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ABSTRACT In order to pursue rapid development of the new generation of wireless communication systems

and elevate their security and efficiency, this paper proposes a novel scheme for automatic dual determination

of modulation types and signal to noise ratios (SNR) for next generations of wireless communication

systems, fifth-generation (5G) and beyond. The proposed scheme adopts unique signatures depicted in

two-dimensional asynchronously sampled in-phase-quadrature amplitudes’ histograms (2D-ASIQHs)-based

images and applies the support vector machines (SVMs) tool. Along with the estimation of the instantaneous

SNR values over 0-35 dB range, the determination of nine modulation types that belong to different

modulation categories i.e., phase-shift keying (Binary-PSK, Quadrature-PSK, and 8-PSK), amplitude-shift

keying (2-ASK and 4-ASK) and quadrature-amplitude modulation (4-QAM, 16-QAM, 32-QAM, and 64-

QAM) could be achieved by this scheme. The application of this scheme has been simulated using a channel

model that is impaired by additive white Gaussian noise (AWGN) and Rayleigh fading, covering a broad

range of SNRs of 0-35 dB. The performance of this dual-determination scheme shows high modulation

recognition accuracy and low mean SNR estimation error. Therefore, it can be a better alternative for

designers of next generation wireless communication systems.

INDEX TERMS Modulation recognition, SNR estimation, 5G communication system, support vector

machine, feature-based approach.

I. INTRODUCTION

The recent decades have witnessed a tremendous demand

for more secure, reliable, efficient, high-quality and cost-

effective wireless and mobile applications and services.

Future wireless applications and services are envisaged to

lead to a continuous growth of demand for high data rates,

quality of service (QoS) and mobility. With the rapid growth
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of telecommunication systems, it seems that there are many

challenges which still cannot be addressed by the current

technologies, such as enhancing the QoS of the wireless

schemes, securing wireless communication, simplifying

implementation complexity, and providing accurate channel

state estimation [1]. Automatic determination techniques of

signal parameters can be a suitable and potential platform

that provides solutions to the abovementioned challenges.

In the literature, many techniques for the estimation of

signals’ parameters, such as modulation type, signal-to-noise
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ratio (SNR), bit-rate, transmitted signal power etc., in wire-

less communications have been presented [2]–[7].

The transmitters in the next generation wireless networks

are expected to vary and adjust some of these parameters

based on the existing channel conditions. This, in turn,

will demand the receivers that engaged in these systems

to be fully equipped with the autonomous determination

techniques of various signal parameters. The majority of the

existing schemes in the literature focus on identifying one

signal parameter for e.g. modulation type i.e. automatic mod-

ulation recognition (AMR) [8]–[16] or signal-to-noise ratio

(SNR) [17]–[20] rather than on dual identification of multiple

parameters. Additionally, they entail tight-synchronous and

fast sampling of the detected signals. Besides, the majority of

existing AMR or SNR estimation techniques consider only

AWGNand notmultipath fading channels. This affects vitally

on the performance of these present techniques.

In general, signal parameter determination techniques are

usually categorized into feature-based (FB) and likelihood

ratio-based (LB) approaches [2], [21]. The former scheme

exploits the statistical characteristics of the received signals

and determines the desired signal parameters based on the

extracted features of these characteristics. On the other

hand, the latter adopts multiple hypothesis-based solutions,

calculates the values of the likelihood functions and compares

themwith a threshold value in order tomake final decisions as

elaborated in [22]–[24]. Alternatively, there are few existing

techniques adopted in the literature which propose a fusion

model of both FB and LB schemes together for modulation

formats classification [25], [26]. LB schemes may offer

an optimal solution in the determination process but they

undergo very high computational complexity [21], [27].

The signal identification, by FB algorithms, is made

based on the extraction of single or multiple statistical

features from the received signal. For instance, high order

cumulants (HOCs) features are used in [28] and in [29], [30]

in order to discern the modulation types. However, one

drawback of HOCs is that it requires huge number of

samples [31]. Besides, poor performance results for higher

order QAM modulation as shown in [29], [30]. The average

instantaneous amplitude values in conjunction with the

maximum value of spectral power density are utilized

in [32] for the recognition of modulation types. However,

the presented algorithm in [29] outperforms the method

in [32] due to its robustness to the noise. In [33], the authors

propose a cumulant-based technique to identify only PSK and

QAM-based signals with the assumption of having a perfect

channel information.

Identification of PSK and QAM signals have been investi-

gated in [16], [27], [34], [35]. The work in [16] focused on the

modulation classification of only three types of signals (i.e.,

QPSK, 16QAM and 64QAM). In the process of modulation

identification, they had to apply Cepstrum technique to resist

the multipath fading phenomenon. In term of modulation

recognition accuracy, their method approached an average

value of 80%. The scheme presented in [27] can be concluded

as follows: 1) It identifies only four types of modulations (i.e.,

BPSK, QPSK, 16-QAMand 64-QAM), 2) the scheme applies

to a cooperative relay network that requires at least two

time slots to perform successful AMR, 3) the communication

channel between transmitter and receiver is impaired by

flat fading, 4) the modulation recognition accuracies of

SVM are quite good, it reaches 98.25% at best (assuming a

perfect channel state knowledge), for a pool of signals with

four modulations only, 5) the performance of the algorithm

depends on intermediate nodes (relays) between source and

destination. An outage or any disconnection in these nodes

will cause a failure in the entire communication system,

6) the scheme assumes that SNR is known. A Similar

modulation family to [27], has been deemed in the work [35]

to handle AMRproblem using their features-based technique.

In their method, authors proposed Bhattacharrya Distance

based Feature Selection (BDFS) algorithm and neural

network tool to extract distinctive features and differentiate

modulations from a set of signals (BPSK, QPSK, 8-PSK,

16QAM). On the other hand, a larger pool of digital signals

has been considered in our work, aiming to accurately

estimate both the modulation type and the SNR parameters,

simultaneously.

A wider range of modulations has been earlier identified

in [10] compared to [27]. The modulation candidates to be

recognized were FSK, ASK, PSK and QAM-based signals.

The analysis in their work was conducted over a specific

range of SNR (-4, 0, 4 and 8 dB). The channel effect was

limited toGaussian noise only and the accomplished accuracy

was 97.74%. However, they have considered an ideal channel

and needed to employ a combination of three types of features

for AMR target, that are, i) the instantaneous characteristics,

ii) higher order moments (HOMs), and iii) higher order

cumulants, which inherently increased the computational

complexity. Furthermore, SNR parameter was assumed to be

known to the receiver.

Similarly, the work in [36] proposed a solution for AMR

problem and utilized SVM tool to recognize a set of

modulation types (i.e., FSK, MSK, ASK, PSK and QAM

based signals). The proposed solution attained around 97%

modulation recognition accuracy. Their model had to extract

multiple features from the received signal in order to facilitate

the recognition process at the SVM classifier. Moreover, their

work was limited to only AWGN, and the SNR parameter

assumed to be known.

Another work in [37] utilized graph-based analysis to

differentiate between only QAM signals. Their model

constructed the graphs based on the cyclic spectra of

the detected signal and extracted the features from the

corresponding adjacency matrices. Their work attained a

modulation recognition accuracy more than 85 %. However,

their work considered on only AWGN channel. Moreover, the

modulation pool in their model was limited to QAM signals

and their classifier was unable to recognize, for example, PSK

types due to the fact that QAMand PSK signals have identical

cyclic spectra (i.e., same features).
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A larger modulation pool was examined in [38] for

modulation type recognition using four types of classifiers

(i.e., CNN, random forest, extreme gradient boosting trees,

and decision tree). They proposed a feature-based model, that

is sensitive to the spectrum dynamics of the detected signal,

called dyadic aggregated autoregressive model (DASAR) to

extract the detected signal features using 200 samples of

the signal (i.e., smaller size of dataset). Their technique

showed that random forest (RF) classifier performed best

with DASAR where and attained average accuracy achieved

up to 70.96% at SNR value higher than 10 dB. In addition,

observing the performance of the RF classifier in their

simulation, there was a difficulty\confusion in differentiating

QPSK, 8PSK, and 16QAM from 64QAM signal.

In contrast to [38], a better performance of modulation

recognition has been achieved in [39] via convolutional

neural network (CNN) tool but considering 1024 samples

per transmitted signal (i.e., larger size of dataset compared

to [38]). Their model processed analog and digital modulation

types under Rayleigh fading channel and obtained an average

recognition accuracy of 91.48% at SNR value of 10 dB.

In [34], their proposed algorithm required high values

of SNR in order to achieve satisfactory performance. Their

technique necessitated an equalizer to tackle the effect of

multipath fading.

Wavelet transform-based features were also utilized for

the discrimination of digital modulation types in the litera-

ture [40], [41]. One drawback of these proposed recognition

methods is that, with only AWGN channel, they were

unable to recognize advanced modulation schemes such as

QAM signals. In that respect, the techniques applied in the

aforementioned work performed identification of only one

signal parameter i.e., modulation type, and overlooked the

instantaneous SNR values or assumed the knowledge of SNR

is known.

Alternative types of features are the spectral instantaneous

amplitude, phase and frequency were used in combination

with cumulant in [42] in order to distinguish between

PSK and QAM signals. The channel impairments were

the frequency selective fading. The achievable accuracy

was 93.21%. In their work, they assumed that the carrier

frequency is known at the receiver as they assumed the signal

to be already in baseband form. In addition, their algorithm

was unable to estimate the channel quality i.e. SNR and

instead the SNR knowledge was assumed to be perfectly

known at the receiver. Moreover, learning machine DNN

was used. Its training process occurred deeply among all

layers and nodes where all had to connect with each other to

perform the deep learning process, which in turn increased

the computational complexity especially when the training

dataset is small. DNN usually requires large input data which

is impractical when small training dataset is considered.

Recently we have proposed the 2D-ASIQHs-based model

in [43]. The proposed feature-based approach in that work

was examined to recognize a single parameter (modulation)

i.e., four digital modulation types and the channel is limited

to AWGN only. In the presented work of this paper, we have

extended our work in [43] and investigated the proposed

model for multiple signal parameters with larger pool of

modulation types and wide range of SNRs under realistic

environment (i.e., multipath fading channel).

On the other hand, an estimation technique of SNR

was proposed in [44]. In their work, frozen bits of polar

codes-based features were adopted to assist for SNR estima-

tion. The mean error of SNR estimation was calculated over

a short range of SNR values (i.e., 0–5 dB). The estimation

result of SNR obtained according to the mapping of the SNR

values to the frozen bit error rate. These features were able

to provide the receiver only SNR information but were not

capable of modulation type recognition which is an essential

knowledge for data recovery. Furthermore, the channel con-

sidered was a simple communication medium (i.e., AWGN

channel).

Very few techniques for simultaneous determination of

several signal parameters have been suggested recently such

as the asynchronous amplitude histograms (AAHs)-based

techniques in [45] and the asynchronous delay-tap plots

(ADTPs)-based techniques in [7], [46]. The researchers

who proposed these schemes conducted their experiments to

classify three modulation types (2ASK, QPSK and 16QAM).

One limitation of these techniques is that they are incapable

of identifying more than one type of PSK signals. This is

due to the fact that, based on their proposed features, PSK

signals would have identical patterns as all PSK types are

characterized with only one unique amplitude.

Moreover, the work in [46] is limited to only AWGN

channel before it is extended in [7] for fading channel.

Additionally, its implementation necessitates an extra sam-

pler to acquire the samples of the envelope signal which

in turn will lead to more installed hardware components

in the non-coherent receiver. Besides, it requires a delay

in time 1t between the two samplers employed in their

technique in order to construct their features. Furthermore,

the data rates of the modulated signals are associated with the

tap-delay between both samplers, hence further adjustment

is demanded accordingly which subsequently raises the

implementation complexity [47].

Unlike their works, the presented scheme in this

paper devotes the existing hardware structure in coherent

receiver to establish the proposed 2D asynchronous In-

phase-Quadrature histograms (2D-ASIQHs)-based images

where no additional hardware devices are required. It offers

a more generic receiver that can simultaneously determine

any of the nine modulation types (including 3 types of

PSK modulation family) and the instantaneous SNRs, under

AWGN and Rayleigh fading channels.

Recently, many researchers deploying machine learning

tools and their applications in their automatic signal recog-

nition methods which also cover paradigms in future 5G

wireless networks [48], [49]. It morphs to be a trend in the

field due to the significant capabilities they provide. Such

tools are artificial neural network (ANN) [11], [50]–[52],
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deep\ convolutional neural network (DNN\CNN) [53]–[59]

and support vector machine (SVM) [9], [45], [60]–[62].

SVM technique has proven its superiority in a vast range

of real-world problems [63] in term of classification [64]

and regression [65] as well as in avoiding overfitting

problem [48], [61], [66]. Moreover, according to the com-

parative study and experiments conducted by authors in [67],

SVM was more flexible than sparse auto-encoder (SAE) in

dealing with datasets that are characterized by small size of

training samples. Hence, SVM is adopted in this presented

scheme.

In fact, automatic simultaneous determination of multiple

signal parameters (such as modulation types, transmitted

powers, data rates, SNRs and so on) in wireless com-

munications systems still lack of investigation and not

widely addressed. Therefore, in this paper, we propose

one sole technique that can identify simultaneously several

parameters i.e., modulation types and SNRs. Furthermore,

as FB algorithms provide a near-optimal solution with less

computational complexity in contrast to LB hence, this

approach is adopted in this paper. The contributions of the

proposed work lie in the following folds:

• The proposed mechanism enables a reliable automatic

dual-determination of nine different modulation types

and wide range of SNRs in the coherent receivers. The

simultaneous determination process of the aforemen-

tioned parameters exploits only one algorithm to achieve

its goal unlike most of the up-to-date methods which

employ more than one algorithm to determine the two

parameters individually.

• The proposed scheme simplifies the sampling process

by utilizing low speed and asynchronous sampling to

produce patterns based on novel statistical features

called (2D-ASIQHs) which reveal unique signatures

among various wireless modulated signals. The pro-

posed algorithm requires no synchronous sampling

process; i.e., does not necessitate sampling at the

center (peak) of the symbol period (requiring no tight

synchronization and timing knowledge between source

and destination) hence less hardware and computational

complexity.

• The scheme offers significant determination accuracies

and robust resistance against the existence of both

AWGN and real-world scenarios (Rayleigh fading

channels). This has been achieved through utilizing a

combination of statistical features and SVM tool for

the simultaneous automatic determination ofmodulation

formats and SNRs. Furthermore, the algorithm produces

unique signatures of each modulation types even in

faded channels, making equalizer unnecessary for tack-

ling the effect of fading.

• The presented model persistently aims to diminish the

implementation complexity by decreasing the number of

generated ASIQHs features. The reduction in features’

size is performed by employing principal component

analysis (PCA) method to extract the most important

features of (2D-ASIQHs)-based images before input

them to the SVMs tool.

The remainder of this manuscript is outlined as follows.

Section II illustrates the concept of the proposed features.

Section III explains the system model. Section IV manifests

the operating mechanism. Section V demonstrates the

simulation results and finally Section VI concludes the entire

framework.

II. CONCEPT OF TWO-DIMENSIONAL ASYNCHRONOUS

IN-PHASE-QUADRATURE HISTOGRAMS (2D-ASIQHS)

In this paper, new asynchronous sampling-based images

which reflect statistical features are proposed. These

images are made of two dimensional histograms that

were constructed by asynchronously sampling the In-

phase-Quadrature components and then calculating the

occurrences of their captured samples. The 2D-ASIQHs

images reveal distinct signatures of digitally modulated

signals. The presented ASIQHs-based technique offers cost-

effectiveness, flexibility, and simplicity in its implementation

as it exploits the existing structure of the coherent receiver

without any costly modifications. Fig. 1 illustrates the

concept of generating 2D-ASIQHs-based images.

FIGURE 1. Fundamental of 2D-ASIQHs by utilizing asynchronous-IQ
signals sampling. Tsymbol & Tsampling refer to symbol period and sampling
period respectively.

The stages of generating 2D-ASIQHs-based images can

be summarized as follows: foremost, the in-phase-quadrature

components captured from a detected signal are arbitrarily

sampled by a low-speed asynchronous sampling unit at a

lower value of sampling rate than its symbol rate. It is worth to

mention here that the sampling rate value is uncorrelated with

the symbol rate. More specifically, the symbol period Tsymbol
is much shorter than the sampling period Tsampling. Next,

the samples Si = {bi, di} ∈S= {Si|i= 1, 2, . . . ,N } are ranked

based on their voltage magnitude values. Mathematically, Si
can be represented as a group of two values Si = {bi, di}

or in the complex domain Si = bi + jdi. Let’s consider a

2D plane consists of M × M of arrays of bins. Then, each

sample Si is mapped into its corresponding bin’s subgroups
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as shown in (1):

S
(r,c) = {Si|Si ∈ Vr,c, i = 1, 2, . . . ,N } (1)

where N is the number of samples, r and c denote rows and

columns indices respectively, and Vr,c denotes the complex

sub-range of the bin located at (r, c) in the 2D-plane as shown

in (2) below:

V =











V0,0 V0,1 . . . V0,M−1

V1,0 V1,1 . . . V1,M−1

...
...

...
...

VM−1,0 VM−1,1 . . . VM−1,M−1











(2)

The bins’ subgroups S(r,c) ⊂ S,S(r,c) ∈ Vr,c can be

easily assembled by simply processing the real and imaginary

components of the samples Si separately as follows:

ℜ
(

S
(r,c)

)

=
{

ℜ (Si)| ℜ (Si) ∈ ℜ
(

V0,c
)

, i = 1, 2, . . . ,N
}

(3)

ℑ
(

S
(r,c)

)

=
{

ℑ (Si)| ℑ (Si) ∈ ℑ(V r,0), i = 1, 2, . . . ,N
}

(4)

where ℜ(V0,c) and ℑ
(

Vr,0
)

are the real and imaginary

components of the cth and r th sub-range of Vr,c respectively

and they are defined as follows:

ℜ
(

V0,c
)

⊂
[[

V I
LOWV

I
1

]

,
(

V I
1V

I
2

]

, . . . ,
(

V I
M−1V

I
HIGH

]]

=

{

(V I
c V

I
c+1], c > 0

[V I
LOWV

I
1 ], c = 0

(5)

ℑ
(

Vr,0
)

⊂
[[

V
Q
LOWV

Q
1

]

,
(

V
Q
1 V

Q
2

]

, . . . ,
(

V
Q
M−1V

Q
HIGH

]]

=

{

(VQ
r V

Q
r+1], r > 0

[V
Q
LOWV

Q
1 ], r = 0

(6)

where
[

V I
LOWV

I
HIGH

]

and
[

V
Q
LOWV

Q
HIGH

]

are the samples’ full

ranges of real and imaginary components respectively, that is:

ℜ (Si) ∈
[

V I
LOWV

I
HIGH

]

and ℑ (Si) ∈
[

V
Q
LOWV

Q
HIGH

]

.

On the other hand, the sub-ranges component Vm is given

by:

V I
m = V I

LOW +
m

(

V I
HIGH − V I

LOW

)

M
(7)

VQ
m = V

Q
LOW +

m
(

V
Q
HIGH − V

Q
LOW

)

M
(8)

Finally, the total number of occurrences of the amplitude

samples that lie within each of the bins’ range is calculated

for 2D plane as

N =











n
(

S(0,0)
)

n
(

S(0,1)
)

. . . n
(

S(0,M−1)
)

n
(

S(1,0)
)

n
(

S(1,1)
)

. . . n
(

S(1,M−1)
)

...
...

...
...

n
(

S(M−1,0)
)

n
(

S(M−1,1)
)

. . . n
(

S(M−1,M−1)
)











(9)

where N represents the number of occurrences matrix

and n
(

S(r,c)
)

denotes the number of elements/samples in

the subgroup S(r,c). Eventually, by pinning the number of

occurrences on two dimensional plane, the 2D-ASIQHs

images are produced, where the value of each bin will create

another dimension that can be represented as colour.

FIGURE 2. System model employed in the simulations.

III. SYSTEM MODEL

Figure 2 illustrates the system model and the parameters

utilized in this model are presented in Table 1.

TABLE 1. Values of Parameters Used in the Simulations

The values given in Table 1 present different parameters

employed in the simulations. The transmission rate of

symbols and the carrier frequency are 250× 106 symbols per

second and 2.5 GHz respectively, assuming that the carrier

frequency is known at the receiver. The Raised-cosine pulse

shaper is utilized for shaping the considered signals which are

impaired byAWGN and three-path Rayleigh fading channels.

Rayleigh fading parameters are set to be varied where all

paths’ gains Gi and delays τi are randomly altered and

uniformly distributed in the ranges of −200 dB and 0−1µs,

respectively.

The delay for each path between transmitter and receiver

is given as follows

τi = TLoS + αiTs (10)
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where i ∈ {1, 2, 3}, TLoS is the delay of the direct path, Ts
is the symbol period and αi is uniformly distributed random

variable in the range between 0 and 0.5.

A coherent receiver-based detection is executed at the

receiver side where the detected signal is multiplied by

a carrier signal to obtain the in-phase and quadrature

components. Subsequently, the resultant components are

asynchronously sampled both simultaneously at a sampling

rate lower than a symbol rate. The term ‘‘asynchronously’’

here means that the sampling process is not necessarily to

be at the center of the symbol period, that is, the receiver

does not require a tight-synchronization\timing algorithm to

detect the peaks’ centers of the symbols. This reduces the

hardware implementation complexity, cost and increases the

speed of constructing the features. A total of 110,000 sample

pairs (bi, di) are acquired to be utilized afterwards to construct

the 2D-ASIQ histograms with dimensions 30 × 30 bins of

each image.

In order to decrease the computational complexity of

the presented mechanism, an extraction of most significant

2D-ASIQHs features is performed through the execution

of the PCA algorithm. Next, the extracted features are

fed to the SVMs for the training process in order to

generate the trained SVM model. In order to investigate the

signal parameters-determination capabilities of the proposed

mechanism, nine formats of diverse modulation types which

are descended from different grades of amplitudes and

phases based modulations, are adopted to form the pool of

modulation classes (BPSK, 2-ASK, QPSK, 4-ASK, 8-PSK,

4-QAM, 16-QAM, 32-QAM, 64-QAM).

Multipath fading phenomena usually describe the statis-

tical changes in the received signal which arrives at the

receiver through multiple spreading paths Pi with various

path gains Gi and delays τ i. Let m(t) is the baseband signal,

the equivalent transmitting passband signal is described as

follows [68]:

m̃(t) = Re[m(t)e2jπ fct ] (11)

where Re [.] is the real component of the modulated signal.

Given the signal will arrive at the receiver over a fading

channel with three propagation paths Pi, the detected

passband signal can be given as

x̃ (t) = Re





Pi=3
∑

i=1

Gie
2jπ fc(t−τi)m (t − τi)





= Re
[

xs(t)e
2jπ fct

]

(12)

where Gi, fc and τi refer to the path gain (dB), carrier

frequency (Hz) and path delay respectively, while the

baseband signal xs(t) is described as

xs(t) =

Pi=3
∑

i=1

Gie
−j∅i(t)m (t − τi) (13)

where ∅i (t) = 2π fcτ i. Based on (13), the corresponding

channel can be represented as liner time-varying filter, and

the impulse response of the channel is given by

h (t, τ ) =

Pi=3
∑

i=1

Gie
−j∅i(t)δ (t − τi) (14)

where δ(·) is the Dirac delta function. Equation (14) can be

modelled and described as

h (t, τ ) = h (t) δ (t − τi) (15)

where h (t) =
∑Pi=3

i=1 Gie
−j∅i(t). The detected passband x̃ (t)

signal can be represented as follows:

x̃ (t) = Re
[

xs (t) e
2jπ fct

]

= Re
[

{

hI (t) + jhQ (t)
}

e2jπ fct
]

= hI (t) cos2π fct − hQ (t) sin2π fct (16)

where hI (t) is the in-phase component given in (17), and

hQ (t) is the quadrature component expressed in (18)

hI (t) =

Pi=3
∑

i=1

Gicos∅i (t) (17)

hQ (t) =

Pi=3
∑

i=1

Gisin∅i (t) (18)

By simultaneously performing an asynchronous sampling

of the signals represented by (17) and (18), the 2D-ASIQ

histograms are thus constructed.

Figure 3 portrays an example of 2D-ASIQHs for the nine

modulation types considered in the presented scheme at two

different values of SNRs. From the figure, it can be evidently

observed that the features, reflected in the two-dimensional

histograms (i.e., image) pertaining to various modulation

types, SNRs, different path gains and delays, produce

unique signatures. This uniqueness enables accurate signal

parameters recognition. Besides, the patterns in 2D-ASIQHs

images also vary when the SNR values are changed. It can

be observed that these proposed features are sensitive to

the variations of modulation type, SNR, path gains and

delays all at the same time. Hence, these features enable a

simultaneous determination of modulation types and SNRs

with the employment of SVMs.

IV. THE OPERATING MECHANISM

These 2D-ASIQHs images reflect distinctive features that

subsequently can be exploited for joint determination of

modulation types and SNRs. This dual determination of the

aforementioned parameters can be achieved through an auto-

mated system based on machine learning techniques such as

SVMs. In the presented mechanism, two different SVMs are

utilized, namely support vector classifier (SVC) to determine

the modulation type and support vector regressor (SVR) to

determine the signal’s quality measures (i.e., SNRs).

A large dataset {ẌASIQH , ĔASIQH} is constructed from

6390 ASIQHs correspond to permutations of 9 types of

wireless signals, 71 SNRs and 10 random alterations of
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FIGURE 3. 2D-ASIQHs for various modulation types, different SNRs, path
gains and delays. The first column illustrates ASIQHs at SNR=7dB, and
the second column portrays ASIQHs at SNR= 19 dB, where τi is the path
delay and Gi is the path gain.

channel gains and delays that is, 6390 = 9 × 71 × 10. The

constructed dataset is split into training and testing sub-sets

by using 5-folds cross-validation technique.

The 5-fold cross validation method splits randomly the

entire 2D-ASIQHs dataset (i.e., 6390 observations\samples)

into five subsets with equal size. Then four subsets (i.e.,

5112 observations) are exploited for the training stage

of SVM whereas one subset (i.e., 1278 observations) of

total 2D-ASIQHs is employed for the testing stage. This

procedure is repeated five times (the recognition accuracies

are calculated every time) and finally the average recognition

accuracy is calculated by taking the mean of all accuracies in

the entire five rounds. The recognition accuracy is given as

Aci =
Cs

Es
× 100% (19)

where Es is the size of entire testing data set and Cs is the

number of successfully determined samples. It is worth to

mention that in the training phase, a 5-fold cross validation

method is also carried out over the training subset (4 subsets

for training and 1 subset for validation) in order to produce

the optimized-trained model [69].

A. FEATURES EXTRACTION VIA PRINCIPAL

COMPONENTS ANALYSIS

One target of the proposed scheme is to diminish the process-

ing complexity. This is attained by decreasing the number of

generated ASIQHs features and extract the most useful ones

without losing additional considerable data. The reduction

of features’ size in this work is performed by engaging

a well-known technique namely the principal component

analysis (PCA) method. Recently, PCA has gained a notable

interest as a beneficial strategy in representing a dataset

in a new form and reducing the size of features. It finds

applications in many research areas such as learning algo-

rithms, patterns recognition and feature extraction [70]–[72].

It drastically decreases the dataset dimensionality and

extracts the most important features of (2D-ASIQHs)-based

images with preserving the data distribution. The new

reduced-dimensional subspace contains uncorrelated and

descriptive variables what so-called principal components

(PCs). These PCs are then ranked in descending order

based on their highest to the lowest variance values before

inputting them to the SVMs tool. The PCs can be efficiently

obtained by calculating the eigenvectors of the dataset. The

steps towards the implementation of PCA algorithm can be

summarized as follows

1. Assume a matrix Ẍ represents a training subset, has S

ASIQHs-images. Let every ASIQHs-image has a size of

V × V (i.e., 30 × 30 pixels).

2. The ASIQHs-images can be handled as vectors by

performing a concatenation process on the rows

(or columns) of these images before input them to SVM.

Hence, it can be described as a one-dimensional vector

xi of length V 2.Therefore, the large matrix Ẍ of size

V 2 × S is established where Ẍ = [x1, x2, . . . , xS ]. Each

2D-ASIQH in the dataset is represented by a V 2 × 1

vector xi.
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3. Calculate the mean ASIQHs vector γ of matrix Ẍ by:

γ =
1

S

S
∑

i=1

xi (20)

4. Calculate the zero mean matrix Z by subtracting the

mean vector γ from every column in Ẍ, we obtain Z =

[z1, z2, . . . , zS ] where zi = xi − γ .

5. Obtain the covariance matrix C of Z with size V 2 × V 2

as

C =
1

S

S
∑

i=1

ziz
T
i =

1

S
Z ∗ Z

T

(21)

where C is diagonalizable matrix (i.e., symmetric).

6. Calculate the eigenvectors and eigenvalues: The covari-

ance matrix C possess V 2 eigenvectors (pi) and eigen-

values (ξi). Next, the principal components (PCs) i.e.,

eigenvectors pi, can be determined by solving (22):

Cpi = ξipi, i = 1, 2, . . . ,V 2 (22)

7. Sort the eigenvectors pi in a descending rank based on

their corresponding eigenvalues ξi (i.e., variances)

8. Select the desired quantity of PCs having highly-ranked

variances: chosen number (R ≪ V 2) of the sorted

eigenvectors is decided. The decision of R is made that

the following condition is fulfilled:

∇ =

R
∑

i=1

ξi/

V 2
∑

i=1

ξi > Mc (23)

where typical value of Mc is chosen to be larger

than 0.9 [72], [73]. The selected PCs construct

R–dimensional eigenspace, which is a subset of the

original V 2–dimensional space of matrix Ẍ.

9. In this subspace, a weighted-sum of the chosen eigen-

vectors can approximate any vector zi as:

zi ≈

R
∑

r=1

hrpr H⇒ hr = pTr zi, r = 1, 2, . . . ,R (24)

The feature vector HT of the ASIQHs-image is com-

prised of weights hr , where HT = [h1, h2, . . . , hR]
T .

Based on (24), feature vectors for all ASIQHs images

can be calculated for the training subset.

10. To obtain the feature vectors for the testing subset,

assume a matrix ẌE has SE ASIQHs-images with size

of V × V for each observation. Similar to step 1,

we obtain matrix ẌE of size V 2 × SE where ẌE =
[

xE1, xE2, . . . , xSe
]

.

11. As in online identification process, only one observation

(i.e., one ASIQHs image) will instantly be detected at the

receiver, therefore, the mean ASIQHs vector γ obtained

in step 3 using (20) will be used to calculate the zero

mean matrix ZE for the testing subset, therefore, ZE =

[zE1, zE2, . . . , zSe ], zEi ∈ ZE , where zEi = xEi − γ .

Finally, the weights hr of the feature vector HE can be

derived as:

hr = pTr zEi (25)

The symbol H will hereafter denote a feature vector in

general, which will be used as an input to the machine

learning tool.

On the other hand, for every ASIQHs in the training and

testing subsets, we generated a 9 × 1 label vector e and a

scalar target e‘. The label vector e will be compared with

the SVM output vector containing eight ‘-1’ elements and

a single ‘+1’ element whose location signifies the actual

modulation type pertains to that ASIQHs. The scalar target

e‘ represents the actual SNR target pertaining to that ASIQHs

too.

The outputs O and O‘ are anticipated to resemble the

corresponding label e and the actual value e‘ respectively.

As the supervised learning manner of the machine learning

technique is adopted here, both SVC and SVR are trained by

employing vectorH as input while label e (with size of 9 ×1)

and scalar e‘ as actual targets depicted in Fig. 4.

FIGURE 4. SVC and SVR with ASIQHs vector H as input and identified
modulation type and estimated SNR as outputs. O is the output vector
which holds a single ‘+1’ element and ‘−1s’ elsewhere.

In the presented scheme, one-against-all-based SVM

approach is adopted which is a common strategy in handling
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TABLE 2. Recognition Accuracies for Different Modulation Types by Employing the Proposed Mechanism (for AWGN and Rayleigh Fading Channel)

multi-class SVMs to generate the SVC models. In this

approach, a polynomial kernel function is used to assist

every SVC to discern a modulation type (‘+1’) from the

remaining classes (‘-1s’) in the training phase. This function

will map the training observations to a higher dimensional

space and optimize a hyperplane that maximally separates up

observations (i.e., training samples) of each class from the

residual types.

Furthermore, in order to fulfill the simultaneous determina-

tion, the proposedmechanism also offers, besides modulation

recognition, to simultaneously estimate the SNR value by

employing Gaussian-based SVR. The goal is to acquire a

function that diverges from the target e‘ by not exceeding a

threshold ε for each training observation.

Eventually, the performance of employed trained-SVMs

will be assessed using the testing subset. A vector H which

belongs to the testing subset is concurrently fed to SVC and

SVR, and the pertaining outputs O and O′ are attained. The

output vector O will contain a sole ‘+1’ element and ‘−1s’

elements elsewhere due to the binary classification tendency

of SVC. As a result, the location of ‘+1’ will refer to the

determined modulation type. In addition, SVR will directly

yield an output scalar O′ which returns SNR estimate.

Both the determined and actual signal types and SNR

values are compared, and determination accuracies are subse-

quently calculated. The entire simulation is iterated 50 times

and the mean determination accuracies are obtained.

V. SIMULATION RESULTS

To validate the performance of the presented mechanism,

various simulations have been conducted. A broad range

of SNR values (71 values) is considered in the conducted

simulations i.e., 0–35 dB with a step of 0.5 dB.

First, the relation between the selected R significant-PCs

and parameter∇ is demonstrated by the curve given in Fig. 5.

The parameter∇ in (23) increases proportionally according to

the quantities of the R-selected PCs (more specifically to their

pertaining eigenvalues as manifested in the aforementioned

equation). In this figure, the criterion in (23) is satisfied

FIGURE 5. The relation between parameter ∇ and the selected R principal
components PCs (features).

when minimum selected PCs is 12% of the entire features

(i.e., 108 features). Consequently, it signifies the efficient

exploitation of choosing a few PCs rather than processing

the overall features. In fact, this essentially leads to less

computational complexity and quicker processing for the

presented determination mechanism.

Table 2 describes the identification accuracies for nine

modulation types when exploiting the entire features. The

overall identification accuracy for modulation recognition is

determined by calculating the average of the nine individual

recognition accuracies placed in the diagonal of Table 2

(shaded cells). The achievable overall identification accuracy

of all modulation types is 99.06% notwithstanding the

deterioration over the modulated signals caused by both

AWGN and Rayleigh fading channels.

The effect of choosing a percentage of features on the

overall modulation identification accuracy of the proposed

scheme is portrayed in Fig. 6. It is evident from the figure

that the determination accuracies exponentially improved

with the increment of the chosen percentage of features.

Furthermore, it is apparent that opting 8% of the entire

number of features yields recognition accuracy approaching

70%. On the other hand, when considering 12% features

VOLUME 9, 2021 25851



T. A. Almohamad et al.: Dual-Determination of Modulation Types and SNR Using 2D-ASIQH Features

FIGURE 6. Effect of selected percentage of features (PCs) against the
overall identification accuracy when splitting the dataset by 5-fold cross
validation method.

and above, this accuracy attains values more than 91%. But,

from 16% features selected onwards, the improvement of

the recognition accuracies is slightly visible. It is notable

to mention that all the aforementioned accuracy values have

been achieved in the presence of AWGN and Rayleigh fading

channels.

FIGURE 7. Mean estimation error of SNR as a function of the percentage
of selected features.

On the other hand, the impact of tuning the percentage

of optimum features on the mean SNR prediction error is

manifested in Fig. 7. It is noticeably observed that selecting a

higher percentage of optimum features leads to a proportional

decrease in mean SNR estimation error. That is to say,

when the percentage of chosen features rises, the mean

prediction error of SNR declines, and conversely. Besides,

when the percentage 16% (out of 900) of optimum features is

considered, the resultant mean SNR prediction error is 1.81

dB. Furthermore, the mean prediction error values of SNR

are 1.51 dB, 1.38 dB and 1.25 dB when the percentages

of selected features are 17%, 18%, and 19% respectively.

Additionally, selecting 20% of optimum features yields less

than 1.2 dB average SNR estimation error. Nevertheless, the

impact of increasing the percentage of chosen features on

the decrement of SNR estimation error is slightly noticeable

from 16% of selected features onwards. Table 3 numerically

interprets the results illustrated in Fig. 6 and Fig. 7 for the

determination of both modulation types and SNRs.

TABLE 3. Percentage of Features With Identification Accuracies and
Regression Errors

As noticed in Table 3, considering a percentage of selected

features of 16%, the determination values for both parameters

(i.e. modulation type and SNR) are good. But going beyond

16%, the determination values approach a near plateau. This

again demonstrates the advantage of exploiting PCA method

to extract the most optimum features reflected by ASIQHs

images, and to minimize their dimensions. Figure 8 portrays

the outcomes of SNR predictions for nine signals namely

BPSK, 2-ASK, 4-ASK, QPSK, 8-PSK, 4-QAM, 16-QAM,

32-QAM and 64-QAM using all features. Their individual

mean SNR estimation errors are given in the Table 4.

TABLE 4. Mean SNR Estimation Errors and Their Corresponding Signals

As illustrated in Fig. 8, the presented scheme estimates

the SNR with values quite close to the actual SNRs with an
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FIGURE 8. Actual versus estimated SNRs for BPSK, 2-ASK 4-ASK, QPSK, 8-PSK, 4-QAM, 16-QAM, 32-QAM, and 64-QAM signals using the
proposed mechanism.

average estimation error 1.10 dB for all considered signals

despite the deterioration effects of both Rayleigh fading and

AWGN channels. However, from Fig. 8 and Table 4, when the

modulation type 64-QAM is utilized to transmit the signal,

the support vector regressor (SVR) in the receiver looks like

experiencing some challenge to estimate the SNR of the

transmitted 64-QAM-based signal.

This is mostly because of the extracted 64-QAM signatures

nearly resemble each other at different SNR values, due to the

severe Rayleigh fading impact as it can be observed in Fig. 9.

FromFig. 9 (a and b), the 64-QAM-based signatures (or the

colored circles including the faded blue ones) show less

sensitivity to the SNR variations as their patterns remain

almost same. Thus, it becomes more challenging for the

SVM to determine the SNR of the signal when high-order

M -QAM (i.e. M = 64 and above) is used. Therefore, further

enhancement of SNR estimation capabilities is required when

advanced modulation schemes are utilized such as 64-QAM

and beyond. Nevertheless, the density in pixels (i.e. the

colored pixels including the faded blue ones) of these images

is still slightly different. The sensitivity to SNR variations

in these images gets much better after 3 dB onwards as the

FIGURE 9. (64-QAM) signal at different low values of SNR, a) 64-QAM at
SNR = 1dB, b) 64-QAM at SNR = 3dB, c) 64-QAM at SNR = 5dB, d)
64-QAM at SNR = 7dB, under Rayleigh fading channels.

colored circles become slightly bigger and distinct from the

signatures at 1 dB and 3 dB.
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FIGURE 10. Modulation identification accuracies of the proposed scheme
against SNRs in the presence of AWGN and Rayleigh fading channels.

Figure 10 reflects how the proposed scheme performs over

different values of SNRs. It manifests that the recognition

accuracies achieved good values even at low SNR ranges.

For instance, it is almost 84% and higher than 93% at SNR

values 0 dB and 1 dB respectively, while it is above 97% at

SNR = 3 dB. From 5 dB onwards, the recognition accuracies

remain high at 98% and above.

The results of joint classification and regression indicate

the capability of the presented mechanism for simultaneous

determination of modulation formats and SNRs and offer

high accuracies despite the impact of AWGN and Rayleigh

fading channels on the transmitted signals considered in

this work. Credits are given to the robustness of the

proposed 2D-ASIQHs features in combination with SVMs

tool.

The proposed scheme provides simplicity in hardware

implementation. That can be attributed to: 1) the simulta-

neous determination of multiple signal parameters which

removed the necessity of utilizing a separate algorithm for

every signal parameter, 2) the exploitation of ASIQHs which

eliminates the need of timing knowledge as the scheme

involves an asynchronous sampling process, 3) The scheme

enables a generic receiver which is capable of detecting

various signals impaired with multipath fading, an intelligent

receiver that can estimate and track any fluctuations related

to modulations and SNRs at the transmitter side and the

channel, respectively, 4) simple structure of the receiver as

the developed scheme exploited the existing structure of

a coherent receiver circuit featuring built-in asynchronous

low-speed samplers (i.e. sampling rate much less than

symbol rate) without requiring any extra sampler compo-

nents., 5) almost 85% reduction in the size of the utilized

ASIQHs-based features using PCAmethod, which in practice

leads to lowering the processing time, and computational and

hardware complexity. Therefore, it is a promising low-cost

alternative for several-parameters determination in future

generations of wireless communication systems.

TABLE 5. A Comparison Between the Proposed Scheme and Existing
Work

Table 5 presents a compression between state-of-the-art

related methods and the proposed scheme and highlights how

the proposed work outperforms its peers despite the realistic

impairments of frequency selective fading scenario.

VI. CONCLUSION

A novel scheme for simultaneous automatic determination of

modulation types and SNR for 5G and beyond is proposed

in this paper. The proposed mechanism is a new approach

utilizing 2D-ASIQHs features to simultaneously recognize

modulation types and estimate SNRs values by exploiting

SVMs tool. In addition, the paper has proposed a scheme

that enjoys a low implementation complexity. The scheme

demonstrates robustness against AWGN and Rayleigh fading

environments, attaining very good identification accuracy

of 99.06% and reasonable mean estimation error of 1.10

dB for various modulation types and wide range of SNRs,

respectively. Hence, the presented scheme can be an attractive

and cost-effective option for future generations of wireless

communication systems.
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