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Abstract—In this paper, a novel adaptive beamforming algo-

rithm is proposed under a linearly and quadratically constrained

minimum variance (LQCMV) beamforming framework, based on

a dual-domain projection approach that can efficiently implement

a quadratic-inequality constraint with a possibly rank-deficient

positive semi-definite matrix, and the properties of the proposed

algorithm are analyzed. As an application, relaxed zero-forcing

(RZF) beamforming is presented which adopts a specific quadratic

constraint that bounds the power of residual interference in the

beamformer output with the aid of interference-channel side-in-

formation available typically in wireless multiple-access systems.

The dual-domain projection in this case plays a role in guiding

the adaptive algorithm towards a better direction to minimize the

interference and noise, leading to considerably faster convergence.

The robustness issue against channel mismatch and ill-posedness

is also addressed. Numerical examples show that the efficient use

of interference side-information brings considerable gains.

Index Terms—Adaptive beamforming, dual-domain adaptive al-
gorithm, LCMV, LQCMV, relaxed zero forcing.

I. INTRODUCTION

A DAPTIVE beamforming and smart antennas are gaining

renewed interest recently for wireless communications as

an effective tool to enhance the energy efficiency and data rate

far beyond those achieved by current small-scale multiple-input

multiple-output (MIMO) techniques [3] quite after their early

consideration in 1990’s [4]. In upcoming wireless communica-

tion systems, large-scale antenna arrays are envisioned to be

deployed at basestations and beamforming based on large-scale

antenna arrays is expected to be used to support high data rates

and energy efficiency to the network (see Fig. 1). In typical wire-

less multiple-access situations, the channel (or array response)

from every uplink transmitter to the basestation antenna array is

known to the basestation. In order to decode the signal from one
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Fig. 1. System model: A single-input multiple-output (SIMO) multiple-access
wireless network with a large-scale antenna array.

uplink transmitter at the basestation, one could use Capon’smin-

imum variance distortionless response (MVDR) beamformer

[5]. In this case, the channel information from the desired trans-

mitter is used, whereas the channel information from the re-

maining interfering transmitters is ignored. However, it is nat-

ural to ask if there is a benefit in using the side information of

the interference channels in beamforming.

In this paper, we propose a new paradigm for adaptive

beamforming that can exploit the interference side-information

efficiently, having the wireless multiple-access communication

scenario in mind. It turns out that the use of the side infor-

mation brings considerable improvements in the convergence

speed of adaptive algorithms. We emphasize here that fast

convergence is of great importance, particularly in the wireless

multiple-access communication scenario, since it reduces the

preamble size and thereby brings high data rate. As the first

step to build the new paradigm, we formulate the beamforming

task as a quadratic minimization problem under linear-equality

and quadratic-inequality constraints. We name it linearly

and quadratically constrained minimum variance (LQCMV)

beamforming. The LQCMV beamformer can be regarded as

a generalization of several existing beamformers: the MVDR

beamformer, the zero-forcing (ZF) beamformer, the linearly

constrained minimum variance (LCMV) [6], and the linearly

and norm constrained minimum variance (LNCMV) beam-

former [7]–[9]. (See [9], [10] for more extensive references on

beamforming.) In a large-scale antenna array, the number of

simultaneous transmitters is typically less than that of antenna

elements, and it makes the function determining the quadratic

constraint not strictly convex. Unfortunately, this important

case in general LQCMV beamforming cannot be treated effi-

ciently with the existing adaptive algorithms to implement the

LNCMV beamformer (see Section II).

We here present an efficient adaptive implementation of

the LQCMV beamformer based on the multi-domain adaptive

learning method [11], in particular the dual-domain adaptive

1053-587X/$31.00 © 2013 IEEE
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algorithm (DDAA). The proposed DDAA is a set-theoretic

adaptive filtering approach with a pair of closed convex sets

defined in different domains. In a primary domain, a linear

variety is defined with instantaneous data (which contain par-

tial information about the data covariance matrix) as well as

the linear constraint. It is the set of all vectors that make the

instantaneous output power be zero as well as satisfying the

linear-equality constraint. In a dual domain, on the other hand,

a closed ball is defined which accommodates the quadratic

constraint. The proposed DDAA updates the beamforming

weight vector as follows. The current weight vector is projected

onto the linear variety. (Metric projections onto convex sets

have been the backbone of adaptive algorithms [12], [13].)

However, the direction vector of this projection is determined

by partial information about the data covariance matrix and

could therefore be improved by the use of side information.

To do so, the direction vector is combined convexly with an

auxiliary vector which guides the adaptive algorithm towards

a better direction. The auxiliary vector is obtained as follows:

(i) transform the current weight vector to the dual domain, (ii)

project the transformed weight vector onto the closed ball, (iii)

embed the direction vector of the dual-domain projection back

into the primary domain, and finally (iv) project the embedded

vector in the primary domain onto the underlying subspace

of the linear constraint set. These steps involve only linear

operations and simple scaling, and the final step is for en-

suring the linear constraint to be satisfied at each iteration. The

dual-domain projection is useful because the primary-domain

projection onto the quadratic constraint set has no closed form

due to its ellipsoidal shape in the primary domain. Furthermore,

the proposed DDAA has particular advantages for large-scale

antenna array systems because its computational complexity

increases only linearly as the array size increases. As will be

seen in Section III, the dual-domain concept simplifies adaptive

implementation of quadratic-inequality constraints, and also

facilitates understanding of the overall implementation.

A convergence analysis is presented to support the proposed

DDAA theoretically under the mathematically-rigorous frame-

work of the adaptive projected subgradient method (APSM)

[12]. Although an analysis of the multi-domain adaptive

learning method is given in [11], there are two points to be

considered for mathematical rigor here: (i) the signals under

study are complex-valued and (ii) the linear constraint set has

no interior. A proof is given based on (i) Wirtinger calculus

[14] and (ii) a simple translation idea presented in [15]. The

analysis clarifies that, under certain mild assumptions, the

weight-vector sequence is convergent to a point satisfying both

the linear and quadratic constraints.

As a specific application example of LQCMV, we present

a minimum-variance beamformer under a distortionless con-

straint and a quadratic constraint that bounds the power of

residual interference in the beamformer output. Compared to

the zero-forcing (ZF) beamformer, the interference constraint

is relaxed to prevent the noise-enhancement problem. The

relaxed zero-forcing (RZF) beamformer bridges the MVDR

and ZF beamformers. Simulation results show that, thanks

to the efficient use of interference side-information, the RZF

beamformer implemented with the DDAA significantly out-

performs the MVDR and ZF beamformers implemented with

the widely-used constrained normalized LMS (CNLMS) algo-

rithm [16].

The remainder of this paper is organized as follows. In

Section II, the LQCMV framework is presented after the

introduction of the data model. Section III presents the adap-

tive implementation of the LQCMV beamformer based on

the dual-domain approach and an analysis on its properties.

Section IV presents the RZF beamformer and discusses the

robustness issue against channel mismatch and ill-posedness.

Numerical results are provided in Section V, followed by the

conclusion in Section VI.

II. LINEARLY AND QUADRATICALLY CONSTRAINEDMINIMUM

VARIANCE BEAMFORMER

In this paper, we will make use of standard notational con-

ventions. , and denote the sets of all real numbers, com-

plex numbers and nonnegative integers, respectively. Vectors

and matrices are written in boldface with matrices in capitals.

In particular, the identity and zero matrices of any size are de-

noted by and , respectively, and the zero vector of any length

by . For a matrix , and denote the transpose and con-

jugate transpose of , respectively. For any ,

define the inner product , , , and its in-

duced norm , . and stand

for the range space and the null space of , respectively. For

a random matrix , denotes the expectation of . For

complex quantity , denotes the real part of .

We consider a network of transmitters (each equipped

with a single transmit antenna) and a receiver equipped with an

array of receive antennas, as shown in Fig. 1. The received

signal vector at time

instant is given by [9]

(1)

where, for each

is the symbol sequence of the -th transmitter,

is the channel vector (referred

to also as the array response vector) of the -th signal, and

is the noise vector

at time instant with a positive-definite covariance matrix.

Here, we assume that the received signal vector has zero

mean without loss of generality. The covariance matrix of

is defined as , which is

positive definite due to the assumption on the noise covari-

ance-matrix. In narrowband beamforming, the output of

a beamformer is given by

, , and the output variance is given by

.

Let , , , and , where

and . Without loss of generality, we assume

that (i) the matrices and have full column-rank and (ii) the

maximum singular value of is one. (Otherwise, the known

can be normalized.) The choices of and depend on appli-

cations; one specific design of and is given in Section IV.
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We now formulate the general LQCMV beamforming problem

as follows:

(2)

(3)

(4)

Then, its solution can easily be obtained by the Karush-Kuhn-

Tucker (KKT) conditions [17] and is given by [2]

(5)

where and is the Lagrange multiplier

associated with the quadratic constraint (4) depending on . If

is sufficiently large so that for the LCMV

beamformer [6], then it is

clear that and . That is, when the

quadratic constraint (4) is loose, the LQCMV solution is simply

the LCMV solution of Frost [6]. If , on the

other hand, by the KKT conditions for the convex optimization

problem (2)–(4), should satisfy the following equality:

(6)

In this case, the linear constraint (3) is trivially satisfied by sub-

stituting (5) into (3), and the optimal can be obtained by

solving a nonlinear equation obtained by substituting (5) into

(6) or by a semi-analytic method. Whereas the former method

is not trivial, the latter semi-analytic method for obtaining is

simple to implement. If and a feasible range of are given,

can be computed from (5) and can be computed

from (5) and (6) by a numerical method such as the bisection

method. However, such a batch processing method requires es-

timation of and this makes the semi-analytic method less at-

tractive from the perspective of complexity. (See Section V-A.)

Fortunately, our adaptive algorithm presented in Section III does

not need any explicit computation of or .

The case of has been studied in [7], [8] for robust

LCMV adaptive beamforming. In this case, the constraint set

associated with the quadratic inequality (4) is a closed ball. Be-

cause the projection onto a closed ball is simple scaling, the con-

straint can easily be incorporated in adaptive algorithms. Also,

the case that is not the identity matrix, but a nonsingular

square-matrix, has been considered in [7]. It has been shown that

the same procedure as in the case of can be applied by

defining a new variable vector, say , and by changing

and accordingly. Through the change of variables, the el-

lipsoidal constraint set is changed into a closed ball and the same

procedure can be applied. However, it cannot be applied to the

case of (i.e., the case that is a tall matrix), which

is of particular interest in this paper. This is because the degree

of freedom is lost due to the (non-invertible) variable transfor-

mation. In the tall-matrix case, the positive semi-definite ma-

trix is rank deficient, and thus the constraint set associated

with the quadratic inequality (4) is no longer a hyper-ellipsoid

in the entire space, although it is so in the subspace . In

the following section, we will present an adaptive algorithm to

efficiently incorporate the quadratic constraint (4) with a tall .

Algorithm 1 (The Dual-Domain Adaptive Algorithm

(DDAA) for the LQCMV Beamformer)

Requirements:

� step size

� weight ,

Algorithm: Given any initial beamformer , generate

the sequence of beamformers as follows:

(10)

(11)

where

(12)

(13)

(14)

if

otherwise.
(15)

Here, and is the metric

projection1 of onto . The related projections can be

computed by the following formulae:

(16)

(17)

(18)

where . Here, denotes the Moore-Penrose

pseudo-inverse of .

III. ADAPTIVE IMPLEMENTATION BY A DUAL-DOMAIN

APPROACH

A. The Proposed Dual-Domain Adaptive Algorithm

We define three closed convex sets that accommodate infor-

mation about the LQCMV optimization (2)–(4):

(7)

(8)

(9)

Here, is the set of weight vectors satisfying the linear con-

straint (3), is the origin-centered closed ball with radius

1The metric projection of an arbitrary point onto a closed convex
set is defined as . If is closed
and convex, the existence and uniqueness of for any are guaranteed.
Note that all the sets , and are closed and convex.
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Fig. 2. A geometric interpretation of the dual-domain adaptive beamforming algorithm.

in the dual domain, and is the set of weight vectors contained

in satisfying the zero instantaneous-output-power condition.

Note that the set , which is assumed to be nonempty, is a linear

variety and accommodates only a piece of information about the

true data covariance matrix . This is because in adaptive sce-

narios is unavailable, and therefore the beamforming vector

at time instant needs to be adapted only with available

information, which is in this case. Now we present the

proposed algorithm to implement the LQCMV beamformer de-

scribed in (2)–(4) in Algorithm 1.

The equalities in (11) are verified by noting that

and . (This is because and

.) Although the three expressions in (10) and (11) are equiv-

alent mathematically, one could use the first or second expres-

sion to avoid the accumulation of numerical errors. In the case

of , the algorithm reduces to the constrained normalized

LMS (CNLMS) algorithm [16], which is a normalized version

of Frost’s CLMS algorithm [6]. When , on the

other hand, the proposed algorithm includes the movement in a

direction for satisfying the quadratic constraint (in addition to

the linear constraints), and this direction is obtained efficiently

by the dual and primary transforms and simple scaling. The

proposed algorithm is thus a generalization of the C(N)LMS

algorithm that incorporates the general quadratic constraint in

which the matrix in the quadratic form has an arbitrary

rank.

A geometric interpretation of the proposed DDAA (11) is

given in Fig. 2. Note that is the direction vector from the

current weight vector to its projection onto which is

the intersection of the linear constraint set and the hyperplane

of zero instantaneous-output-power in the primary domain .

Therefore, if were added to , the resulting vector would

minimize the instantaneous output power to zero without vi-

olating the linear constraint. On the other hand, exists in

the dual domain . It is the direction vector from (the

image of under the dual transform ) to (its

projection onto the ball in the dual domain). Thus, is

the embedding of back into the primary domain by the pri-

mary transform . Finally, is multiplied by the matrix

so that the addition of to will not violate the linear

constraint. The key property of the dual-domain projection is

given in the following lemma.

TABLE I
COMPUTATIONAL COMPLEXITY OF THE DDAA AND THE CNLMS

Lemma 1: If the maximum singular value of is less than

or equal to one, we have

where is the inverse image of the closed ball under the

linear operator and is indeed the set of weight

vectors satisfying the quadratic constraint (4).

Proof: We have

since for any

. This verifies the claim. (Here, by the singular

value condition.)

Lemma 1 states that the end point of

satisfies the quadratic constraint. Hence, if the starting point

of is close to is likely to give a

rough direction towards the quadratic constraint set . We con-

vexly combine the two direction vectors (for minimizing

the overall output power based on partial information about

the covariance matrix) and (for maintaining

below a certain level). The resulting direction therefore

gives a better direction to minimize the interference and noise,

yielding fast convergence of the proposed DDAA. The position

of is determined by the step size after proper length

normalization by (see Appendix II for an explanation of

). Fast convergence of the proposed algorithm will be shown

by simulations in Section V. The following subsection will

present a rigorous analysis that provides important properties

of the proposed algorithm.

Computational complexity. The computational complexity

of the DDAA and the CNLMS is given in Table I. Here, the

complexity is measured in terms of the number of complex mul-

tiplications. The initial cost for the DDAA is for computing

and the maximum singular value of an ma-

trix to obtain the normalized matrix . (The maximum sin-

gular value can be obtained with multiplications by

means of the power method for example [18].) Note that for
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any vector , the computation of involves no more

than multiplications since it can be computed as

. Note that given and , the

DDAA complexity only increases linearly as increases. This

is a particular advantage of the proposed algorithm in treating

a non-spherical quadratic constraint. Although the per-iteration

complexity of the DDAA is higher than that of CNLMS, the

overall complexity of the DDAA (measured as the product of

the number of iterations required for convergence and the per-it-

eration complexity) is comparable to that of the CNLMS due to

its much faster convergence, as shown in Section V.

B. Properties of the Proposed Algorithm

We provide an analysis on the properties of the proposed

DDAA implementing the LQCMV beamformer. Our analysis is

based on the result from the general framework of the adaptive

projected subgradient method2 (APSM) [12], [19]. To present a

rigorous analysis on the convergence of the proposed algorithm,

we redefine the set as follows:

(19)

for some . Here, is relaxed from the zero output-power

set to a output-power set contained in . The set

is a ‘fattened’ hyperplane and it is called a

hyperslab.3

Given any closed convex set , we define a metric

distance function as , . Our

analysis is based on the following key observation:

Observation 1: Define time-dependent cost func-

tions as shown in (20) at the bottom of the page, where

. Then, Algorithm

1 is reproduced by the following scheme:

if ,

otherwise,

(21)

where denotes a conjugate Wirtinger sub-

gradient of at [14]. (See Appendix I about the conjugate

Wirtinger subgradient.) The update equation in (21) for

2Basically, the APSM involves the optimization of a sequence of convex cost
functions under a convex constraint by the metric projection onto a hard con-
straint set and a subgradient projection associated with the cost function in an
adaptive manner. For more information, see [12], [19].

3The use of results in under-projection, and the under-projection
onto the ‘thin’ set, with , can be interpreted as the exact projection
onto the ‘fattened’ set, with an appropriately chosen . This implies
that the two parameters and have a similar effect to each other in practice.
We therefore let and in the experiments in Section V.

expresses the subgradient projection relative to , provided

that the function satisfies

.

Proof: See Appendix II.

Note that the cost function (20) is a nonnegative continuous

convex function of , because it is a convex combination of two

metric distance functions and . It is

zero if and only if and , i.e., satisfies

all the linear, quadratic and instantaneous-output-power

constraints, unless the current weight vector satisfies

and . Observation 1 together with Lemma 3 in

Appendix I states that the weight-vector sequence generated

by the DDAA can be regarded as a sequence generated by the

APSM with the properly defined sequence of cost functions

in (20). The convergence result of the APSM

framework can therefore be applied to our DDAA. Hereafter,

we will make the following assumption:

Assumption 1: There exists a such that (s.t.)

.

Assumption 1 basically means that the adaptive LQCMV op-

timization problem is feasible4, i.e., the linear constraint set, the

quadratic constraint set, and the instantaneous-output-power

sets have a nonempty intersection for sufficiently large . Then,

it is not difficult to verify that the following lemma holds:

Lemma 2:

1) , .

2) For all ,

, where for any set we define ,

if , and , if . For instance,

if and .

3) .

Now, the properties of Algorithm 1 are summarized in Proposi-

tion 1 (Its proof is given in Appendix II).

Proof: Consequence of the analysis. Proposition 1.1

states that at each update the dual-domain adaptive algorithm

brings the current weight vector closer to the set of mini-

mizers of , where minimizing implies the minimal

violation of the linear and quadratic constraints and the

instantaneous-output-power condition. It therefore suggests

the stability, tracking capability, and also fast convergence of

DDAA since takes into account the quadratic constraint

(see also the discussion in Section III-A). Further, Propositions

1.2 and 1.3 state that in the steady state the weight vector gen-

erated by the DDAA indeed satisfies all the linear and quadratic

4One may think that Assumption 1 would be a strict condition because it
would hardly be true for . As mentioned already, however, in the case
of , the use of a sufficiently small brings a similar effect to the
use of a sufficiently large , making all instantaneous-output-power
sets commonly contain a sufficiently large region around the origin. Also is
centered at the origin. Therefore, it is a reasonable condition which is satisfied
practically.

if ,

otherwise,
(20)
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constraints (3) and (4) while maintaining the instantaneous

output power below , if the problem is feasible. This means

that the quadratic constraint is eventually satisfied although it

is not ensured to be satisfied at each iteration.

Proposition 1 (Properties of Algorithm 1)

1) Stepwise property:

a) For all , ,

.

b) If in particular and for ,

then

Assume in the remainder of this proposition that there

exist s.t. .

2) Asymptotic property:

a) .

b) Assume that has a relative interior5 with respect to

(w.r.t.) . Then, the sequence converges to

some point satisfying .

3) Limit-point property: Assume the same interior point

condition as in Proposition 1.2.b. Further, assume

that (i) and (ii)

. Then,

and

, where

and the overline denotes the closure.

IV. APPLICATION: THE RELAXED ZERO-FORCING

BEAMFORMER

The LQCMV framework and the DDAA are general and

can be used for adaptive receiver design in the areas of beam-

forming, direct-sequence code-divisionmultiple-access or other

systems. In this section, we present one specific application,

RZF beamforming, for wireless multiple-access communica-

tion systems. The side information of the interference channels

is used to form the quadratic constraint. The robustness issue

against channel mismatch and ill-posedness is also addressed.

A. System Model

We consider the system, as shown in Fig. 1, with the data

model (1), where all the channel information

is available at the basestation. The basesation needs to de-

code symbols from all transmitters based on the array output

. Without loss of generality, consider the decoding

of the 0-th transmitter. We assume that and

for ;

for all ; for all ;

and the noise is independent and identically distributed (i.i.d.)

complex Gaussian with zero mean and variance . For the

decoding of the 0-th transmitter, is the channel for the

desired signal and is the available side-informa-

tion. Thus, in this case, we specifically design , and for

5The existence assumption of a relative interior in Proposition 1.2.b could
be weakened. It is sufficient that has a relative interior w.r.t. for some

, , .

the LQCMV formulation as follows: , ,

and , where and denotes the

maximum singular value of ( and ).

B. RZF Beamforming

Our new formulation for adaptive beamforming is the relaxed

zero-forcing (RZF) beamformer, given by solving the following

optimization:

(22)

(23)

(24)

where is the interference relaxation parameter. Note that

the second condition reduces to the classical ZF

constraint for . On the other hand, for , the ZF

constraint is relaxed and it becomes a quadratic one; the re-

laxation prevents the noise enhancement. Further, the matrix

is rank-deficient in most cases with large antenna arrays.

The RZF beamformer coincides with the MVDR beamformer

when (or is sufficiently large so

that ). Thus, for ,

with the perfect , the proposed RZF beamformer is in-between

the MVDR beamformer and the ZF beamformer. The SINR

achieved by the RZF beamformer is given by

(25)

where is the signal variance of the desired user and

(26)

Here, is normalized to have its trace equal to the number

of array elements. The SINR achieved by the MVDR beam-

former is obtained by letting , whereas the

SINR achieved by the ZF beamformer is obtained as the limit

of ; is defined under (5). A simple in-

spection of (25) suggests that is a monotonically

non-decreasing function of . Thus, the SINR of the RZF beam-

former does not exceed that of the MVDR beamformer when

the exact data covariance matrix is available, as expected.

Now, consider the adaptive implementation of the RZF beam-

former. Note that the RZF beamformer (22)–(24) falls into the

LQCMV framework (2)–(4). It can therefore be implemented

in an adaptive manner by using the DDAA in Algorithm 1.

The advantages of the adaptive RZF beamformer based on the

DDAA over the adaptive MVDR/CNLMS beamformer and

the adaptive ZF/CNLMS beamformer are clear. The adap-

tive MVDR/CNLMS beamformer discards the interference

side-information. On the other hand, the adaptive ZF/CNLMS

beamformer overuses the side information by completely nulling

out the interference to yield noise enhancement. The adaptive

RZF/DDAA beamformer cleverly exploits the same side-in-

formation in adaptation in order to guide itself in the direction

in (10) for suppressing the interference effectively (but not

completely) in the form of parallel projection combined with the
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direction for minimizing the interference plus noise used in

the conventional MVDR/CNLMS approach. The RZF/DDAA

can be viewed as a better modification of the MVDR/CNLMS

approach than the ZF/CNLMS approach for incorporating the

interference side-information. The superiority of the adaptive

RZF/DDAA beamformer to the other two classical adaptive

methods will be shown shortly in Section V.

Remark 1 (Controlling ): Control of for the RZF beam-

forming will be discussed, especially for raising the conver-

gence speed, in Section V.

C. Norm-Constrained RZF Beamforming—Channel-Mismatch

Consideration

The RZF (or the LQCMV in general) beamforming may

suffer from performance degradations due to channel mismatch

and/or ill-posedness caused by presence of interference sources

close to the signal transmitter. There exist many robustification

techniques to handle such uncertainties [7], [10], [20]–[22].

Among available techniques to robustify the RZF beamformer,

we adopt the regularization technique,6 which has an easy

adaptive implementation. The norm-constrained RZF (NRZF)

beamformer is given in the following general form:

(27)

We refer to the formulation in (27) as the linearly, quadratically

and norm constrained minimum variance (LQNCMV) beam-

former. Its solution is given by

(28)

where with constants and

depending on and , respectively. The discussion

on how to determine the values of those constants is omitted

because the discussion is not much different than the one for

LQCMV and, in addition, our dual-domain algorithm does not

use the values explicitly. Our adaptive algorithm to implement

LQNCMV is given below.

Algorithm 2 (The Robust Dual-Domain Adaptive

Algorithm (RDDAA) for LQNCMV Beamformer)

Suppose that the LQNCMV beamforming problem

(27) is feasible so that , where

. Given any initial

beamformer , generate a sequence of beamformers

recursively as follows:

Here, , , , , and are defined in the same way

as in Algorithm 1.

6It is well known that the regularization technique properly handles the ill-
posedness problem and the signal-channel mismatch. It can be shown that the
regularization technique is also effective to handle the interference-channel mis-
match; it is omitted to show due to space limitations.

Fig. 3. Weight vector trajectories of RZF/DDAA and NRZF/RDDAA.

Algorithm 2 projects the updated weight vector onto the in-

tersection of and , and the projection can be easily

performed by the scaled projection method of Cox et al. [7]. In

the case of the NRZF beamformer (i.e., the LQNCMV beam-

former with the specific , , and employed in the RZF beam-

former), the intersection is ensured to be nonempty if .

Fig. 3 shows the trajectory of the RZF/DDAA in the weight

vector space. is the set for a

given . is the null space of , and thus any point

in the cylinder satisfies the quadratic constraint. When the algo-

rithm is initialized with the matched filter , the weight

vector generated by the RZF/DDAA starts from point A, moves

along the hyperplane , and stops at point B if the noise

is ignored for simple visualization. When the regularization is

applied to this case, the weight vector norm is normalized to

and the NRZF/RDDAA stops at point since the quadratic

constraint in the proposed algorithm is soft, i.e., the movement

towards the cylinder of the quadratic feasible set is desired, but

not a must.

V. NUMERICAL RESULTS

In this section, we present some numerical results to

validate the proposed RZF beamforming implemented by

the DDAA. We consider the uniform linear array with

the array response at the receiver, where

is the direction of arrival (DOA) of the -th signal,

,

, is the antenna spacing and is the carrier wave-

length [9]. We set , , (six transmitters

in the network), , and

for the DDAA.

A. RZF/DDAA Versus MVDR/CNLMS and ZF/CNLMS

Fig. 4 shows the SINR performance of several adaptive

beamforming algorithms with the matched filter as the

initial weight vector . Here, the SINR is the sample-path

SINR computed as for the of each algorithm,

which is proportional to the array gain of each algorithm.
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Fig. 4. SINR performance : (a) , , , , (b) , ,
, (c) , , , , and

(d) , , .

Figs. 4(a) and (b) correspond to the case of 10 dB SNR

and 0 dB signal-to-interference ratio (SIR) for all .

In this case, the interference signals are strong compared to

the noise. Thus, the theoretical performance of the ZF beam-

former is close to that of the (theoretical) Capon’s MVDR

beamformer. (The theoretical performance is the value ob-

tainable with the knowledge of the true covariance matrix.)

In Fig. 4(a), the convergence speed of the MVDR/CNLMS is

set to be the same as that of the RZF/DDAA by setting the

step sizes of MVDR/CNLMS, ZF/CNMLS and RZF/DDAA to

0.06, 0.01 and 0.01, respectively. The interference relaxation

parameter is set to for . That is,

the allowed amount of residual interference is set to be the

same amount as the theoretically optimal MVDR beamformer

. It is seen that in the case of the same convergence

speed, the RZF/DDAA outperforms the MVDR/CNLMS in

the steady-state SINR. In Fig. 4(b), on the other hand, the

step sizes for the MVDR/CNLMS and the RZF/DDAA are

set to be the same as 0.01. By making the step size for the

MVDR/CNLMS sufficiently small (0.01 in this case), we can

average out the random perturbation in an adaptation direction

and reach the optimal performance closely in the steady state.

Note that the SINR of the two algorithms coincides in the

steady state in this case. This can be explained as follows. With

the matched-filter initialization, the interference constraint

is not satisfied for small

. Thus, the interference constraint is activated and in

(10) is non-zero. This additional direction information helps

the algorithm to converge to the optimal point quickly. Once

the algorithm reaches the optimal point closely (the point B

in Fig. 3 with ), i.e., , the

projection to the ball in (18) does not change the argument,

and in (10) and (13) becomes zero. In this case, the length

normalization factor in (15) becomes ; cancels out

in front of in (10); and the DDAA algorithm reduces

to the MVDR/CNLMS. Note in the figure that the RZF/DDAA

significantly outperforms the MVDR/CNLMS in the conver-

gence speed due to the additional direction information from

the interference side-information in the early stage of iteration

when it has the same step size (yielding the same steady-state

SINR). Fig. 4(c) and (d) correspond to the case of 3 dB SNR

and 0 dB SIR for all the interference signals. In this case, the

noise is relatively strong compared to the interference, and

thus the ZF beamformer has a considerable performance loss

compared to the MVDR beamformer. Similar trends to those

in Fig. 4(a) and (b) are shown in this case, too. In all the cases,

the ZF/CNLMS closely tracks the theoretical ZF SINR. To

compare the RZF/DDAA with a batch processing method, we

considered the batch processing semi-analytic method based on

an estimated data covariance matrix mentioned in Section II. In

the special case of as in Fig. 4, it is clear that and

the RZF beamformer coincides with the MVDR beamformer.

Thus, for the semi-analytic method, we used the sample covari-

ance estimator for , computed

with and from (5) at each , and

plotted the corresponding SINR curves (labeled by BM/SCM)
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Fig. 5. Impact of the interference relaxation parameter ( , , ): (a) steady-state SINR as a function of , (b) convergence
behavior for different , and (c) performance of the mixture algorithm composed of RZF/DDAA with and MVDR/CNLMS switching after 100 iterations.

in Figs. 4(b) and (d). It is seen that the batch processing method

requires more data, than the DDAA, to obtain a good estimate

for and thus to yield a receiver beamformer with the same

quality. In practice, the beamformer needs to be computed only

once after an estimate of with reasonable quality is obtained.

Even in this case, the batch processing method is less attrac-

tive since it requires more data (i.e. more time steps) and the

per-step complexity of the sample covariance matrix

computation is heavier than the per-step complexity of

the DDAA.

B. Impact of the Interference Relaxation Parameter

For the results in Fig. 4, the amount of residual interference

is set to be the same as that caused by the theoretically op-

timal MVDR beamformer. The performance of the RZF/DDAA

depends on the value of the interference relaxation parameter

(or ). To investigate the impact of , we swept for the

same setup as that for Fig. 4(d). The steady-state SINR as a

function of is shown in Fig. 5(a). As seen in the figure, the

steady-state SINR increases as increases and saturates around

, as expected. When , the optimal MVDR beam-

former lies within the feasibility set of the RZF beamforming

and there is no SINR loss for the RZF beamforming. However,

larger than unity is not beneficial from the perspective of conver-

gence speed. The convergence speed of the RZF/DDAA for dif-

ferent values of is shown in Fig. 5(b). It is seen that the speed

that the RZF/DDAA reaches the maximum SINR is fastest at

and it slows down as increases. When (i.e.,

), the RZF/DDAA coincides with the MVDR/CNLMS,

as explained before. Thus, the optimal is if

is fixed throughout the iteration. It is interesting to note the

behavior of the RZF/DDAA with (or equivalently

) and to compare it with that of the ZF/CNLMS. The SINR

of the RZF/DDAA with reaches almost the optimal

MVDR SINR first and then decreases to a steady-state value.

This is because in the RZF/DDAA the interference constraint

is used as a soft constraint. The algorithm initially moves from

the matched-filter initialization (the point A in Fig. 3) in the di-

rection for minimizing the output variance and suppressing the

interference, but the interference is not fully suppressed in the

early stage of iteration since the algorithm moves in that direc-

tion by small steps only. Since the optimal weight vector (the

point B in Fig. 3 with ) is somewhere between the matched

filter (the point A in Fig. 3) and the ZF beamformer (the point

C in Fig. 3), the algorithm reaches the optimal interference sup-

pression level as the iteration continues from the matched-filter

initialization. As the iteration continues further, the algorithm

surpasses this optimal point and goes further towards the ZF so-

lution. Thus, we have the corresponding curve for the SINR of

the RZF/DDAA with , as shown in Fig. 5(b). On the con-

trary, the conventional ZF/CNLMS algorithm brings the weight

vector around the ZF solution at the very first iteration because

the ZF interference constraint is used as a hard constraint in

this case. Another thing to note is that the steady-state perfor-

mance of the RZF/DDAA with is better than the the-

oretical ZF SINR. This is also because the interference con-

straint is used as a soft constraint for the RZF/DDAA (with

the weights of in this example). Thus, the

RZF/DDAA with does not fully zero-force the interfer-

ence even with in the steady state, and it always performs

better than the ZF/CNLMS for any choice of . The results in

Fig. 5(a) and (b) suggest how to determine the interference re-

laxation parameter in practice without knowing , es-

pecially for the purpose of speeding up the convergence of the

conventionalMVDR/CNLMS algorithm. Under the assumption

of matched-filter initialization, we first set as a very small

value, e.g., zero7, for a certain number of iterations, then set

to infinity, i.e., switch to the conventional MVDR/CNLMS al-

gorithm, and, after a sufficient number of iterations guaran-

teeing convergence, set for the remaining time

to cope with possible perturbation. In this way, the interference

side-information is far better exploited than in the ZF/CNLMS

algorithm. Here, the initial period of does not need to be

exact, but it is enough that this period brings the weight vector

roughly around the optimal value. (The length of this period can

be determined by various simulations.) Thismixture structure of

RZF/DDAA andMVDR/CNLMS can be very useful in wireless

digital communications in which the transmission is packetized.

With such a structure, only a small preamble in front of a pay-

load is necessary to train the beamformer adaptively before the

actual data transmission begins, and the reduction in the pre-

amble size is drastic. Fig. 5(c) shows the performance of the

mixture algorithm that is composed of RZF/DDAA in the first

7In the extreme case of , the singular value normalization for is not

even necessary. in Algorithm 1 can be obtained by the projection onto
the hyperplane determined by the zero-forcing condition.
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Fig. 6. NRZF with robust DDAA—signal-channel mismatch with no interference-channel mismatch : (a) , (b) ,
and (c) .

phase and MVDR/CNLMS in the second phase; the phase is

switched after 100 iterations. We used the same SNR and SIR

set up as that in Fig. 5(a) and (b). It is seen that the mixture

algorithm performs well and significantly reduces the conver-

gence time when compared with theMVDR/CNLMS alone. Al-

though the performance of the mixture algorithm for different

channel realizations is not shown here due to space limitations,

the mixture algorithm showed similar convergence behavior for

different channel realizations.

There exist some techniques [23] such as the constrained

affine projection algorithm to speed up the CLMS algorithm.

By redefining with

,

, we obtain an extension of the affine projection algo-

rithm. Thus, when the interference side-information captured in

the interference norm constraint is used for the affine projection

algorithm, the convergence speed can be accelerated further.

C. NRZF/RDDAA (RZF/DDAA) Versus NMVDR/RCNLMS

(MVDR/CNLMS) in Erroneous Cases

Fig. 6 shows the performance of the NRZF/RDDAA and

that of the norm-constrained MVDR/CNLMS algorithm for the

same setup as that for Fig. 4(d) ( , ,

) when and there is no error in the

interference DOAs. (Here, denotes a signal DOA estimate

available and an estimation error.) The bound of the

squared norm of the weight vector is set to . Fig. 6(a)

shows the performance in the case that the signal DOA infor-

mation is also perfect. In this case, when the regularization is

performed to the RZF/DDAA, the performance degrades com-

pared to the non-regularized version. The steady-state point in

this case corresponds to the point D in Fig. 3, which is different

from the optimal point B. Fig. 6(b) shows the performance in

the case that the available signal-DOA is in error

and the available signal-channel is inclined towards the null

space of (i.e., the case of in Fig. 3). In this case, when

the regularization technique is not applied, the performance

degrades. When it is applied, however, good performance is

maintained. (The point E in Fig. 3 is the steady-state point in

this case.) Note that the steady-state performance in this case is

better than that of Fig. 6(a) with regularization. This is because

the point E can be closer to the optimal point B than the point

D, as shown in Fig. 3. Fig. 6(c) shows the performance in the

case that the available signal-DOA is in error

and the available signal-channel is away from the null space

of compared to (i.e., the case of in Fig. 3).

In this case, the regularization yields a worse performance

than the non-regularized version. (The point G is closer to the

optimal point B than the point F, as shown in Fig. 3, which is

the steady-state point in this case.) Since there is movement

in the direction from the point F to the point G, going out of

the ball in this case, the regularization brings the weight

vector back to the ball and this enforcement is clearly seen in

Fig. 6(c). A similar behavior is seen in Fig. 6(a) since there is

movement from the point D to the point B, going out of the ball,

in this case. In Fig. 6(b), on the other hand, the enforcement

to the ball is not clearly seen. This is because in this case

the steady-state point E is already in the cylinder, as shown

in Fig. 3. Therefore, is not active any more and the

weight vector is wandering around the point E inside the

ball. In any case, when the regularization is performed to the

RZF/DDAA, the performance degradation in SINR from the

theoretical maximum value is less than 1 dB and the perfor-

mance degradation due to the signal-channel mismatch is kept

within a reasonable level.

Although it is not shown here due to space limitations, it is

observed that the interference-channel-information error is not

critical to the performance of the RZF/DDAA. It is also ob-

served that the NRZF/RDDAA performs robustly against both

errors even in the case that we have errors in both the signal

and interference DOA-information, Furthermore, we performed

simulations when the antenna element location has an error, and

observed similar behaviors to those in the DOA error case de-

scribed here. The RZF/DDAA can be extended to MIMO cases.

The performance of the RZF/DDAA in the MIMO case is de-

scribed in [2] and the performance gain is also significant in the

MIMO case.

VI. CONCLUSION

We have proposed a new paradigm for adaptive beamforming

—the LQCMV beamforming framework and its efficient adap-

tive implementation based on the DDAA. The LQCMV

beamforming is an extension of Frost’s LCMV framework

and it can incorporate a general quadratic-inequality constraint

that may capture available side-information. We have inves-

tigated the properties of the DDAA and have presented the
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convergence analysis of the algorithm under mild conditions.

As a specific application of the LQCMV/DDAA, we have

considered RZF beamforming which properly incorporates

the interference side-information to enhance the convergence

speed. The numerical results have shown that the proposed

adaptive beamformer significantly outperforms the conven-

tional adaptive beamformers based on the LCMV/C(N)LMS

framework. The present study has shed new light upon the

use of interference side-information, and has demonstrated

its great benefit in accelerating the convergence of adaptive

beamforming algorithms efficiently when it is exploited with

LQCMV/DDAA.

APPENDIX I

WIRTINGER SUBGRADIENTS AND APSM

Under the mapping for

, is isomorphic to . We indicate the corre-

spondence explicitly as . Likewise, for any set ,

we define . The

correspondence is indicated as . For any given ma-

trix for arbitrary , let

. Also, for any given

, let , and let

. Then, the following is true.

Fact 1:

1) for any .

2) for any .

3) The maximum singular value of is identical to that of .

4) , where

.

5) .

6) for any closed convex set and

any point .

Definition 1 (Wirtinger subgradient): Let be a

continuous convex function. Let

be a subgradient of at , where ,

. Due to the isomorphism , the function can

also be regarded as , , where

. Then, the Wirtinger subgradient of at

is given by [14]

(29)

and the conjugateWirtinger subgradient (or CW-subgradient for

short) of at is given by

(30)

The set of all conjugate Wirtinger subgradients of at is

called the Wirtinger subdifferential of at and is denoted by

.

Regarding the Wirtinger and conjugate Wirtinger subgradi-

ents, we have the following.

Fact 2:

1) .

2) .

3) .

4) Given any closed convex set , let

, , where is the metric dis-

tance from to . Then, a CW-subgradient is given by

.

5) Let , , for some

and . Then, .

6) For any continuous convex function , its

conjugate Wirtinger subgradient at an arbitrary

point satisfies the following inequality:

Regarding the complex-vector sequence generated by (21)

based on the conjugate Wirtinger subgradient, we have the fol-

lowing result which is easily verified by using the isomorphism

for and Fact 2.

Lemma 3: Let be the (complex-vector) se-

quence generated by (21) for an initial vector and let

be the (real-vector) sequence generated as

if ,

otherwise

for s.t. . Then, it holds that

.

Note that is a real-vector sequence and that it is gen-

erated by the adaptive projected subgradient method (APSM)

[12], [19] applied to the sequence of convex cost

functions. Thus, Lemma 3 allows us to apply the analysis of

APSM (which is based on a real Hilbert space) to the complex

case in this paper.

APPENDIX II

PROOFS

A. Proof of Observation 1

Case 1: First, assume that , or equivalently that

and . In this case, and hence

(21) gives . On the other hand, Algorithm 1 is

reduced to since ,

, and . Therefore, (21) and Algo-

rithm 1 are equivalent in this case.

Case 2: Next, assume that . In this case, by using (16)

and Facts 2.4 and 2.5, it can be verified that a CW-subgradient

of at is given by

(31)

By substituting into (31), we have

(32)
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Case 2-a: Suppose that . In this case, (21)

gives . On the other hand, Algorithm 1, i.e., (11)

is reduced to since

by (32).

Case 2-b: Suppose now that . In this case,

by using the fact that and

, it can be verified

that (21) reproduces Algorithm 1, i.e., (11). This completes

the proof. (The length normalization parameter in (15) is

designed so as to yield this equivalence.)

B. Proof of Proposition 1

Thanks to Lemma 3, it is sufficient to prove the proposition

for its real-valued counterpart (see Appendix I for the isomor-

phism ). In the following, the check and bar nota-

tions defined in Appendix I are extensively used to represent the

real-valued counterpart.

Proposition 1.1: By applying Lemma 2 and [19, Theorem

3.1.1] directly, the claim is readily verified.

Proposition 1.2: To apply [19, Theorems 3.1.2 and 3.1.3],

there are three points to be validated here:

(i) prove the boundedness of ,

(ii) prove the existence of a bounded sequence

, and

(iii) fill in the gap in the existence assumption of a relative

interior.

Regarding the point (iii), in order to apply [19, Theorems

3.1.2 and 3.1.3] straightforwardly, it should be assumed that

has a relative interior w.r.t. a hyperplane

for some nonzero vector and .

This assumption does never hold because

and because the dimension of is at most . However

we can use the same trick as in [15]. The idea is simple. As all

the points of the sequence lie on the linear variety ,

we translate all those points into the underlying subspace of ,

say ; in other words we shift to the origin. We regard the

subspace itself as a real Hilbert space, and apply the analysis

of APSM to the translated vector sequence. The analysis for the

original vector sequence is readily obtained by getting back to

the original linear variety through a simple translation. We

mention that , ; this

property is called the constraint-embedding structure used in the

analysis in [15]. This ensures the following two points, which

facilitate the analysis. First, a global minimizer of over

exists in . Second, at any point there exists a

subgradient of in [15, Lemma 1].

To prove the points (i) and (ii) mentioned above, we can

follow the way in [11, Appendix C] with a notice to the facts

that (a) , and (b)

and because and (

and ). The fact (a) suggests the nonexpansivity of the

linear operator which can be regarded as the projection oper-

ator onto the subspace .

Proposition 1.3: The gap in the existence assumption of a

relative interior in applying [19, Theorem 3.1.4] can be filled in

as in the proof of Proposition 1–2. To show that the other condi-

tion to be fulfilled is satisfied, we can follow the way in [11, Ap-

pendix C]. We shortly mention that, although appearing

in the definition of is an affine (rather than linear) mapping

and , it does not make any es-

sential change in the proof. (The wide-hat notation is defined in

Lemma 2.) It is therefore verified that . In

addition, since , the closedness of the linear variety

ensures that .

We finally show that . Assume that there exists

such that for all . In this case, the

closedness of ensures that . Assume in contrast

that for any there exists a such that .

Note that implies

(see Lemma 2.2). We thus obtain for

any . Since , there exists a se-

quence satisfying

. To prove that , it is sufficient

to show the inclusion and the closed-

ness of . The closedness follows from the closedness of

and the continuity of the linear mapping . The closedness of

ensures that

, which completes the proof.
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