxation algorithm that converges even in a completely chaotic, asynchronous

environment. Because the assumptions made in this model are so loose, it is not possible to come

up with anything comparable to a complexity estimate. The real point is to show that the algorithm

is resilient to the imperfections and inhomogeneities that may characterize some real-life distributed

computing environments. The formulation involves a far more flexible type of asynchronism than

can be obtained with the use of synchronizers [4]. Algorithmic convergence is often difficult to

establish for chaotic models, but powerful results are now available to aid in this process [15]-

[17], [20]. The algorithm given here is more complex than a related algorithm for strictly convex

arc costs [15], and requires a novel method of convergence proof.

We now return to the ordinary e-relaxation method and assume that each node i is a processor

that updates its own price and incident arc flows, and exchanges information with its "forward"

adjacent nodes

F i= {j I (i, j) e A), (47)

and its "backward" adjacent nodes
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B i = {j I (j, i) E Al. (48)

The following distributed asynchronous implementation applies to both the pure algorithm and to

the subproblems of the scaled method. The information available at node i for any time t is as

follows:

Pi(t): The price of node i

pj(i, t): The price of node j E Fi u Bi communicated by j at some earlier time

fij(i, t): The estimate of the flow of arc (i, j), j E Fi, available at node i at time t

fji(i, t): The estimate of the flow of arc (j, i), j e Bi, available at node i at time t

gi(t): The estimate of the surplus of node i at time t given by

gi(t) = 0(j,i)eA fji(i, t) - (i,j)eA fij(i, t) - Si (49)

A more precise description is possible, but for brevity we will keep our discussion somewhat

informal. We assume that, for every node i, the quantities above do not change except possibly at

an increasing sequence of times to, t 1, ... , with tm -- oo. At each of these times, generically

denoted t, and at each node i, one of three events happens:

Event 1. Node i does nothing.

Event 2. Node i checks gi(t). If gi(t) < 0, node i does nothing further. Otherwise node i

executes either a complete or partial up iteration based on the available price and

flow information

Pi(t), pj(i, t), j E F i u B i, fij(i, t), j E Fi , fji(i, t), j E B i ,

and accordingly changes

Pi(t), fij(i, t), j c F i, fji(i, t), j E B i.

Event 3. Node i receives, from one or more adjacent nodes j E Fi u Bi, a message

containing the corresponding price and arc flow (pj(t'), fij(J, t')) (in the case j e

Fi), or (pj(t'), fji(i, t')) (in the case j E B i) stored at j at some earlier time t' < t.

If

,jt' < . i_ , . \
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node i discards the message and does nothing further. Otherwise, node i stores

the received value pj(t') in place of pj(i, t). In addition, if j E F i, node i stores

fij(j, t') in place of fij(i, t) if

Pi(t) < pj(t) + aij, and fij(J, t') < fi(i, t)

and otherwise leaves fij(i, t) unchanged; in the case j E B i, node i stores fji(J, t')

in place of fji(i, t ) if

pj(t') > pi(t) + aji, and fji(J, t') > fji(i, t)

and otherwise leaves fij(i, t) unchanged. (Thus, in case of a balanced arc, the "tie"

is broken in favor of the flow of the start node of the arc.)

Let Ti be the set of times for which an update by node i as in event 2 above is attempted, and let

Ti(j) be the set of times when a message is received at i from j as in event 3 above. We assume the

following:

Assumption 1. Nodes never stop attempting to execute an up iteration, and receiving

messages from all their neighbors, i.e., T i and Ti(j) have an infinite number of elements

for all i and j E F i u B i.

Assumption 2. Old information is eventually purged from the system, i.e., given any time

tk, there exists a time tm > tk such that the time of generation of the price and flow

information received at any node after tm (i.e., the time t' in #3 above), exceeds tk.

Assumption 3. For each i, the initial arc flows fij(i, to), j E Fi, and fji(i, to), j E B i are

integer, and satisfy c-CS together with Pi(to) and pj(i, to), j E F i u B i. Furthermore

there holds

Pi(t0 ) > Pi(, to), for all j E Fi u B i

fij(i , to) > fij(i, to), for all j E F i .

One set of initial conditions satisfying Assumption 3 but requiring little cooperation between

processors is pj(i, to) . - oo for i and j E F i u B i, fij(i, to) = cij and fij(i, to) = bij for i and j E F i.

Assumption 3 guarantees that for all t > to

Pi(t) > Pi(j, t"), for all j E F i u B i, t" < t (50)

To see this, note that pi(t) is monotonically nondecreasing in t, and Pi(j, t") equals pi(t') for some

t' < t".
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For all nodes i and times t, fij(i, t) and fji(i, t) are integer, and satisfy e-CS together with pi(t)

and pj(i, t), j E F i u Bi. This is seen from (50), the logic of the up iteration, and the rules for

accepting information from adjacent nodes. Furthermore, for all i and t > to

fij(i, t) > fij(j, t, for all j E F i , (51)

i.e., the start node of an arc has at least as high an estimate of arc flow as the end node. For a given

(i, j) E A, condition (51) holds initially by Assumption 3, and it is preserved by up iterations at i

since they cannot decrease fij(i, t), while an up iteration at j cannot increase fij(i, t). It can also be

shown that (51) cannot be violated at the time of a message reception, but we omit the proof.

Once a node i gets nonnegative surplus gi(t) > 0, it maintains a nonnegative surplus for all

subsequent times. The reason is that an up iteration at i can at most decrease gi(t) to zero, while in

view of the rules for accepting messages, a message exchange with an adjacent node j can only

increase gi(t). Note also that from (51) we obtain

iXEN gi(t) < 0, for all t > to . (52)

This implies that, at any time t, there is at least one node i with negative surplus gi(t) if there is a

node with positive surplus. This node i must not have executed any up iteration up to time t, and

therefore its price pi(t) must still be equal to the initial price pi(t0).

We say that the algorithm terminates if there is a time tk such that for all t > tk we have

gi(t) = 0 for all i E N (53)

fij(i, t) = fiji(, t) for all (i, j) E A (54)

pj(t) = pj(i, t) for all j E Fi Bi . (55)

Termination can be detected by using an adaptation of the protocol for diffusing computations of

[22]. Our main result is:

Proposition 5: If (MCF) is feasible and Assumptions 1-3 hold, the distributed, totally

asynchronous version of the algorithm terminates.

Proof: Suppose no up iterations are executed at any node after some time t*. Then (53) must

hold for large enough t. Because no up iterations occur after t*, all the pi(t) must thenceforth

remain constant, and Assumption 1, (50), and the message acceptance rules imply (55). After t*,

no flow estimates may change except by message reception. By (55), the nodes will eventually

agree on whether each arc is active, inactive, or balanced. The message reception rules, (51), and

Assumptions 1-2 then imply the eventual agreement on arc flows (54). (Eventually, the start node
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of each inactive arc will accept the flow of the end node, and the end node of a balanced or active

arc will accept the flow of the start node.)

We now assume the contrary, i.e., that up iterations are executed indefinitely, and hence for

every t there is a time t' > t and a node i such that gi(t') > 0. There are two possibilities: The first is

that pi(t) converges to a finite value Pi for every i. In this case we assume without loss of generality

that there is at least one node i at which an infinite number of up iterations are executed, and an

adjacent arc (i, j) whose flow fij(i, t) is changed by an integer amount an infinite number of times

with (i, j) being e+-balanced. For this to happen there must be a reduction of fij(i, t) through

communication from j an infinite number of times. This means that fij(j, t) is reduced an infinite

number of times which can happen only if an infinite number of up iterations are executed at j with

(i, j) being e--balanced. But this is impossible since, when Pi and pj converge, arc (i, j) cannot

become both e+-balanced and e--balanced infinitely often.

The second possibility is that there is a nonempty subset of nodes No whose prices increase to

oo. It is seen then that there is at least one node that has negative surplus for all t, and therefore also

a constant price. It follows that N° is a strict subset of N. Since the algorithm maintains e-CS, we

have for all sufficiently large t that

fij(i, t) = fij(i, t) = cij for all (i, j) E A with i E N-, j X N°°

fji(i, t) = fji(j, t) = bji for all (i, i) E A with i E No, j X N°° .

Note now that all nodes in N- have nonnegative surplus, and each must have positive surplus

infinitely often. Adding (49) for all i in N-, and using both (51) and the above relations, we find

that the sum of cij over all (i, j) e A with i E N-, j X N ° , plus the sum of s i over i E N °° is less

than the sum of bji over all (j, i) E A with i e N-, j N N°° . Therefore, there can be no feasible

solution, violating the hypothesis. It follows that the algorithm must terminate. QED.
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10. Figures
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Figure 1: Primal and dual costs for arc (i, j).
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Dual functional q(p)

. 1 . 00.

Pi

Figure 2: The dual functional q(p) graphed with

respect to a single price coordinate.
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Figure 3: At the indicated point, it is impossible to improve the cost by changing any

single price.
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Figure 4: Kilter diagrams for (a) conventional complementary slackness and (b)

£-complementary slackness.
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/ Surfaces of equal
dual cost

Pi P 1

Figure 5: When the ith price pi is chosen for relaxation, it is changed to pi' + a, where

Pi' is a value of the ith price that maximizes q(p) with all other prices held fixed. When e

is small, it is possible to approach the optimal solution even if each step does not

result in a dual cost improvement. The method eventually stays in a small

neighborhood of the optimal solution.
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Dual functional

slope = 10 slope 10

/ 1 lst price ric e
rise rise

Pl1 is Ps P2 +as2 P3-a3s P4+as4 Priceofnode s

(a)

Price Level

Flow decrease from 20 to 10
P4 4+as4 Price rise 4_

P3 -a3s GPrice rise/ P 4 + s

[0,20]

2 +as2 

p' Is [0,1o] P0]

[0,20] Ps Flow increase from 0 to 10

(b) (c) (d)

Figure 6: Illustration of an up iteration involving a single node s with four incident
arcs (1 ,s), (3,s), (s,2), and (s,4), with feasible arc flow ranges [1,20], [0,20], [0,10], and
[0,30], respectively.

(a) Form of the dual functional along Ps for given values of Pl, P2, P3, and P 4. The
breakpoints correspond to the levels of Ps for which the corresponding arcs become
balanced. For values of Ps between two successive breakpoints there are no balanced
arcs incident to node s. The corresponding slope of the dual cost is equal to the
surplus gs resulting when all active arc flows are set to their upper bounds and all
inactive arc flows are set to their lower bounds; compare with (5).

(b) Illustration of a price rise of Ps from a value between the first two breakpoints to a
value £ above the breakpoint at which (s,2) becomes balanced (Step 4).

(c) Price rise of Ps to a value E above the breakpoint at which arc (3,s) becomes
balanced. When this is done, arc (s,2) has changed from E+-balanced to E-active, and
its flow has increased from 0 to 10, maintaining E-CS.

(d) Step 3 of the algorithm reduces the flow of arc (3,s) from 20 to 10, driving the
surplus of node s to zero.
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Supply = 1

Feas. Flow Range = [0,1]

Cost = 2 Feas. Flow Range = [0,R]

Cost = -1

Feas. Flow Range = [0,R]
Cost =-1 Feas. Flow Range = [0,1]

Cost 2

R: Large Integer

£=1

Demand = 1

Figure 7: Example showing that the importance of keeping the admissible graph

acyclic. Initially, we choose f=O, p=O, which do satisfy e-complementary slackness,

but imply a cyclic initial admissible graph. The algorithm will push one unit of flow R

times around the cycle 2-3-2, taking Q(R) time.
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+ 2+
Direction of sweeping

°0+

Figure 8: Illustration of the admissible graph. A "+" (or "-" or "O") indicates a node

with positive (or negative or zero) surplus. The algorithm is operated so that the

admissible graph is acyclic at all times. The sweep implementation, based on the
linked list data structure, processes high ranking nodes (such as nodes 1 and 2)

before low ranking nodes (such as node 3).
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a12=0

Flow range for arcs:
Arc (1,2): [0,2]

a31= 1 -3 :C Arc (2,3): [0,1]

Arc (3,1): [0,1]

(a) Problem Data

-0 fO p= P= f=l p=O

fpf=0 f=10=

p=O p=O

(b) Initial flows and prices (c) Flows and prices after 1st

iteration at node 1

P=E fBy ID= 2Fp3E fp1 P=2e

= f=O f=1 0

p=O p=O

(d) Flows and prices after 2nd (e) Flows and prices after 3rd

iteration at node 2 iteration at node 1

Figure 9: Example showing that the computation required by the pure form of the c-

relaxation algorithm can be proportional to the cost-dependent factor C. Here, up

iterations at node 1 alternate with up iterations at node 2 until the time when Pi rises to

the level C-1 +e and arc (3,1) becomes c--balanced, so that a unit of flow can be

pushed back along that arc. At this time, the optimal solution is obtained. Since prices

rise by increments of no more than 2e, the number of up iterations is K2(C/E).
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Source Sink
Price = 1 Price = O

Artificial arc: Cost = -1
bti=O, Cts= icsi r

Figure 10: Formulation of the max-flow problem.
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Number of Arcs = 0.015'(n**2)

Arc Cost Range: [1,100]
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Figure 11: Solution times for AUCTION and RELAX-II on a MicroVAX II CPU. All

problems generated by NETGEN.
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Number of Arcs = 5*n
10 10 Arc Cost Range: [1, 100]
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Figure 12: Solution times for AUCTION and RELAX-II on a MicroVAX II CPU. All

problems produced using NETGEN.
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Number of people: 200

Arc Cost Range: [1, 100]

" 2-2
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0- . . . . . .I
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Number of Arcs

Figure 13: Solution times in seconds for AUCTION and RELAX-II on a MicroVAX II

CPU, with number of nodes held fixed. All problems created with NETGEN.
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Speedup
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5 
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2 Speedup = Time for serial code with 1 processor

1 eeup = Time for parallel code with p processors

1 2 3 4 5 6 7 8 9 10

Number of processors p

Figure 14: Speedup of a parallel implementation of the
auction algorithm as a function of the number of processors
used in a Sequent Balance 21000 computer. The problem
solved is a randomly generated 800x800 fully dense problem
with arc cost range 1 - 10000. The time required by the
serial auction code using a single processor is 336.13 secs.


