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Abstract 

Diatoms are thought to provide about 40% of total global photosynthesis and diatoms of the genus Coscinodiscus 
are an important, sometimes dominant, cosmopolitan component of the marine diatom community. The oomycete 
parasitoid Lagenisma coscinodisci is widespread in the northern hemisphere on its hosts in the genus Coscinodiscus. 
Because of its potential ecological importance, it would be a suitable pathogen model to investigate plankton/para-
site interactions, but the species cannot be cultivated on media without its host, so far. Thus, it was the aim of this 
study to explore the potential of dual culture of host and pathogen in the laboratory and to optimise cultivation to 
ensure a long-term cultivation of the pathogen. Here, we report successful cultivation of a single spore strain of L. 

coscinodisci (ISLA), on several Coscinodiscus species and strains, as well as the establishment of a cultivation routine 
with Coscinodiscus granii (CGS1 and CG36), which enabled us to maintain the single spore strain for more than 3 years 
in 6 cm Petri dishes and 10 ml tissue culture flasks. This opens up the opportunity to study the processes and mecha-
nism in plankton/parasitoid interactions under controlled conditions.
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Introduction

Oomycetes are fungal-like eukaryotes belonging to the 

Kingdom Straminipila, which also includes diatoms and 

brown seaweeds [1]. Oomycetes are present worldwide 

in terrestrial and marine ecosystems, where they act as 

saprotrophs and parasites of various eukaryotic groups 

[1–3]. Most of the more than 1000 known oomycete spe-

cies are obligate parasites of flowering plants [2, 4], but 

many are also known as facultative animal pathogens [5–

7] or saprotrophs in the limnic or marine environment 

[8–11]. More than 90% of the known oomycete species 

are in two orders, the Peronosporales in the sense of 

Hulvey et al. [8] and the Saprolegniales [1]. While these 

groups are characterised by the formation of sporangia 

that are  delimited from the vegetative thallus, there are 

many species mostly in  early-diverging oomycete line-

ages, which have holocarpic thalli. �is means that the 

entire thallus is converted into a sporangium upon matu-

rity [12–18]. Many of these species are parasitoids, and 

kill their hosts during colonisation [19–23]. Lagenisma 

coscinodisci is one of these parasitoids [15, 20, 24] and is 

characterised by forming a branched thallus with stout 

hyphae in hosts of the large centric diatom genus Cosci-

nodiscus. �ese hyphae later develop into sporangia in 

which hundreds to thousands of zoospores form to infect 

new hosts cells after release. �e life cycle of the pathogen 

has been investigated in detail using transmission elec-

tron microscopy [25–29] and there is evidence for sexual 

reproduction by zoomeiospores instead of gametangia 

[25, 26]. Lagenisma coscinodisci has been established in 

dual cultures previously [24, 30] but these cultures are 

no longer available. As the interaction between Coscino-

discus diatoms and their parasite L. coscinodisci might 
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provide a suitable system to investigate plankton/parasite 

interaction, this study aimed at establishing a dual cul-

ture of Lagenisma and its hosts, as well as to optimise this 

culture towards a standardised model system.

Materials and methods

Diatom samples were collected at Helgoland Roads [31] 

using plankton nets with 20  µm mesh sizes in August 

2016 and screened for the presence of Lagenisma as 

described previously [20]. �e parasite was found in 

both Coscinodiscus granii and C. wailesii. For establish-

ing diatom cultures, single diatom cells were picked from 

the plankton sample, transferred three times through 

autoclaved seawater, and subsequently placed in small 

culture flasks (Sarstedt, Hamburg, Germany) filled with 

10  ml of sterile seawater supplemented with nutrients 

and trace minerals to obtain a seawater f/2 medium [32]. 

Flasks were incubated horizontally at 14  °C with a diur-

nal rhythm of 14  h light and 10  h darkness. While sin-

gle cell isolates of the host diatoms were established, L. 

coscinodisci was maintained on mixed diatom samples, 

cultivated like the single diatom species cultures, but in 

9  cm Petri dishes (Sarstedt). After 3–5  days, single dia-

toms were taken from the individual diatom cultures and 

transferred three times through sterile seawater using a 

100  µl pipette (Brand, Wertheim, Germany) and 200  µl 

pipette tips (Sarstedt, Hamburg, Germany). �is pro-

cess was repeated until no other organisms apart from 

the potential diatom hosts could be observed. �is way, 

pure cultures of C. concinnus, C. granii, C. radiatus, and 

C. wailesii were obtained. Subsequently, single diatoms 

from the corresponding species with a single thallus (i.e. 

derived from the infection by a single zoospore) of L. 

coscinodisci were picked from the mixed diatom sample, 

transferred three times through sterile seawater using 

a micropipette, and added to the corresponding single 

diatom host lines that had been allowed to multiply to 

at least 50 cells before infection. After pathogen thalli 

became apparent, diatoms with a single thallus were 

again transferred to an uninfected batch of the host. Sub-

sequently, the transfer of infected cells to a new host was 

done every 7–14  days, and the cultivation was shifted 

to 6 cm Petri dishes (Sarstedt) instead of the cultivation 

flasks due to an easier handling and the lower costs asso-

ciated with Petri dishes. After repeated cycles of infection 

for about 3  months the diatom/pathogen combination 

with the most steady infection rate was chosen for long-

term cultivation as described above. Microscopy was 

performed as described previously [22] using an inverted 

microscope (AE30, Motic, Hong-Kong, China) for regu-

lar checks and subcultivation and a Zeiss Imager2 (Carl 

Zeiss, Jena, Germany) for microscopic images. For con-

tinuous supply of the host, CGS1 and CG36 were grown 

in 6 cm Petri dishes, and about 10 cells were transferred 

to new Petri dishes with marine f/2 medium every 

2  weeks to maintain the diatom cultures. After 1  week 

of growth, 1–5 infected cells were added in triplicates 

to non-infected hosts, and triplicates of the hosts were 

maintained uninfected, in parallel. As the infection suc-

cess of I in the two diatom lineages used is very high, 

only very few cases occurred, in which a single Petri dish 

with hosts did not get infected, which in those cases were 

likely due to an injury of the pathogen thallus during 

transfer. While it seemed that duplicates with a transfer 

of 2–3 thalli would be sufficient to ensure a continuous 

culture, we continued working with triplicates, keeping 

old cultures until first signs of infection were seen in new 

ones, to account for unforeseen events. Cultures of C. 

granii host strains (CGS1, CG36), and the L. coscinodisci 

Fig. 1 Micrographs of Lagenisma coscinodisci in four diatom species. 
a, b Coscinodiscus granii; c, d C. concinnus; e, f C. wailesii; g, h C. 

radiatus. Scale bars equal 100 µm in all pictures
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strain I  (Ist strain of Lagenisma) were deposited in the 

culture collection of the �ines laboratory and are avail-

able upon request to interested researchers. Unfortu-

nately, no culture collection contacted felt able to host 

the dual culture. Requests from culture collections are, 

thus, particularly welcome.

Results

Initially, 16 cell lines of four isolated Coscinodiscus spe-

cies were established; Strain CC1, CC2, CC3 for C. 

concinnus, CGS1, CG36, CG1, CG2, CG3, CG4, CG5 

for C. granii, CR1, CR2, CR3 for C. radiatus, and CW1, 

CW2, CW3 for C. wailesii. All four diatom species could 

be infected by L. coscinodisci (Fig. 1), but infections were 

most reliably achieved in C. granii, which was therefore 

used as the sole host for further optimisation of the culti-

vation. Strains of the other diatom species were only kept 

to explore the effect of long-term cultivation. After about 

1  year of cultivation, C. wailesii cultures had developed 

into cell sizes often less than 50 µm and frustules became 

abnormally shaped and increasingly fragile. One of the 

cultures reverted back into normal-sized diatoms after 

auxospore formation, but the resulting strain was resist-

ant to the strain that could previously infect this diatom 

species, but was kept on C. granii, when the C. wailesii 

cultures lost viability. Similarly, C. radiatus cultures 

declined after about one and a half years of continuous 

cultivation, and also C. concinnus could not be cultured 

long term. However, C. granii cultures remained sta-

ble over more than 2  years. After that period of time, 

they also grew to sizes below 50 µm, but several strains 

reverted into normally sized cells after auxospore for-

mation. One strain of L. coscinodisci that very reliably 

infected C. granii strains, named I, has (by the sub-

mission of this manuscript) been cultivated continuously 

for more than 3 years. Its lifecycle is shown in Fig. 2. I 

is infective to C. concinnus, C. granii, and C. radiatus. Its 

speed of infection varied in different strains of C. gra-

nii. While in CGS1, the strain led to an infection peak 

at 6–7  days, with the majority of the diatoms infected, 

the peak of the infection was between 13 and 14 days in 

CG36 (Fig.  3). Because continued culture in CS36 thus 

necessitates transfer to a new host only every 2 weeks, it 

was chosen as the primary host for continued cultivation 

of I.

Discussion

Diatoms account for about 40% of the global photosyn-

thesis, most of which takes place in the open sea where 

centric diatoms often dominate. However, similar to the 

blooms of the well-studied coccolithophorid Emiliania 

Fig. 2 DIC Micrographs of different infection stages of the Lagenisma coscinodisci strain ISLA in Coscinodiscus granii. a spore attachment and 
penetration; b growth phase; c early maturation phase; d intermediate maturation phase; e end of maturation phase, zoospore formation; f empty 
thallus after zoospore release. Scale bars equal 100 µm in all pictures
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huxleyi [33], blooms often end abruptly. Members of 

the chytridiomycetes and oomycetes have been identi-

fied as important parasitoids of diatoms [34–36] and 

have been suggested as candidates for regulating diatom 

blooms that have previously been overlooked [37, 38]. 

�us, it seems useful to establish laboratory model sys-

tems for investigating the interaction between diatoms 

and parasitoids for gaining insights into the processes 

and mechanisms in the infection process. Previously, 

apart from the Lagenisma/Coscinodiscus co-culture [30] 

dual culture of Coscinodiscus spp. and the nanoflagellate 

Pirsonia diadema had been achieved and proven useful 

for some basic insights into the interaction of diatoms 

and parasitoids, in particular host range [39] and the 
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Fig. 3 Time course of infection of the Lagenisma coscinodisci strain ISLA in the two Coscinodiscus granii host lineages CG36 (a) and CGS1 (b). Error 
bars designate standard deviation from three replicates
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influence of abiotic factors on the outcome of infections 

[40]. However, the system had not been fully standard-

ised and was discontinued. Similarly, the pathosystem of 

Asterionella and Rhizophydium planktonicum, was suc-

cessfully cultivated over a longer period of time and has 

yielded insights into its host range [41] and the effect of 

abiotic factors on the infection process [42, 43]. How-

ever, also in this case, the culture was discontinued after 

some time. �erefore, a Lagenisma/Coscinodiscus patho-

system was re-established and optimised in this study. 

�e strain I, which can be obtained from the authors 

upon request, has been found to be particularly suited for 

this, as it remained stable in co-cultures with C. granii 

for 3 years. �e virulence of I varied in different dia-

tom strains. While it reached the highest infection rate in 

CGS1 already after about a week, this took twice as long 

in CG36, suggesting the presence of quantitative resist-

ance. In the present study, it could not be demonstrated 

that qualitative resistance to Lagenisma also existed in C. 

granii. But, as it was observed that susceptible lineages of 

C. wailesii became resistant after regeneration through 

auxospore formation, qualitative resistance might not be 

rare. Even though it is unclear, what the basis for resist-

ance might be, it seems plausible that a gene-for gene 

interaction, similar to the situation in flowering plants, is 

responsible for this phenomenon. Apoptosis upon recog-

nition in unicellular organisms prevents the spread of the 

pathogen. However, also the host individual with the par-

ticular genotype leading to apoptosis will die. But other, 

non-resistant individuals potentially profit from the sac-

rifice [44]. �us, the Lagenisma/Coscinodiscus pathosys-

tem might be an interesting one to elucidate mechanisms 

and evolutionary trajectories in the resistance develop-

ment in unicellular organisms, as well as to study group 

selection of traits that are potentially fatal for individuals.
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