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Abstract

We consider the problem of constructing a shared broadcast tree (SBT) in wireless net-

works, such that the total power required for supporting broadcast initiated by all source

nodes is minimal. In the well-studied minimum-energy broadcast (MEB) problem, the

optimal tree varies by source. In contrast, SBT is source-independent, thus substantially re-

ducing the overhead for information storage and processing. The SBT problem also differs

from the range assignment problem (RAP), because the power for message forwarding in

SBT, although being source-independent, depends on from which tree neighbor the mes-

sage is received. We approach SBT from a computational optimization standpoint, and

present a dual decomposition method applied to an optimization model that embeds multi-

ple directed trees into a shared tree. For the dual decomposition method, some of the con-

straints in the model are preferably formulated implicitly. The dual decomposition scheme

is coupled with a fast local search algorithm. We report computational results demonstrat-

ing the effectiveness of the proposed approach. In average, the performance gap to global

optimality is less than three percent.

Index Terms: shared broadcast tree, wireless networks, discrete optimization, dual decomposition.

∗Corresponding author.
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1 Introduction

Energy efficiency in infrastructureless wireless networks has attracted a great amount of re-

search attention. The issue is of particular relevance to wireless ad hoc networks, where commu-

nication devices are typically heavily energy-constrained. One optimization task in this context

is to perform broadcast using a minimum amount of transmission power. Broadcast commu-

nications are used not only for data of broadcast nature, but also frequently for disseminating

control information. In this paper, we consider the problem of constructing a power-optimal

shared broadcast tree (SBT) that is used by broadcast sessions initiated by all source nodes.

For power-optimal broadcast in wireless networks, a majority of the literature has considered

two problem types that are related to but different from SBT: the minimum-energy broadcast

(MEB) problem [1], and the range assignment problem (RAP, e.g., [2]). MEB amounts to con-

structing a minimum-power directed tree, i.e., an arborescence, to be used for broadcast from

a given source node. The optimal tree is source-specific. Consequently, the power level to use

is dependent on message source. Consider the network scenario of N nodes that all are poten-

tial sources of broadcast sessions. Applying MEB to the scenario, N different trees, one per

source, need to be computed and stored. Upon receiving a broadcast message, a relaying node

has to open the message up to the level necessary to retrieve the source, in order to determine

which of the N MEB trees to apply and the corresponding power level. In contrast, broadcast

by SBT differs from MEB in two major aspects. First, only a single tree needs to be stored.

Second, there is no need of retrieving the message’s original source in relaying. In SBT, the

power that a node uses to forward a broadcast message is only dependent on the previous one-

hop tree neighbor from which the message is received. In fact, as will be detailed in Section 2,

determining the power for relaying a message involves only a single binary yes-or-no decision

making. Although for an individual source node, the broadcast power by the optimal SBT may

be higher than that of the optimal MEB tree, the use of SBT is justified by the substantially

reduced amount of information storage and message processing.

SBT differs also from RAP. In the latter, a power corresponding to a radio range is chosen for
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each node to provide a strongly connected topology by bi-directional links, with the objective

of minimizing the total power assignment. In an SBT, the power used by a node to relay a

broadcast message is the one required to reach all its tree neighbors except the neighbor from

which the message is received. Hence, the node does make a choice on the power level in each

forwarding operation, although the choice is independent of the original message source. This

makes the structure of SBT very different from that of RAP.

Similar to MEB, the study of SBT is motivated by optimization aspects of energy-efficient

dissemination of broadcast information in ad hoc networks. Potential applications of the net-

working concept can be found in military communications, disaster relief, and sensor network-

ing (see, e.g, [3, 4, 5, 6], for details). When all nodes are potential broadcast sources, SBT

provides an alternative, and, from an information storage and processing standpoint, more ele-

gant approach to MEB, of which the importance has attracted a large amount of research efforts

(see [1, 7, 8, 9, 10] and Section 2). We also remark that the contribution of the paper targets the

underlying performance optimization principles and foundation rather than designing a specific

system protocol; to this end, the paper focuses on algorithmic and computational aspects of the

SBT optimization problem.

The authors of [11] introduced the SBT problem, and presented results on complexity and

approximation algorithm. To the best of our knowledge, formulating and solving the SBT

problem via discrete optimization has remained open. Discrete optimization potentially enables

to numerically approach exact optimum. In addition and more importantly, an effective discrete

optimization approach typically yields a numerically tight interval confining the optimum, when

exact optimum becomes beyond reach due to problem size. In both cases, the results are very

useful for assessing the performance of fast but heuristic algorithms, including distributed ones.

In this paper, we present a mathematical programming model for power-optimal SBT. The

model embeds multiple directed trees, one per source node, into a shared tree. A feature of the

model is that the relationship between the directed trees and the power levels is preferably kept

implicit, even if it can be formulated by explicit equations. This is because we develop a dual
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decomposition method, such that the resulting Lagrangean subproblem can be solved exactly in

polynomial time without requiring an explicit mathematical representation of how power levels

are set in the directed trees. We use subgradient optimization to approach the Lagrangean dual

optimum. The dual decomposition method is coupled with a local search algorithm that starts

from the solution of the Lagrangean subproblem and searches for good SBT solutions. We

report computational experiments for networks defined over complete graphs of up to 80 nodes.

The proposed method is highly effective in delivering solutions being very close to optimum.

In average, the performance gap to global optimality is below three percent.

The remainder of the paper is organized as follows. In Section 2 we formalize the SBT

problem, compare SBT to MEB and RAP using an illustrative example, and review some re-

lated works. The mathematical programming model is presented in Section 3. We discuss the

dual decomposition method and the local search algorithm in Sections 4 and 5, respectively.

Computational results are reported in Section 6, followed by conclusions in Section 7.

2 Preliminaries

Consider a wireless network modeled by graph G = (V, E), where V and E denote the sets of

nodes (network units) and potential links, respectively. Let N = |V |. The elements in E are

undirected edges. Without any loss of generality, we assume i < j for all (i, j) ∈ E. We use

A to denote the set of arcs derived from E, i.e., A = {(i, j) : i, j ∈ V, (i, j) or (j, i) ∈ E}.

Notation i ∈ G and (i, j) ∈ G imply respectively that i is a node and that (i, j) is an edge in

G. A similar notation is adopted for trees in G. For any tree T , we let |T | denote the number

of nodes in T , and for any edge (i, j) ∈ T , Ti/j denotes the subtree containing node i when

(i, j) is deleted from T . The power parameter of (i, j) ∈ A is denoted by pij. Due to the

wireless multicast advantage [1], the power level pij allows node i to reach all nodes in the set

{k ∈ V : pik ≤ pij}. There is a widely used formula for setting the power parameters in the

literature. The formula is not assumed in our optimization model or the solution method, even
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so it is used for generating test networks. In this power formula, pij = κdα
ij, where dij is the

distance between i and j, κ is a constant, and α is between two and four.

The task of MEB is to make a minimum-sum power assignment to create connectivity from a

source node s to V \{s}. The optimum is characterized by a directed tree, i.e., an arborescence.

Denoting by Si the children of i in s-rooted arborescence T s, the power of node i to forward a

broadcast message of s equals the maximum of the power required to reach all children in Si,

or zero if i is a leaf. Solving MEB amounts to constructing T s minimizing
∑

i∈V maxj∈Si
pij.

An SBT, on the other hand, is an undirected spanning tree T . For each source node s ∈ V ,

T maps uniquely into an arborescence T s rooted at s, giving the nodes’ broadcast power levels

for source s in the shared tree T . An SBT is optimal if the total broadcast power for all source

nodes, or equivalently, the average broadcast power per source, is minimum among all spanning

trees.

For a formal definition of the total broadcast power of an SBT, suppose that the highest

and second highest powers of node i are defined by its tree neighbors j1 and j2, respectively.

Clearly, j1 and j2 depend on T and i, but for reasons of notational simplicity, we do not introduce

notation reflecting this dependency. For all source nodes reaching i via j1, i.e., nodes in Tj1/i,

node i uses power pij2 for forwarding their messages, whereas for all the remaining nodes

including i itself, the power equals pij1 . If i is a leaf, node i spends power pij1 only for its

own broadcast session. Node j2 is in this case undefined, but for notational convenience we

let pij2 = 0. The decision of selecting the power level at node i is simply made by observing

whether or not the message is received from j1. If it is, the answer is pij2 , while power pij1

is required otherwise. Knowledge to the message source is superfluous in this respect. The

power-optimal SBT is formalized as follows:

[SBT] Find a spanning tree T of G minimizing
∑

i∈V

(

|Tj1/i|pij2 + (N − |Tj1/i|)pij1

)

.

The objective function of SBT differs from that of RAP, as the former accounts for how

many source nodes use each of the two power levels. RAP, sometimes also referred to as

the minimum power symmetric connectivity problem [12], originates from topology control in
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wireless networks [13]. The objective is to find a power allocation yielding strong connectivity

between all nodes by bi-directional links, which is equivalent to constructing a spanning tree T

with minimum
∑

i∈V pij1 .

Both MEB and RAP have been well-studied in the literature. MEB was introduced by

Wieselthier et al. [1, 14]. The authors proposed several solution algorithms. Among them,

the most cited one is the broadcast incremental power (BIP) algorithm that is an adaptation

of Prim’s MST algorithm to MEB. The NP-hardness of MEB was established in [8], and the

MEB literature is rich on studies of approximation algorithms [10, 15, 16, 17, 18, 19, 20, 21]

and heuristic algorithms [19, 22, 23, 24, 25, 26, 27]. Integer programming formulations were

first presented in [7], and more recently in [27, 28, 29]. The authors of [4] presented integer

programming and dynamic programming techniques for MEB with a hop limit. For minimum-

energy multicast, research results are provided in [1, 9, 14, 26, 27, 28].

For RAP, NP-hardness results were provided in [30, 31]. For the special case of 1-dimensional

Euclidean space, RAP admits polynomial time algorithms [32, 33]. Integer programming and

approximation schemes have been investigated in [2]. Further developments of integer pro-

gramming formulations and approaches have been presented [12, 34]. In [35], the authors

considered using the RAP solution for all-to-all communications, and compared several heuris-

tic algorithms. An extension of RAP is to have a hop limit on the tree path connecting node

pairs, i.e., diameter-bounded RAP [36, 37, 38]. Another extension of RAP is to require that the

range assignment is large enough to handle node failure [39].

In comparison to MEB and RAP, research results on computing optimal SBT are available

to a much lesser extent. Papadimitriou and Georgiadis [11] proved the NP-hardness of SBT, and

presented numerical experiments with an approximation algorithm. They also proved that, in

an SBT, the difference in the broadcast power consumption for any two sources is bounded by a

factor of two, i.e., SBT exhibits a fairness guarantee among the source nodes. This fact justifies

further the relevance of SBT to broadcast communications, in addition to the aforementioned

advantages in terms of small storage requirement and simplified message processing.

6



In Figure 1, we give an illustrative example of a small network of 10 nodes. The power

parameter matrix is symmetric, and shown in Figure 1(a). The optimum solutions of MEB for

one source node, RAP, and SBT are illustrated in Figures 1(b), 1(c), and 1(d), respectively.

  1     -     103.08   12.00   87.12     6.42   217.10  145.65   84.20      7.70    44.14
  2                 -       55.88   26.63   76.70     32.37    60.44     1.00  118.87    33.93
  3                             -       34.51     1.70   131.40    74.70   43.46    11.75    37.09
  4                                         -         9.11     37.92    10.54   25.43    75.34    75.38
  5                                                     -       162.02    91.96   61.77      4.69    46.61 
  6                                                                   -        37.71   42.87  213.99  132.11  
  7                                                                                -       62.84  118.32  142.03
  8                                                                                            -      100.31    24.51
  9                                                                                                         -        76.08
10                                                                                                                      -

 1          2          3          4           5           6          7           8           9           10

(a) Power matrix of the network instance.
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(b) Optimal MEB tree for source node

one.
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(c) Optimal RAP tree.
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(d) Optimal SBT.

Figure 1: An illustrative example of various power-optimal trees.

One can see that the three optimal trees all differ from each other. The broadcast power

of the optimal MEB tree for source node one is 83.12. When SBT is used, the power for the

same source is 107.97. If we compute the optimum of MEB for the remaining source nodes

(not shown in the figure), the average MEB power over all source nodes is 77.00. Using SBT,

the average power per source is 90.39. Thus the difference between SBT and optimal source-

specific broadcast is about 17% for this example. In RAP, the highest power level of each node is

counted exactly once, hence the tree in Figure 1(c) is better than the SBT optimal tree in Figure

1(d), because the highest power levels at nodes 4, 6, and 8 are lower in the former. However, the

optimum RAP tree is not optimal when the number of sources using each power level is taken

into account. For source nodes 2, 8, and 10, the RAP tree requires one additional forwarding by

node 4 in comparison to the SBT tree. In the optimum of SBT, this hop is avoided.
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3 A Discrete Optimization Model

We present a discrete optimization model for SBT. The model uses three sets of binary variables.

zij =











1 if edge (i, j) ∈ E is in the SBT,

0 otherwise.

qt
ij =











1 if arc (i, j) ∈ A is used to reach node t ∈ V ,

0 otherwise.

ys
ij =











1 if node i ∈ V uses power pij to broadcast the message of source s ∈ V ,

0 otherwise.

The model is presented below. The explicit constraints in the model embed multiple directed

trees, represented by the q-variables, into a spanning tree represented by the z-variables. Note

that the relation between q and y is modeled implicitly.

min
∑

(i,j)∈A

∑

s∈V

pijy
s
ij (1)

s.t.
∑

(i,j)∈E

zij = N − 1 (2)

∑

j∈V :(i,j)∈A

qt
ij = 1 i ∈ V, t ∈ V : i 6= t (3)

qt
ij + qt

ji = zij (i, j) ∈ E, t ∈ V (4)

qi
ij = 0 (i, j) ∈ A (5)

y = Q(q) (6)

z ∈ {0, 1}|E|
y,q ∈ {0, 1}|A|×|V | (7)

The objective function (1) minimizes the total broadcast power for all source nodes. By

(2), exactly N − 1 edges must be selected; this is a necessary condition for a spanning tree.

Equations (3) ensure that, at any node i ∈ V , exactly one arc is selected to reach each node
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t ∈ V \ {i}. Equations (4) express the relation between the z- and q-variables in a tree: For

any tree edge (i, j), every node t ∈ V is reached either via arc (i, j) or arc (j, i). If edge (i, j)

is not present in the tree, then clearly all q-variables must be zeros on this edge. The next set

of constraints (5) forbids any arc to be used to reach the head node. Finally, in (6) an implicit

function, denoted by Q, models the power levels induced by the q-variables.

Let Gz denote the graph induced by z ∈ {0, 1}|E|. To show that (2)-(7) give a valid formu-

lation of SBT, we first prove that Gz is a spanning tree for any solution to the formulation.

Proposition 1 Assume (z,q) satisfies equations (2)–(5) and (7). Then 1) Gz is a spanning tree,

and 2) for each t ∈ V and each (i, j) ∈ Gz, qt
ij = 1 (qt

ji = 1) if the direction toward t on edge

(i, j) is from i to j (from j to i).

Proof Because of (2), 1) holds if Gz has no cycles. Assume there is a cycle containing node

t. For convenience and without loss of generality, assume the cycle consists in t, 1, . . . , n, t,

with the convention that n + 1 = t. The sequence 1, . . . , n, t forms an elementary path. From

znt = 1 and (4)–(5), it follows that qt
n,n+1 = 1. Let k = n. Since qt

k,k+1 = 1 and k 6= t, (3)

implies qt
k,k−1 = 0. In addition, because zk−1,k = 1, (4) yields qt

k−1,k = 1. By induction in k, we

hence obtain qt
k,k+1 = 1, k = 1, . . . , n. Applying the same argument to path n, . . . , 1, t, we get

qt
12 = · · · = qt

nt = qt
n,n−1 · · · = qt

1t = 1, contradicting (4). Therefore property 1) holds. Since

Gz is a spanning tree, Property 2) follows immediately from the proven fact that any elementary

path 1, . . . , t in Gz has qt
k,k+1 = 1 for 1 ≤ k ≤ n.

By the proposition, the model embeds N directed trees into an undirected, shared tree.

The values of q carry the information of the power levels of every node for reaching its tree

neighbors. Following the discussion in Section 2, the function Q maps q to a vector y, in which

the component corresponding to node i ∈ V is given according to the following two rules. For

both cases, all y-variables that are not set to be one are zeros.

Case 1: There is a single outgoing arc, say (i, j1), with q-variables with value one. That is,

qt
ij1

= 1, ∀t ∈ V, t 6= i, and qt
ij = 0, ∀j 6= j1, t ∈ V . In this case, yi

ij1
= 1.
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Case 2: There are two or more outgoing arcs, for which the q-variables equal one. Among

them, let (i, j1) and (i, j2) denote the two having highest and second highest power levels,

respectively. Note that, by (4)–(5), qj1
ij1

= 1 and qj2
ij2

= 1 (and qi
ij1

= qi
ij2

= 0). For s ∈ V ,

function Q sets ys
ij1 = 1 if qs

ij1 = 0, otherwise ys
ij2 = 1. In the former case, s is not reached

via (i, j1), thus forwarding the message of s has to use pij1 . The latter case means that

using power pij2 is sufficient since the message of s arrives i via (j1, i).

The above definition of Q, together with Proposition 1, establish the correctness of the

model for SBT. We remark that there are several ways to formulate the function Q explicitly.

The simplest choice is to use the following set of inequalities.

qs
ji ≤

∑

k:pik≥pij

ys
ik, i ∈ V, s ∈ V. (8)

The inequality says that if (j, i) is used to reach s, i.e., qs
ji = 1, then the power used by node

i to relay broadcast message of s must be at least pij . Note that the inequality does not explicitly

set any y-variable to zero, though it is straightforward to verify that, at optimum, the effect of

(8) is identical to the definition of Q. From a computational standpoint, solving the formulation

with (8) does not lead to an efficient solution method, see Section 6. Our dual decomposition

algorithm can effectively consider Q without any explicit equations. In fact, no matter which

explicit formulation of Q is used, the continuous relaxation will never be able to produce a better

estimation on the global optimum than the dual optimum to which our algorithm converges.

4 Dual Decomposition

We dualize (4) and denote by µt
ij, (i, j) ∈ E, t ∈ V the corresponding Lagrangean multi-

pliers. These multipliers are defined for the edges, but the effect on the two end nodes of

each edge will differ. In the subsequent text, we use µt
[ij] to denote µt

ij if i < j, and µt
ji

otherwise. Note that the multipliers are not restricted in sign. After dualizing (4), the term
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∑

(i,j)∈A

∑

t∈V µt
[ij]q

t
ij −

∑

(i,j)∈E(
∑

t∈V µt
ij)zij is added to the objective function (1). The La-

grangean subproblem decomposes into two parts. The first part, involving the z-variables, be-

comes the following optimization problem.

[S1] Lz(µ) = min
∑

(i,j)∈E

(−
∑

t∈V

µt
ij)zij (9)

s.t.
∑

(i,j)∈E

zij = N − 1

z ∈ {0, 1}|E|

Solving subproblem S1 to optimality means to select the N − 1 edges with the lowest cost

values, where the cost of (i, j) ∈ E equals −
∑

t∈V µt
ij. However, to be qualified as a feasible

solution to SBT, z shall form a spanning tree. Hence we strengthen the solution by adding the

spanning-tree requirement, with which S1 becomes, in fact, a minimum spanning tree (MST)

problem. Not only does this MST solve S1, it also provides a candidate SBT. Thus after solving

S1, our decomposition method evaluates the tree’s broadcast power for all source nodes.

The second subproblem amounts to optimizing the values of the q- and y-variables. This

subproblem is formulated below.

[S2] Lq,y(µ) = min
∑

(i,j)∈A

∑

s∈V

pijy
s
ij +

∑

(i,j)∈A

∑

t∈V

µt
[ij]q

t
ij (10)

s.t.
∑

j∈V :(i,j)∈A

qt
ij = 1 i ∈ V, t ∈ V : i 6= t

qi
ij = 0 (i, j) ∈ A

y = Q(q)

y,q ∈ {0, 1}|A|×|V |
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From the problem structure and the definition of Q, it follows that S2 decomposes further

by node, resulting in N separate problems. For each node i, exactly one outgoing arc must be

chosen for each destination t 6= i. The choice is made to minimize the cost, under the condition

that it has to be consistent with the power levels of i. A polynomial-time enumeration scheme is

able to deliver the optimum to S2. The enumeration goes through the following cases spanning

all relevant power-setting scenarios of node i, and selects the one giving minimum total cost.

Case 1: Node i has a single power level (i.e., it is a leaf in the original model). There are

N − 1 scenarios. Let (i, j1) be the arc under consideration. The solution is: yi
ij1

= 1 and

qt
ij1 = 1, ∀t 6= i. All other variables are zeros. The cost value is pij1 +

∑

t∈V,t6=i µ
t
[ij1]

.

Case 2: Node i has at least two outgoing arcs. Among them, the highest and second highest

power levels are of significance. Enumerating over arc pairs representing the two power

levels gives (N − 1)(N − 2)/2 scenarios. Denote the two arcs under consideration by

(i, j1) and (i, j2), respectively, with pij1 ≥ pij2 . The optimum solution is as follows.

• qj1
ij1

= 1, yj1
ij2

= 1, with cost value µj1
[ij1]

+ pij2 .

• qj2
ij2

= 1, yj2
ij1

= 1, with cost value µj2
[ij2]

+ pij1 .

• yi
ij1 = 1, with cost value pij1 .

• For any t 6= j1, j2, i, the arc selected to reach t is either (i, j1), or the arc with the

lowest cost value among those having power levels not exceeding pij2 . The optimum

is therefore to select the best of the following two options.

1. qt
ij1

= 1 and yt
ij2

= 1, with cost value µt
[ij1]

+ pij2 .

2. qt
ik = 1 and yt

ij1
= 1, with cost value µt

[ik]+pij1 , where k ∈ arg minj:pij≤pij2
µt

[ij].

Time complexity is an important aspect in problem solution. To solve the Lagrangean sub-

problem, the overall time complexity is of O(N3). This is seen from the fact that µt
[ik] depends

only on i and j2 (not on j1). Hence there are O(N2) such parameters to compute, and each com-

putation takes O(N) time. All other cost terms are obviously available in O(N3) time. This
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is also a lower bound on the time complexity of solving the Lagrangean subproblem, because

the solution of each node in S2 is at least quadratic in time complexity. Subproblem S1 is not

the computational bottleneck, as computing an MST by Prim’s algorithm takes no more than

O(N2) time, and evaluating the broadcast power of all source nodes runs also in O(N2) time.

For any multiplier vector µ, the Lagrangean function Lz(µ)+Lq,y(µ) gives a lower estima-

tion of the global optimum. The dual optimum, defined by the multiplier vector µ maximizing

the Lagrangean function, is the best possible estimation by dual decomposition. Since the SBT

problem is non-convex, there may be a duality gap. Another commonly considered estimation

in integer programming is the optimum of the continuous relaxation, obtained by removing the

integrality restriction of the variables in an explicit linear formulation. No matter which linear

equations and inequalities are used to replace (6), however, the continuous relaxation will not

perform better in cost estimation than dual decomposition. The conclusion is formalized below.

Proposition 2 The continuous relaxation of (1)–(7) with (6) replaced by any valid linear con-

straints, does not provide better cost estimation than the optimum of dual decomposition.

Proof Consider the model where (6) is replaced by some explicit linear constraints. Denote by

LPEXP and LEXP the attainable lower bounds obtained by respectively solving the continuous

relaxation and applying dual decomposition to the explicit formulation. It follows from the

theory of dual decomposition for integer linear optimization (e.g. Theorem 10.3 in [40]), that

LEXP ≥ LPEXP. Let LIMP denote the attainable lower bound obtained by the application

of dual decomposition to the model with implicit constraints. From the solution procedures for

S1 and S2, it is clear that feasible integer vectors are produced, and therefore they satisfy any

constraints defining y = Q(q). Hence, LIMP ≥ LEXP, and the result follows.

For integer linear optimization, the dual function is in general not differentiable. We adopt

subgradient optimization to maximize the dual. Let z̄ and (q̄, ȳ) denote the optimum of S1 and

S2, respectively. The vector ḡ =
(

ḡt
ij , (i, j) ∈ E, t ∈ V

)

, where ḡt
ij = qt

ij + qt
ji − zij , defines

a subgradient. For updating the multipliers by taking a step in the direction of the subgradient,
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we apply µ
′ = µ + λDualOpt−Lz(µ)−Lq,y(µ)

||ḡ||2
ḡ, where λ is the step size, which should be between

zero and two for asymptotic convergence. Parameter DualOpt denotes the dual optimum. Since

DualOpt is not known, it is replaced by the best-known problem solution, that is, the power

of the best SBT found so far. Because this value typically exceeds DualOpt, it is necessary

to gradually reduce the step size λ (e.g., [41]). In Section 6 we detail the rules for step size

adjustment in our computational study.

5 Local Search

In subgradient optimization, having a near-optimal SBT value to approximate DualOpt is cru-

cial. Typically, the MSTs originating from S1 are good SBT candidates only when µ is close to

dual optimum. To overcome this issue, we develop a local search algorithm, starting from the

MST of subproblem S1. The algorithm adopts the 1-edge exchange operation that deletes a tree

edge and adds another edge to merge the two disconnected subtrees into a new spanning tree.

The algorithm stops when no 1-edge exchange can lead to any power improvement.

Exchange of one edge is a fundamental algorithmic element for traversing through a se-

quence of trees in graphs [41]. For MEB, heuristics using a restricted form of 1-edge exchange

has been considered in [27]. For SBT, however, this algorithmic operation has not been investi-

gated. From a computational perspective, the major challenge of applying 1-edge exchange to

SBT is the complexity of power calculation. For all optimal-tree problems with link-oriented

costs, the evaluation of a trial 1-edge exchange runs trivially in O(1) time. Similarly, for MEB

and RAP, the new total cost after a 1-edge exchange is available in O(1) time, because only the

highest power levels of nodes are of significance, and each of them is counted exactly once. In

contrast, in SBT two power levels are significant at all non-leaf nodes, and how many source

nodes that respectively use the two levels must be accounted for. In fact, a 1-edge exchange

may alter the power expenditure of many nodes. Given an SBT of N − 1 edges, it is easy to

realize that computing the broadcast power for one source (i.e., the cost function of MEB) can
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be done in O(N) time. Repeating the computation for all sources has O(N2) time complexity.

There can be as many as O(N3) potential 1-edge exchanges. With the straightforward approach

of calculating power from scratch for each source, a single iteration of local search for finding

a power-improving tree or concluding its non-existence runs as high as O(N5) in time.

We present a much faster but non-trivial implementation. To this end, we slightly extend

our notation and terminology. Whenever an expression is maximized over some indexed set,

we define the maximum value to be zero if the set is empty. When an edge (k, l) ∈ T is deleted

the subtrees Tk/l and Tl/k, where k ∈ Tk/l and l ∈ Tl/k, are created. If two distinct nodes are in

the same subtree, we say that they are internal to each other, otherwise they are external.

We let p(i, s) denote the power at node i required to forward the message of source s in tree

T . If s is internal to i, we define p′(i, s) as the power needed at i to forward the message of s in

their joint subtree (Tk/l or Tl/k).

lk

m n

Tk / l Tl / k

(a) The original tree.

lk

m n

Tk / l Tl / k

(b) Two subtrees from delet-

ing edge (k, l).

lk

m n

Tk / l Tl / k

(c) Addition of edge (m, n).

Figure 2: An illustration of one-edge exchange.

Assume that edge (k, l) in T is replaced by a new edge (m, n), where m ∈ Tk/l and n ∈ Tl/k,

see Figure 2. When computing the new power required for message passing at some node i,

exactly three different types of communications need to be considered: message of internal

sources forwarded internally, message of external sources forwarded internally, and message

of internal sources forwarded both internally and to an external node j. Note that the last type

applies only if i = m or i = n, and we have j = n if i = m (j = m if i = n).

We denote the total power requirements for the three types of message passing by P II(k, l, m, n),

P EI(k, l, m, n), and P IE(k, l, m, n), respectively. Note that no node is involved in external for-

15



warding of a message of any external source. This is because there is only one edge, (m, n),

joining the two subtrees, and the message does not flow in both directions along the same

edge. In the sequel, we explain in detail how to compute P II(k, l, m, n), P EI(k, l, m, n), and

P IE(k, l, m, n) for all eligible edges (k, l) and (m, n), such that the time complexity of finding

the best 1-edge exchange is kept as low as O(N3).

5.1 Message of internal source forwarded internally

Message forwarding for an internal source to internal nodes corresponds to viewing each of Tl/k

and Tk/l as an SBT being independent of the other. For internal source s, the forwarding power

needed at node i is p′(i, s), and the total power needed for this type of communication becomes

P II(k, l, m, n) =
∑

i∈Tk/l

∑

s∈Tk/l

p′(i, s) +
∑

i∈Tl/k

∑

s∈Tl/k

p′(i, s). (11)

Proposition 3 Computing P II(k, l, m, n) for all (k, l) ∈ T , m ∈ Tk/l and n ∈ Tl/k has time

complexity O(N3).

Proof Since |T | = N − 1 and P II(k, l, m, n) is independent of the new edge (m, n), there are

O(N) distinct P II-values to be computed. We show that any P II(k, l, m, n) can be computed

in O(N2) time. Fix (k, l) ∈ T , and choose some s ∈ Tk/l. Consider for example a breadth-first

traversal of the nodes of Tk/l starting at s. When node i is being processed, p′(i, s) is computed

as max pij, where the maximum is taken over all unprocessed neighbors j of i in Tk/l. It follows

that for this choice of s, all p′(i, s) (i ∈ Tk/l) are found in O(N) time. Repeating the traversal

algorithm for all s ∈ Tk/l shows that the time complexity of computing the first term in (11)

is O(N2). The proof is complete by observing that the same traversal algorithm applied to all

s ∈ Tl/k yields the second term in (11).
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5.2 Message of external source forwarded internally

Since (n, m) is the only arc from Tl/k to Tk/l, all messages from sources external to i ∈ Tk/l en-

ter Tk/l at m. Consequently, we can consider m as a substitute source of the external messages

to be broadcasted to nodes in Tk/l. At node i ∈ Tk/l, the power needed for forwarding each mes-

sage thus becomes p′(i, m). Accounting for all nodes in Tk/l and all
∣

∣Tl/k

∣

∣ external sources, the

total power for disseminating broadcast messages in subtree Tk/l for external sources becomes

∑

i∈Tk/l

∣

∣Tl/k

∣

∣ p′(i, m). Applying the above arguments also to subtree Tl/k gives

P EI(k, l, m, n) =
∑

i∈Tk/l

∣

∣Tl/k

∣

∣ p′(i, m) +
∑

i∈Tl/k

∣

∣Tk/l

∣

∣ p′(i, n). (12)

Proposition 4 Computing P EI(k, l, m, n) for all (k, l) ∈ T , m ∈ Tk/l and n ∈ Tl/k has time

complexity O(N3).

Proof The first term in (12) must be computed for all (k, l) ∈ T and m ∈ Tk/l, but is inde-

pendent of n. Hence, there are O(N2) such computations to be made. For fixed (k, l) ∈ T

and m ∈ Tk/l, the algorithm suggested in the proof of Proposition 3 can be applied to compute

∑

i∈Tk/l

∣

∣Tl/k

∣

∣ p′(i, m) in O(N) time. Consequently, the time complexity of computing the first

term of (12) is O(N3). For the second term, the proof is analogous.

5.3 Message of internal source forwarded internally and externally

In subtree Tk/l, only node m forwards messages externally to node n in the new tree. The power

assigned to m for forwarding message internally may be sufficient to reach node n. If it is not,

a power increment is necessary, and in this section we show how this increment is computed.

Assume first that node m has at least two neighbors in Tk/l. For convenience in notation

and without loss of generality, let the end nodes of respectively the most and second most

power-requiring edges incident to node m be nodes 1 and 2. If pmn ≤ pm2, then m has already

sufficient power to reach n, no matter from which source in Tk/l the message comes. Otherwise,
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messages that required power pm2 for being forwarded internally, will now require an increment

to pmn for external forwarding to node n. This applies to all sources that are connected to m

via node 1. From the discussion of the definition of SBT in Section 2, the number of message

sources requiring the increment can be expressed as |T1/m|. If pmn > pm1, also messages that

needed power pm1 for internal forwarding, now call for an increment. The number of sources

(see Section 2) from which such messages arrive is
∣

∣Tk/l

∣

∣ − |T1/m|.

Second, if m is a leaf in Tk/l, the analysis above can be applied by defining pm2 = 0. Third,

if Tk/l consists exclusively of node k, implying m = k, we define pm1 = pm2 = |T1/m| = 0.

Consequently, the power increment required for external message forwarding at node m is

P IE
mn(k, l) =























0, if pmn ≤ pm2,

|T1/m| (pmn − pm2) , if pm2 < pmn ≤ pm1,

|T1/m| (pmn − pm2) +
(
∣

∣Tk/l

∣

∣ − |T1/m|
)

(pmn − pm1) , if pmn > pm1.

By applying the same analysis and parameter definitions to node n, a similar formula for the

increment P IE
nm(k, l) at n is derived, and we arrive at P IE(k, l, m, n) = P IE

mn(k, l) + P IE
nm(k, l).

Proposition 5 Computing P IE(k, l, m, n) for all (k, l) ∈ T , m ∈ Tk/l and n ∈ Tl/k has time

complexity O(N3).

Proof Since |T1/m|, pm1, and pm2 depend only on m and (k, l) (not on n), there are O(N2) such

values to be computed. Each of them can be computed in O(N) time. All P IE
mn(k, l)-values are

thus available in O(N3) time. The proof is complete by a similar observation on P IE
nm(k, l).

5.4 The best 1-edge exchange move

We conclude from Sections 5.1-5.3 that when edge (k, l) is replaced by edge (m, n), the new

SBT-power is P II(k, l, m, n) + P EI(k, l, m, n) + P IE(k, l, m, n). An iteration of the local

search algorithm amounts to enumerating all (k, l) ∈ T and (m, n) for which m ∈ Tk/l and
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n ∈ Tl/k, and picking the most power-reducing pair, if any exists. The necessary computations

are summarized in an appendix that is available as on-line supplementary material.

Proposition 6 One iteration of local search for finding the best power-improving 1-edge ex-

change, or concluding that none exists, runs in O(N3) time.

Proof Follows directly from Propositions 3-5.

Since there are O(N3) potential moves to evaluate, the cubic running time is optimal in the

sense that no search algorithm based on 1-edge exchange has lower time complexity.

6 Computational Experiments

6.1 Main Results

We report experimental results for 16 network groups. The underlying principle for generating

network instances follows that in [1]. The number of nodes varies between 10 and 80. The

nodes are randomly placed within a square region (1000×1000 distance units in our case). The

power parameter pij = dα
ij, where dij is the Euclidean distance between nodes i and j. The

exponent α is set to two and then to four, resulting in two instances per topology. Following the

instance-generation specification in [1], there is no restriction on the maximum power, hence

the underlying graph is always complete, meaning that for N nodes, the edge set E has size

N(N − 1)/2. A network group is defined by N and α, and each group contains 10 instances.

We first examine the performance of solving the explicit integer programming formulation

using (8) by solver CPLEX [42] (version 10.1) on a server with an Opteron processor at 2.4

GHz and 7 GB RAM. For each instance, the time limit is set to 2 hours. Table 1 summarizes the

results. For each network group, the table displays the minimum, maximum, and average values

of the optimality gap and the computing time. The optimality gap is the relative difference

between the power of the best SBT found and the lower cost estimation from the continuous

relaxation and the solver’s branch-and-bound algorithm. The value is zero if global optimum is

19

http://liu.diva-portal.org/smash/get/diva2:573292/ATTACHMENT01


reached and proven within the time limit. Sometimes the solver fails to find any integer solution.

The gap in this case is denoted by ∞, and excluded from the computation of the average gap

value. The computing time is in seconds, and ’lim’ is used to denote the time limit. The table

contains results for N ≤ 30. For larger networks, the solution process is time-excessive, and

the optimality gap when reaching the time limit has a clearly growing trend in N .

N α = 2 α = 4

Optimality gap (%) Time (s) Optimality gap (%) Time (s)

[min, max, ave.] [min, max, ave.] [min, max, ave.] [min, max, ave.]

10 [0.0, 0.0, 0.0] [1.0, 10.0, 5.4] [0.0, 0.0, 0.0] [1.0, 2.0, 1.3]

20 [6.7, 121.2, 45.8] [lim, lim, lim] [0.0, 3.3, 0.3] [26.0, lim, 1030.4]

30 [84.3, ∞, 223.6] [lim, lim, lim] [0.0, ∞, 4205.4] [lim, lim, lim]

Table 1: Computational results of solving the explicit integer formulation of SBT.

The results in Table 1 show that the explicit integer formulation can be solved rapidly to

global optimum only for N = 10. For N = 20 and α = 2, computing global optimum within

the time limit becomes out of reach, and the average optimality gap jumps to 45.8%. For this

value of α and N = 30, there are some test networks for which no integer solution is found at all,

and the average gap for the remaining test networks grows substantially to 223.6%. Increasing

α to 4 tends to make the computation faster. This is because the power grows much more rapidly

with distance in comparison to α = 2, thus many of the edges with huge power levels can be

easily excluded from further consideration in the solution process. As a result, the average gap

is close to zero for N = 20 and α = 4. When N grows to 30, however, the diversity in the

results is very large: For some of the networks, global optimum is attained, whereas for some

others no integer solution is found at all, and the average gap is huge. In conclusion, solving the

explicit integer formulation does not lead to an efficient approach for getting optimum (except

for very small networks), and more importantly, it does not lead to a tight bounding interval.

The dual decomposition algorithm with local search is implemented and run on a laptop

(Intel Core i5 with processor speed at 2.53 GHz). In the implementation, subgradient optimiza-

tion goes through two phases. In the first phase, which is run for K iterations, parameter λ is
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set to a constant value λ1. In the second phase, λ is reduced each time by a factor β, if the

lower estimation of global optimum does not improve in M consecutive iterations. Each time

an improvement in the over estimation (from solving S2 and applying local search) is obtained,

λ is set to λ2. The local search algorithm is embedded into dual decomposition to provide good

estimation on DualOpt in subgradient optimization. Local search is applied every L subgradi-

ent iterations. All the parameters influence the numerical performance of dual decomposition.

For each network group, the parameters can be tuned to produce a group-specific set of values

for optimal performance. In order to keep the performance evaluation unbiased, however, we

use a fixed set of parameter values for all network groups, with the only exception that param-

eter K, i.e., the number of iterations of phase one, increases by network size N . For N ≤ 20,

30 ≤ N ≤ 40, 50 ≤ N ≤ 60, and 70 ≤ N ≤ 80, K is set to 1500, 10000, 25000, and 35000,

respectively. The values of the other parameters are: λ1 = 2.0, λ2 = 1.0, β = 0.9, M = 50, and

L = 10. With this parameter setting, the algorithm performs reasonably well for all network

groups, although the performance is not the best achievable one for each individual group.

N α = 2 α = 4

Optimality gap (%) Time (s) Optimality gap (%) Time (s)

[min, max, ave.] [min, max, ave.] [min, max, ave.] [min, max, ave.]

10 [0.78, 0.96, 0.90] [<0.1, 0.2, 0.1] [0.42, 0.97, 0.77] [<0.1, 0.2, 0.1]

20 [0.92, 0.99, 0.96] [0.3, 2.3, 1.2] [0.73, 1.00, 0.87] [0.1, 0.3, 0.2]

30 [0.89, 1.75, 1.03] [8.6, 61.1, 25.0] [0.65, 1.00, 0.91] [1.2, 8.0, 2.7]

40 [0.93, 1.94, 1.16] [22.6, 182.5, 115.7] [0.87, 1.44, 0.99] [2.5, 45.4, 11.4]

50 [0.92, 2.70, 1.19] [93.2, 950.6, 572.1] [0.82, 1.00, 0.95] [13.2, 46.5, 27.2]

60 [0.99, 4.50, 2.45] [1150.4, 2044.5, 1640.2] [0.90, 1.00, 0.95] [37.4, 351.0, 109.8]

70 [0.85, 3.29, 1.61] [2409.3, 4377.8, 3577.1] [0.87, 1.00, 0.94] [62.1, 234.4, 144.2]

80 [0.99, 5.85, 2.34] [4960.5, 7162.3, 6018.3] [0.92, 1.25, 1.00] [265.3, 934.3, 570.6]

Table 2: Computational results of the dual decomposition algorithm.

The dual decomposition algorithm uses two stopping criteria. The algorithm terminates if

the optimality gap drops below a threshold t, or if λ < ǫ (i.e., no further significant progress

is expected because of small step length). In the experiments, t = 1% and ǫ = 0.002. The

optimality gap is defined as the relative difference between the best Lagrangean dual value
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generated by subgradient optimization, which gives a lower estimation of global optimum, and

the power of the best SBT solution found by local search. The results are shown in Table 2.

From Table 2, we observe that the dual decomposition algorithm is very effective. Overall,

the performance gap to global optimality is very small, demonstrating that applying dual de-

composition to the implicit formulation of SBT produces very tight lower estimation to global

optimum, and that the local search algorithm is able to approach close-to-optimal SBT. Con-

sider the results for α = 2. For networks with N ≤ 40, the maximum optimality gap of all

networks is below 2%, and the average gap is only 1.2% or less. For N ≥ 50, the maximum

gap becomes larger, but remains below 6%, and the average gap never exceeds 2.45%. The

average computing time ranges from a few seconds to a couple of minutes for N ≤ 40. For

N ≥ 50, the average time grows successively from 10 minutes to about 100 minutes, which

remains much more affordable in comparison to bounding the optimum via solving the explicit

formulation (cf. Table 1). Note that these results are obtained under the same algorithm param-

eter setting except for K, and tailoring the parameter setting for each network group is expected

to yield further improvement. Finally, it is evident that assuming α = 4 in the power formula

gives noticeably better results than those for α = 2, supporting the aforementioned observation

that, empirically, α = 4 requires less computational effort. In particular, the maximum and av-

erage gap values are constantly below 1.5% and 1%, respectively, and for reaching these values

the computing time is more than an order of magnitude shorter than for α = 2.

6.2 Additional Experiments

In this section, we report additional experiments for the following analysis. First, we compare

the broadcast power consumptions of SBT, MEB, and RAP. Second, the SBT algorithm in [11]

is evaluated. Third, for each of the two components in the decomposition algorithm, dual search

and local search, we examine its performance without the integration with the other.

From a networking standpoint, a performance comparison between source-independent broad-

cast by SBT versus that of source-specific MEB trees is of significance. For any individual
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source node, the power consumption by SBT is greater than or equal to that of the MEB tree.

The question is how much higher to expect. A performance assessment via heuristics for SBT

and MEB gives good insights but the accuracy is unknown. That dual decomposition provides

a very small optimality gap allows for much better accuracy in performance comparison.

A comparison between MEB and SBT is meaningful only if both are used to accomplish the

same broadcast communication task. Which strategy is better depends on the type of network

and application. If there are very few nodes that will act as potential broadcast sources, source-

specific MEB broadcast trees are preferable. When many or all nodes are potential broadcast

sources, whether or not creating a large number of MEB trees remains preferable depends on if

MEB substantially outperforms SBT in the power consumption. To this end, we consider the

scenario in which each node is a broadcast source, and the total power consumption corresponds

to that of delivering one broadcast packet originated from every source to the entire network.

The RAP tree targets network connectivity, but it can also be used for source-independent

broadcast. In RAP, the performance metric of each node is the power required to reach all its

tree neighbors. A naive way of using the RAP tree for broadcast is to let every node use this

power to initiate and forward broadcast messages. This approach is however highly inefficient,

as it does not utilize the fact that a node does not have to use the maximum power if a packet

is transmitted by the corresponding neighbor, and packet forwarding at a leaf is unnecessary

unless the packet is initiated by the leaf itself. For the purpose of a fair comparison, we use the

RAP tree as an SBT, and evaluate the overall power accordingly.

In Table 3, we provide the comparison between MEB and SBT, and between SBT and RAP.

The global optimum of MEB is computed for all source nodes using the formulation in [27]. The

global optimal RAP tree is computed using the multi-tree formulation in [43]. The computations

are performed for N ≤ 40, as larger networks require excessive computing time for MEB. The

notation “ SBT
MEB

” and “RAP
SBT

” denote the performance ratios between the power consumptions of

SBT and MEB, and between RAP and SBT, respectively. For SBT, the power is given by the

best solution found by dual decomposition; this solution is in average at most 1.2% away from
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the global optimum for N ≤ 40, and hence the comparison is highly accurate.

N [min, max, ave.] of SBT
MEB

[min, max, ave.] of RAP
SBT

α = 2 α = 4 α = 2 α = 4
10 [1.01, 1.17, 1.08] [1.01, 1.09, 1.05] [1.00, 1.33, 1.10] [1.00, 1.13, 1.03]

20 [1.06, 1.16, 1.12] [1.01, 1.11, 1.05] [1.06, 1.28, 1.19] [1.00, 1.24, 1.04]

30 [1.10, 1.21, 1.13] [1.01, 1.09, 1.04] [1.06, 1.29, 1.15] [1.00, 1.12, 1.05]

40 [1.10, 1.20, 1.13] [1.02, 1.08, 1.04] [1.08, 1.28, 1.16] [1.01, 1.12, 1.06]

Table 3: Performance comparison between SBT and MEB, and between SBT and RAP.

From Table 3, it follows that SBT performs well in power in comparison to MEB. For α = 2,

using one optimal SBT instead of N optimal MEB trees requires at most 21% in extra power

consumption. The range of the average values is [8%, 13%], amounting to a very moderate

power increase. The additional power for α = 4 is considerably smaller. This is explained by

the fact that, as the link power levels have a very larger diversity, the expensive links are avoided

in both SBT and MEB. An interesting observation is that the values do not have any growing

trend in the network size N . These observations, along with the SBT’s features of having small

storage and processing overhead, make SBT a very attractive approach for broadcast.

The RAP tree minimizes the sum of the highest node powers; this optimality criterion, unlike

optimal SBT, does not account for which power levels will be used nor how many sources will

use each of the power levels, when the tree is used for broadcast. As shown in Table 3, the

resulting range of deviation from optimum SBT is, in average, [10%, 19%] for α = 2. Although

the average values are quite moderate, the maximum deviation (33%) is rather significant. As

can be expected, the difference between RAP and SBT decreases for α = 4. However, even in

this case the maximum deviation from optimum remains over 20%.

Along with introducing SBT, the authors of [11] presented an approximation algorithm. We

have implemented this SBT algorithm, and made a performance evaluation using the close-to-

global-optimal lower bound from dual decomposition. For all the network groups in Table 3,

the performance of the algorithm in [11] is very close to that of optimal RAP. Note, however,

that the algorithm in [11] is fast, whereas computing optimal RAP is much more demanding.

When N grows from 40 to 80, the deviation from optimality increases. More specifically, for
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N = 80, the average gap reaches 20% and 10%, respectively, for α = 2 and α = 4. Overall, the

algorithm in [11] has reasonable performance in view of its complexity, although it is clearly

inferior to the dual decomposition algorithm in terms of optimality gap. We also remark that the

authors of [11] have presented a comparative study of the performance of their SBT algorithm

and MEB. However, the comparison is more restricted than that in Table 3, because [11] uses

the output from the BIP [1] algorithm rather than optimal MEB trees.

The dual decomposition scheme consists in bounding from below (via dualizing constraints)

and from above (via subproblem S2 and local search). The two parts are tightly intertwined with

each other. From solving the dual subproblem S2, the MST repeatedly forms the starting point

of local search. Local search aims at improving DualOpt, which is a crucial parameter in

optimizing the dual. It is interesting to see the performance of each of the two parts alone, i.e.,

to examine how the lower-bounding procedure performs without the support of local search,

and apply pure local search without having access to the initial solutions from subproblem S2.

N α = 2 α = 4

Optimality gap (%) Time (s) Optimality gap (%) Time (s)

[min, max, ave.] [min, max, ave.] [min, max, ave.] [min, max, ave.]

10 [0.29, 0.99, 0.80] [<0.1, 0.6, 0.2] [0.13, 0.97, 0.70] [<0.1, 0.2, <0.1]

20 [0.05, 0.91, 0.65] [1.5, 5.6, 3.1] [0.71, 0.99, 0.90] [0.1, 0.3, 0.2]

30 [0.28, 1.90, 0.84] [39.6, 103.0, 59.6] [0.77, 0.99, 0.92] [0.83, 15.9, 3.2]

40 [0.20, 1.59, 0.90] [90.5, 289.3, 191.0] [0.82, 2.07, 1.03] [2.0, 47.9, 10.3]

50 [3.75, 15.67, 3.26] [570.9, 1597.1, 955.1] [0.77, 0.98, 0.93] [11.2, 99.8, 27.3]

60 [7.64, 20.04, 7.43] [1648.1, 3592.0, 2436.1] [0.72, 3.02, 1.11] [44.2, 437.8, 135.8]

70 [0.78, 10.59, 4.65] [3970.7, 6288.0, 5279.8] [0.82, 0.99, 0.93] [54.2, 560.0, 253.9]

80 [1.21, 20.96, 9.96] [7371.6, 10274.6, 8974.8] [0.86, 1.00, 0.95] [271.0, 901.3, 612.0]

Table 4: Computational results of pure dual search.

Table 4 shows the results of optimizing the dual without using local search. The algorithm

parameter setting is identical to the specification in Section 6.1. It is apparent that the algorithm

remains superior in comparison to solving the explicit integer formulation. For network groups

with N ≤ 40 and α = 2, as well as for all network groups with α = 4, the performance is

fully comparable to the original decomposition scheme with local search. In some of these
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scenarios, the optimality gap is in fact smaller but the corresponding computing time becomes

considerably longer. For α = 2 and N ≥ 50, the performance in optimality and computing time

are clearly inferior to that of the original decomposition scheme. This is mainly because of the

slow convergence caused by poor estimation of DualOpt. Thus, embedding local search into

subgradient optimization does enhance the convergence in optimizing the dual.

To apply pure local search, we have implemented an SBT-specific greedy construction

heuristic for obtaining an initial solution. It starts from a randomly selected node, and aug-

ments the tree successively. In each step, the heuristic selects the node and link resulting in the

minimum SBT power for all the sources in the partial tree plus the node under examination.

N [min, max, ave.] for α = 2 [min, max, ave.] for α = 4
10 [0.00, 2.45, 0.60] [0.00, 4.83, 0.56]

20 [0.00, 24.77, 17.89] [0.00, 4.02, 0.95]

30 [5.31, 21.51, 11.62] [0.00, 6.11, 1.72]

40 [0.00, 111.72, 28.44] [0.00, 3.28, 0.56]

Table 5: Optimality gap (%) of greedy tree construction and local search.

Table 5 reports the performance of greedy tree construction with local search. The proce-

dure, by itself, does not give any lower estimation of optimum. In the table, the optimality gap

is evaluated using the best solution found by the dual decomposition algorithm in its original

form. We do not include results for networks with N > 40 for the reason that these results do

not provide additional insights. Consider the results for α = 2. The pure local search algorithm

finds close-to-optimal solutions for N = 10. For N ≥ 20, the optimality gap has a clearly

growing trend, with high diversity in solution quality. For N = 40, the average gap to optimum

is almost 30%, and the maximum gap grows above 100%. As expected, for α = 4, local search

consistently performs close to optimality, yet the maximum gap values are clearly higher than

those in Table 2. In conclusion, local search alone does not perform well, and its performance

strongly benefits from the starting solutions provided from optimizing the dual.
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7 Conclusions

We have presented a computational optimization scheme for minimum-power broadcast in wire-

less networks using an SBT. The scheme is built upon applying dual decomposition to a discrete

optimization formulation that embeds multiple directed trees into an undirected spanning tree.

An implicit representation of the connection between some of the variables is preferable to an

explicit one, because solving an explicit formulation does not yield an efficient solution ap-

proach. By dual decomposition, the implicit formulation is effectively handled. In addition,

optimizing the dual is intertwined with a local search algorithm, for which we have presented a

time-efficient implementation. Computational experiments demonstrate that our approach en-

ables close-to-optimal solutions. Moreover, the results show that using the optimal SBT instead

of many source-specific MEB trees does not lead to significant increase in power expenditure.

That the computational machinery gives very accurate estimation on global optimum is

highly useful from a performance assessment standpoint. To this end, one line of further re-

search is the development of distributed algorithms. Another interesting topic consists in prob-

lem generalizations, such as SBT in networks using directional antenna, and the use of hop limit

to address end-to-end delay.
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