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1 Introduction

The duality transformations relating a field strength to its Hodge-dual, interchanging

Bianchi identities and field equations, are ubiquitous in gauge theory, supergravity and

string theory. For instance, the electromagnetic duality in four dimensions is essential for

the S-duality of N = 4 super-Yang-Mills theories. Moreover, in order to define the world-

volume dynamics of certain branes, it is necessary to replace some of the standard p-form

gauge potentials of string theory by their duals.
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For a p-form potential, this dualization is straightforward: one simply replaces its

(p+1)-form field strength by the Hodge-dual of the field strength of the dual (D− p− 2)-

form. For instance, the Kalb-Ramond 2-form B2 of closed string theory in D = 10 can

be dualized to a 6-form B6, which in turn couples to the NS5-brane. Therefore, from the

point of view of the full (non-perturbative) string or M-theory neither the 2- nor 6-form

is more fundamental, suggesting that a democratic formulation in which they appear on

equal footing is more appropriate.

Remarkably, taking into account further dualities or symmetries of string theory, such

as T-duality, then implies that even more fields of a more exotic nature are needed. For

instance, under the T-duality group O(D,D) the 2-form B2 transforms into the metric.

In fact, in double field theory, which makes the O(D,D) symmetry manifest, the metric

and 2-form are part of an irreducible object, a generalized metric or generalized frame.

Thus, when dualizing B2 into B6, O(D,D) covariance requires that we also dualize the

graviton into a ‘dual graviton’. While at the linearized level there is a straightforward

procedure to dualize the graviton [1, 2], leading to a field living in the mixed-Young tableau

representation (D− 3, 1),1 there are strong no-go theorems implying that at the non-linear

level some new ingredients are needed [3, 4].

In this paper we perform the dualization of double field theory (DFT) [5–11] (see [12–

14] for reviews) at the linearized level, thereby capturing in particular the dual potential B6

and the dual graviton in a T-duality covariant way. While we restrict ourselves to the free,

quadratic theory, we believe that our results give important pointers for the full non-linear

theory. The construction of the non-linear theory would be necessary in order to describe,

for instance, the world-volume dynamics of Kaluza-Klein monopoles (in a way that is

compatible with T-duality), for which the dual graviton is expected to play the same role

as the B6 potential does for the NS5-brane [15]. More generally, one expects from T-duality

the appearance of further mixed-Young tableaux fields as exotic duals [17, 19] of the usual

gauge potentials [21–23], as further clarified in [24, 25], together with associated ‘exotic’

branes [26, 27]. We find that all expected fields are indeed described by the dual DFT.

The results of previous studies suggest that all dual fields can be organized into a

4-index antisymmetric tensor under O(D,D). A first attempt to introduce a 4-index anti-

symmetric tensor into the DFT action (together with sources) was performed in [28] in the

formulation of [28–31]. Moreover, in [32] it was argued that the duality relation between

the embedding tensor θMNP of lower dimensional supergravity and a (D − 1)-potential

D(D−1),MNP can be uplifted to higher dimensions by introducing mixed-symmetry dual

potentials (in particular, relating the so-called Q- and R-fluxes to (8, 2) and (9, 3) mixed-

symmetry tensor fields, respectively) and that these mixed-symmetry potentials can be

encoded in an antisymmetric 4-index tensor of O(D,D).

Starting from the linearization of the DFT action, written in terms of the linearized

frame field that reads hAB = −hBA, we apply the standard procedure of obtaining the

dual theory, introducing Lagrange multiplier fields that impose the Bianchi identities for

1We denote by (p, q) the irreducible GL(D) representation described by a Young diagram with two

columns of lengths p and q, where p ≥ q.
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the generalized anholonomy coefficients (sometimes referred to as generalized fluxes). This

naturally leads to a 4-index antisymmetric field DABCD, but also to a field DAB in the

antisymmetric 2-tensor representation and a field D in the singlet representation, in the

following called D-fields. In this paper the D-fields carry flat indices A,B = 1, . . . , 2D

under the doubled local Lorentz group O(D − 1, 1)× O(D − 1, 1). The fields DAB and D

carry the same representations and gauge transformations as the (linearized) generalized

frame and the dilaton of the original DFT. They are not pure gauge under the (doubled)

local Lorentz symmetry (unlike, say, the antisymmetric part of the linearized vielbein in

Einstein gravity), and hence it seems inevitable to introduce a ‘second copy’ of the original

DFT fields in order to formulate a duality- and gauge-invariant theory for the dual fields.

This observation is the main unexpected result of our investigation, but it turns out

that, upon reducing to the physical, ‘undoubled’ spacetime and breaking O(D,D) to

GL(D), the dual theory and its fields can be matched precisely with what one should

expect for the dualization of the ‘component’ fields (i.e. without employing the DFT for-

malism). This match requires a careful analysis of so-called ‘exotic’ dualizations [17, 19],

in which, for instance, the Kalb-Ramond 2-form B2 is not dualized into a 6-form in D = 10

but into a gauge field with (8, 2) Young tableau symmetry. The precise dynamical imple-

mentation of such dualizations has only been investigated quite recently, in the work of

Boulanger et al. [33–35]. One of the novel features of such dualizations is that an off-shell

formulation (i.e. an action) only exists provided extra fields are included which, however,

are non-propagating and nicely fit into the spectrum of representations determined before

by independent methods.

Given the necessity of extra fields for exotic dualizations, it is perhaps not surprising

that we encounter extra fields in the dualization of DFT (which, again, do not upset the

counting of degrees of freedom), but similar features have also been encountered in the

extension of DFT to U-duality groups. In this so-called ‘exceptional field theory’ (EFT)

the inclusion of (parts of) the dual graviton is unavoidable [38–42]. In EFT, the extra

fields associated to the dual graviton satisfy unusual constraints, but they do allow for a

formulation including parts of the dual graviton at the full non-linear level.2 We hope to

return to the problem of understanding the precise relation of the extra fields found in

DFT and EFT in the presence of the dual graviton and at the full non-linear level.3

The rest of this paper is organized as follows. To set the stage for the dualization of

DFT, in section 2 we review the standard dualization of p-form gauge potentials and the

graviton at the linearized level. Moreover, we work out the dualization in ‘string frame’,

i.e., in gravity plus dilaton, which shows some important differences to the dualization

in Einstein frame. In section 3 we turn to ‘exotic’ dualizations, and we discuss in detail

the dualization of the Kalb-Ramond 2-form to a (D − 2, 2) potential plus extra fields. In

section 4 we perform the dualization for linearized DFT. The geometric content of the dual

2Moreover, these extra fields are necessary for supersymmetry [43] and in order for generalized Scherk-

Schwarz compactifications to be consistent [44].
3In the E11 proposal of [2] the dual fields DABCD emerge naturally under a level-decomposition w.r.t. the

O(10, 10) subgroup. The additional fields seem to be absent. We refrain from speculating about the

significance of this observation for the E11 program.
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DFT action is discussed in section 5. In section 6 we compare the DFT results with the

component results and find precise agreement. We close with some general remarks and

speculations on the non-linear theory in the conclusion section.

2 Standard dualizations

2.1 p-form dualization

As a warm-up we start by recalling the dualization of the electromagnetic field in four

dimensions. Starting with the Maxwell action

S[A] = −
1

4

∫
d4xFab F

ab , (2.1)

where Fab = 2∂[aAb], one moves to a first-order formulation where Fab is an independent

field, and the Bianchi identity is imposed by introducing a Lagrange multiplier Ãa,

S[A,F ] =

∫
d4x

(
−

1

4
FabF

ab +
1

2
ǫabcdÃa∂bFcd

)
. (2.2)

This action is gauge invariant under δÃa = ∂aΛ, δFab = 0. Varying w.r.t. Ãa one obtains

the Bianchi identity ∂[aFbc] = 0, which can be solved in terms of the Maxwell potential,

giving back the original Maxwell theory. Conversely, one can solve for F in terms of Ãa to

obtain the duality relation

Fab =
1

2
ǫab

cdF̃cd , (2.3)

where F̃ab = 2∂[aÃb] is the dual field strength. Insertion into the action leads to the dual

Maxwell action for F̃ab.

By applying the same procedure in any dimension and for any p-form potential Ap,

one obtains a dual (D − p − 2)-form potential ÃD−p−2, whose gauge paramenter is a

(D − p− 3)-form,

δÃD−p−2 = dΛD−p−3 . (2.4)

In order to set the stage for the comparison with the dualization in DFT, we will often

consider the Hodge duals of the potential ÃD−p−2 and the gauge parameter ΛD−p−3. The

corresponding field is denoted by Ãp+2 and the parameter by Λp+3. The field strengths

and the gauge variation then take the divergence form

F a1...ap+1 = ∂bÃ
ba1...ap+1 , δÃa1...ap+2 = ∂aΛ

aa1...ap+2 , (2.5)

while the corresponding first-order action reads

S[Ãp+2, Fp+1] =
1

(p+ 1)!

∫
dDx

(
−

1

2
Fa1...ap+1F

a1...ap+1 − Ãa1...ap+2∂a1Fa2...ap+2

)
. (2.6)

For instance, consider a 2-form b2 in D dimensions with field strength Habc = 3∂[abbc].

Starting from the standard action

S[b] = −
1

12

∫
dDxHabcH

abc , (2.7)
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we pass to a first order action with a fully antisymmetric 4-tensor Dabcd and 3-form Habc

as independent fields,

S[D,H ] =

∫
dDx

(
−

1

12
HabcH

abc +Dabcd∂aHbcd

)
. (2.8)

The equation for Dabcd gives the Bianchi identity for H, ∂[aHbcd] = 0, while the equation

for H gives the duality relation

−
1

6
Habc = ∂dD

dabc . (2.9)

The action and field equations are invariant under the gauge transformation

δDabcd = ∂eΣ
eabcd , (2.10)

where Σeabcd is completely antisymmetric. The more familiar form of the duality relation

is obtained by passing to the Hodge-dual (D − 4)-form

D̃a1...aD−4 ≡
1

4!
ǫa1...aD−4b1...b4 D

b1...b4 , (2.11)

in terms of which (2.9) reduces to the standard duality relation between the (D − 3)-form

field strength of this (D − 4)-form potential and H. Alternatively, defining

H̃abc ≡ −2ηadηbeηcfG
def ≡ −6ηadηbeηcf∂gD

gdef , (2.12)

the above duality relation reads Habc = H̃abc. The ‘field strength’ Gabc in the above

equation will appear naturally in section 6. The equations of motion and Bianchi identity

for the dual field are then swapped with respect to the original variables:

(E.o.M) ∂[aH̃bcd] = 0 , (2.13)

(B.I) ∂aH̃
abc = 0 . (2.14)

2.2 The dual graviton

We now repeat the same analysis for the dual of theD-dimensional graviton at the linearised

level, following [2, 45]. We write the linearized Einstein-Hilbert action for the vielbein

fluctuation ha|b (including the antisymmetric part, as indicated by the bar) as

SEH[h] =

∫
dDx

[
fab

bfac
c −

1

2
fabcf

acb −
1

4
fabcf

abc

]
, (2.15)

with the linearized coefficients of anholonomy,

fab
c = 2∂[ahb]|

c . (2.16)

These quantities satisfy the Bianchi identity

∂[afbc]
d = 0 , (2.17)
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while the field equations obtained by variation w.r.t h are

∂cfc(ab) + ∂(afb)c
c − ηab ∂

cfcd
d = 0 . (2.18)

We now pass to a first order action by adding the Lagrange multiplier Dabc
d ≡ D[abc]

d

to impose the Bianchi identity,

S[f,D] =

∫
dDx

(
fab

bfac
c −

1

2
fabcf

acb −
1

4
fabcf

abc + 3Dabc
d ∂afbc

d

)
. (2.19)

Varying w.r.t. Dabc
d and fab

c, respectively, gives

∂[afbc]
d = 0, (2.20)

−
1

2
fab

c − f [a
c
b] − 2δc

[af b]
d
d = 3 ∂dD

dab
c .

The first equation implies locally that f takes the form (2.16). The second equation is

then the duality relation between the graviton, contained in ha|
b, and the dual graviton,

contained in Dabc
d. From this duality relation we may recover the original (linearized)

Einstein equations (2.18) by acting with ∂a and using that the right-hand side gives zero

by the ‘Bianchi identity’ ∂d∂aD
dab

c ≡ 0.

Conversely, we can express the theory in terms of the dual variables. We first note

that in terms of the ‘field-strength’ for the dual graviton,

Ga
bc ≡ 3 ∂dD

dbc
a , (2.21)

the duality relation is equivalent to

fab
c = 2G[ab]

c −
2

D − 2
Gd

d
[aδb]

c = 6 ∂eD
e
[b
c
a] −

6

D − 2
∂eD

e
d[a

d δb]
c , (2.22)

where we reinserted the explicit potentials in the last step. Inserting now this expression

for f in terms of D into (2.19) one obtains the dual action for D.

Let us discuss the physical content of the dual theory in a little more detail. To this

end we decompose

Dabc
d = D(tr)abc

d + 3 δd
[aD′bc] , (2.23)

where D(tr)abc
d is traceless and D′ab = 1

(D−2)D
abc

c is the trace part. In order to further

elucidate the representation content, consider the ‘Hodge-dual’ field

D̃a1...aD−3|b ≡
1

6
ǫa1...aD−3cdeD

cde
b , (2.24)

whose irreducible GL(D) representations are given by

(D − 3) ⊗ = (D − 3, 1) ⊕ (D − 2) . (2.25)

It is easy to see that the traceless potential D(tr)abc
d in eq. (2.23) corresponds to the

(D − 3, 1) mixed Young-tableaux representation, while D′ab corresponds to the totally

antisymmetric (D − 2). It turns out that the totally antisymmetric representation is pure

– 6 –
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gauge. Indeed, the gauge invariance of the linearized Einstein-Hilbert action (2.15) under

diffeomorphisms and local Lorentz transformations

δha|b = ∂aξb − Λab , (2.26)

elevates to a gauge invariance of the master action (2.19), acting on the fields (2.23) as

δΛD
(tr)abc

d = 0 , δΛD
′ab =

1

3
Λab . (2.27)

Due to this Stückelberg invariance, the field D′ab drops out of the action upon insertion

of (2.22) into (2.19), leaving a two-derivative action for the physical dual graviton in the

(D− 3, 1) Young tableau representation.4 The D-fields also possess gauge transformations

that leave the ‘field strength’ Ga
bc and hence the action and duality relations invariant,

δΣD
abc

d = ∂eΣ
eabc

d , (2.28)

with the parameter Σeabc
d = Σ[eabc]

d (that could be decomposed into traceless and trace

part in order to obtain the gauge transformations of D(tr)abc
d and D′ab).

2.3 Dual graviton and dilaton

We now consider the dual graviton and dilaton together at the linearized level. We first

consider a canonically coupled scalar (i.e. in Einstein frame) with Lagrangian L = R −
1
2(∂ϕ)

2. We thus add to the linearized action (2.19) the first-order action5

S[f (E)
a , D(E)ab] =

∫
dDx

(
−

1

2
f (E)af (E)

a +D(E)ab∂af
(E)
b

)
, (2.29)

where the antisymmetric D(E)ab is the Lagrange multiplier whose equation of motion yields

the Bianchi identity

∂[af
(E)
b] = 0 . (2.30)

This implies locally f
(E)
a = ∂aϕ, from which we recover upon reinsertion into (2.29) the

original scalar theory. Alternatively, varying w.r.t. f
(E)
a gives the duality relation

f (E)a = ∂bD
(E)ab , (2.31)

and eliminating f
(E)
a accordingly from (2.29) yields the theory for the dual dilaton D(E)ab

(or, equivalently, for the (D − 2)-form potential). The action and duality relations are

invariant under the gauge tranformation

δD(E)ab = ∂cΣ
cab , (2.32)

where Σabc is fully antisymmetric.

4It should be emphasized that while the standard Einstein-Hilbert action can be written entirely in terms

of the symmetric h(ab) and the dual action entirely in terms of the irreducible (D − 3, 1), the dualization

requires the presence of an antisymmetric part, either h[ab] or D
′ab, since in the master action (2.19) or the

duality relations (2.20), local Lorentz invariance allows us to set only one to zero, not both.
5The superscript E refers to the Einstein-frame.
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The above dualization of a scalar was completely decoupled from the dualization of

gravity. For dualization in string frame, however, this picture changes significantly in that

it will be the trace of the field Dabc
d (cf. the previous subsection) that becomes the dual

dilaton, while the analogue of D(E)ab will be pure gauge, transforming with a shift under

local Lorentz transformations.

We start from the action with Lagrangian L = e−2φ(R + 4(∂φ)2) for the graviton-

dilaton sytem, whose linearization yields

S[ha|b, φ] =

∫
dDx

(
fafa −

1

4
fab

cfab
c −

1

2
fab

cfa
c
b

)
, (2.33)

where

fa ≡ fab
b + 2 ∂aφ , (2.34)

with the coefficients of anholonomy defined in (2.16). Varying w.r.t. the vielbein and the

dilaton, respectively, one obtains the equations of motion

∂cf
c
(ab) + ∂(afb) = 0 , ∂af

a = 0 . (2.35)

The fab
c and fa satisfy the following Bianchi identities:

∂cfab
c + 2 ∂[afb] = 0 , ∂[afbc]

d = 0 . (2.36)

As before, we can pass to a first-order action with Lagrange multipliers Dabc
d = D[abc]

d

and D′ab = D′[ab] imposing the Bianchi identities,

S[fa, fab
c, D,D′] =

∫
dDx

(
fafa −

1

4
fab

cfab
c −

1

2
fab

cfa
c
b (2.37)

+ 3Dabc
d ∂afbc

d +D′ab
(
∂cfab

c + 2∂afb
))

.

Varying w.r.t the fundamental fields Dabc
d, D

′ab, fa and fab
c, respectively, one obtains

∂[afbc]
d = 0, (2.38)

∂cfab
c + 2∂[afb] = 0, (2.39)

fa = ∂bD
′ba, (2.40)

−
1

2
fab

c −
1

2
fa

c
b +

1

2
f b

c
a = 3∂eD

eab
c + ∂cD

′ab . (2.41)

It is straightforward to see, using the Poincaré lemma, that the general solution of the first

two equations, (2.38) and (2.39), give back (2.16) and (2.34), which upon back-substitution

into the action gives the string frame action (2.33) for dilaton plus gravity. The final two

equations above, (2.40) and (2.41), are duality relations, which allow us to recover the

second-order equations of motion (2.35) as integrability conditions. To this end we act

on (2.40) with ∂a, which by the Bianchi identity ∂a∂bD
′ab ≡ 0 implies

∂af
a = 0 ⇔ ∂af

a
b
b + 2 ∂a∂aφ = 0 , (2.42)
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in agreement with the dilaton field equation (the second equation in (2.35)). In order to

obtain the first equation in (2.35) we act with ∂a on (2.41) to obtain

−
1

2
∂af

ab
c −

1

2
∂af

a
c
b +

1

2
∂af

b
c
a = ∂c∂aD

′ab = ∂cf
b , (2.43)

using in the last step the first duality relation (2.40). After lowering the index b and

symmetrizing in (b, c), equation (2.43) becomes equivalent to the first equation in (2.35).

Note that the antisymmetric combination in (b, c) is zero by the Bianchi identity (2.36).

Thus, we have correctly recovered the equation of motion for the graviton.

We can also solve eqs. (2.40) and (2.41) for fa and fab
c in terms of the D-fields. Back-

substitution into (2.37) then yields the dual theory, which we analyze now in a little more

detail. Defining the dual field strengths

Ga
bc ≡ 3 ∂eD

ebc
a + ∂aD

′bc , ga ≡ ∂bD
′ba , (2.44)

we find

fab
c = gab

c ≡ 2G[ab]
c , fa = ga , (2.45)

where we introduced gab
c and ga for convenience. The equations of motion and Bianchi

identities for the dual system are then

B.I’s:





∂cg
c
(ab) + ∂(agb) = 0 ,

∂cgab
c + 2∂[agb] = 0 ,

∂ag
a = 0 .

E.o.M’s:
{
∂[agbc]

d = 0 . (2.46)

In order to further analyze the content of these equations it is useful to decompose D

as follows

Dabc
d = D(tr)abc

d + 3 δd
[aD̄bc] , (2.47)

where D(tr)abc
d is traceless and D̄ab = D̄[ab] the trace part. The equations of motion for

the components then read

∂e∂[aD
(tr)e

b
d
c] = 0 , ∂c∂[aD̄

c
b] = 0 . (2.48)

Note that the D′ab’s dropped out, which means that they are subject to a Stückelberg

symmetry. From the duality relations (2.45) and the split (2.47) it is easy to obtain the

usual duality relation between the dilaton and the dual dilaton:

fa − fab
b = ga − gab

b ⇒ 2∂aφ = 3(D − 2)∂cD̄
c
a. (2.49)

We observe that D′ab disappears and the field D̄ab (the trace of Dabc
d) is the dual dilaton,

which is the opposite of the situation in Einstein frame.

We close this subsection by discussing the gauge transformations for the D-fields. The

duality relations (2.40) and the master action are invariant under local Lorentz transfor-

mations with D′ab and Dabc
d transforming as

δΛD
abc

d = 0 , δΛD
′ab = Λab . (2.50)
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W.r.t to the decomposition (2.47) this implies in particular δΛD
(tr)abc

d = 0 and δΛD̄ab = 0,

implying that the physical dual graviton and the dual dilaton are invariant. The D-fields

also possess gauge transformations that leave the ‘field strengths’ Ga
bc and ga (and hence

the duality relations and action) invariant,

δΣD
abc

d = ∂eΣ
eabc

d + ∂dΣ
abc , δΣD

′ab = −3∂eΣ
eab . (2.51)

The gauge parameters satisfy Σeabc
d = Σ[eabc]

d and Σabc = Σ[abc]. One may decompose into

traceless and trace parts in order to read off the transformations for D(tr)abc
d and D̄ab.

3 Exotic dualization of Kalb-Ramond field

In this section we will discuss the dualization of a 2-form gauge potential (‘the B-field’)

into exotic mixed Young tableau fields. We first review general aspects of such mixed

Young tableau gauge fields and then turn to a master action that can be used to dualize

the B-field into such a tensor, provided extra fields are included. These fields are quite

unusual in that they are not auxiliary (they cannot be eliminated algebraically) nor pure

gauge, yet they do not add to the propagating degrees of freedom.

3.1 Generalities of (D − 2, 2) Young tableaux gauge fields

We start by discussing general aspects of gauge fields in mixed Young diagram represen-

tations; see [16, 17] for a systematic treatment and [18] for the construction of invariant

actions. Here we specialize to (D−2, 2) Young diagram representation, for which the gauge

field is subject to

Ba1...aD−2,bc ≡ B[a1...aD−2],bc ≡ Ba1...aD−2,[bc] , B[a1...aD−2,b]c ≡ 0 . (3.1)

There are two types of gauge parameters, µ ∈ (D − 3, 2) and λ ∈ (D − 2, 1), acting as6

δBa1...aD−2,bc = (D − 2) ∂[a1µa2...aD−2],bc

+ ∂[bλa1...aD−2,c] +
1

2
(D − 2) ∂[a1λ|bc|a2...aD−3,aD−2] .

(3.2)

These gauge transformations preserve the algebraic constraints on B. We can define a

gauge invariant curvature, starting from the first-order generalized Christoffel symbol

Γa1...aD−1,bc ≡ (D − 1) ∂[a1Ba2...aD−1],bc , (3.3)

which is invariant under µ transformations and satisfies the Bianchi identities

Γ[a1...aD−1,b]c = 0 , ∂[a1Γa2...aD],bc = 0 . (3.4)

As common for Young tableau fields with more than one column, this first-order object

is not fully gauge invariant (it is analogous to the Christoffel symbols), because under λ

transformations we have

δλΓa1...aD−1,bc = (D − 1) ∂[b∂[a1λa2...aD−1],c] . (3.5)

6We sometimes underline indices in order to indicate which indices participate in an antisymmetrization.
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A fully gauge invariant curvature is the Riemann-like tensor obtained by taking another

derivative and antisymmetrizing over three indices,

Ra1...aD−1,bcd ≡ 3 ∂[bΓa1...aD−1,cd] . (3.6)

This Riemann tensor satisfies the Bianchi identities

R[a1...aD−1,b]cd = 0 , ∂[a1Ra2...aD],bcd = 0 , (3.7)

and hence lives in the (D − 1, 3) Young diagram representation.

Naively, one would now impose the Einstein-type field equations that set to zero the

generalized Ricci tensor Ra1...aD−2
d
,bcd, but it turns out that a theory with these field

equations is actually topological. To see this note that these field equations imply vanishing

of the double-trace of the Riemann tensor, which by the equivalence

Ra1...aD−3

bc
,aD−2bc = 0 ⇔ ǫa1...aD−3

cde ǫaD−2

b1...bD−1 Rb1...bD−1,cde = 0 , (3.8)

implies vanishing of the full Riemann tensor and hence that the field is pure gauge. How-

ever, we can impose weaker field equations that do lead to propagating degrees of freedom,

setting to zero the triple-trace of the Riemann tensor,

Ra1...aD−4

bcd
,bcd = 0 . (3.9)

Note that these are the same number of equations as for the conventional dual of a 2-form

(D − p − 2 = D − 4), but now these are equations for the (D − 2, 2) gauge field. (Such

dualities have been discussed by Hull in [19]; see also [20] for similar exotic dualizations.)

This also proves that there can be no action principle implying (3.9) for the (D − 2, 2)

gauge field alone — simply because variation w.r.t. the (D − 2, 2) field would yield more

equations. However, one can write an action that implies this field equation at the cost

of introducing more fields (that are not pure gauge), which also serves as a master action

proving the equivalence with the standard 2-form action, as we will now discuss.

3.2 Master action

In order to construct this master action we follow [33–35] and write the standard action

for the Kalb-Ramond field up to total derivatives as

S[b] = −
1

12

∫
dDxHabcHabc = −

1

4

∫
dDx

(
∂abbc ∂abbc − 2 ∂ab

ab ∂cbcb
)
. (3.10)

We can then replace it by the first-order action

S[Q,D] =

∫
dDx

(
−

1

4
Qa|bcQa|bc +

1

2
Qa|

abQc|
cb −

1

2
Dab|cd ∂aQb|cd

)
, (3.11)

where the fields have the symmetries

Qa|bc = −Qa|cb , Dab|cd = −Dba|cd = −Dab|dc . (3.12)
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Note that, as usual for master actions, these fields do not live in irreducible representations.

The above action may seem like a rather unnatural rewriting of a 2-form theory, but we will

see in section 6 that, in the appropriate sector, DFT reproduces precisely such an action.

This action is invariant under the gauge transformations

δQa|bc = ∂aKbc , Kab ≡ 2∂[aξ̃b] ,

δDab,cd = ∂eΣeab|cd + 4 η[a[cKb]d] ,
(3.13)

where Σabc|de ≡ Σ[abc]|de ≡ Σabc|[de].

Let us now verify the equivalence with the second-order action. We vary w.r.t. D and

Q, respectively, to obtain

∂[aQb]|cd = 0 ⇒ Qa|bc = ∂abbc ,

∂dDda|bc = Qa|bc − ηabQ
d
|dc + ηacQ

d
|db .

(3.14)

Reinserting the solution of the first equation into the action we recover the original second-

order action (3.10). Equivalently, at the level of the equations of motion, we can act on

the second equation with ∂a to obtain the Bianchi identity

0 = ∂a∂dDda|bc = ∂aQa|bc − ∂bQ
a
|ac + ∂cQ

a
|ab = ∂a

(
∂abbc − ∂bbac + ∂cbab

)
, (3.15)

which becomes the standard second-order equation for bab. Thus, the first-order action is

on-shell equivalent to the second-order action.

In order to determine the dual theory, we have to use the second equation in (3.14)

(the duality relation) and solve for Q in terms of D,

Qa|bc = ∂dDda|bc −
2

D − 2
ηa[b ∂

dDde|
e
c] , (3.16)

which upon reinsertion into (3.11) yields the dual action for D,

L =
1

4
∂aD

ab|cd ∂eDeb|cd −
1

2(D − 2)
∂aD

ab|
b
c ∂dDde|

e
c . (3.17)

Variation w.r.t. D yields the second-order equation

∂[a∂
eD|e|b]|cd −

2

D − 2
∂[a
(
ηb][c ∂

eDef |
f
d]

)
= 0 , (3.18)

which is equivalent to the result obtained from (3.16) by taking a curl and using the Bianchi

identity ∂[aQb]|cd = 0.

In the remainder of this section, we will analyze the dual theory in a little more detail.

We first decompose D into its irreducible representations:

Dab|cd : ⊗ = ⊕
˜

⊕ ˜ ⊕ ⊕ , (3.19)

where we decomposed at the right-hand side into traceless tableaux (indicated by a

tilde) and the trace parts. Thus, the decomposition (into not yet irreducible represen-

tations) reads

Dab|cd = D̃ab|cd + 4 η[a[c Ĉb]|d] , (3.20)
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where D̃ is fully traceless, corresponding to the first three representations in (3.19), and

Ĉa|b is a general 2-tensor (with antisymmetric and symmetric parts), corresponding to the

last two representations.

We will now show that the duality relations imply the correct equations for the (D−2, 2)

field. In order to simplify the index manipulations we specialize to D = 4, which shows

already all essential features, and for which the conventional dual to the B-field is a scalar

and the exotic dual is a (2, 2) tensor. In this case we can decompose D as

Dab|cd =
1

2
ǫab

efBef,cd + 4η[a[cCb]|d] − 2ηc[aηb]dC , (3.21)

where B is the ‘Hodge-dual’ form of the traceless D̃ in (3.20) and hence lives in the (2, 2)

Young tableau. Moreover, we have redefined the general 2-tensor for later convenience,

Ca|b ≡ Ĉa|b −
1

2
ηabĈ . (3.22)

The Σ gauge symmetries can be decomposed as follows

Σabc|ef ≡ ǫabc
dΣ̃ef |d , Σ̃ab|c : ⊗ = ⊕ , (3.23)

so that we can write

Σ̃ab|c = λab,c + ǫabcd ξ
d , (3.24)

where λ ∈ (2, 1) and ξ is a new vector gauge parameter. Applying the gauge transforma-

tions (3.13) to (3.21) and using this decomposition of the gauge parameter one finds the

following gauge transformations for the component fields:

δBab,cd = ∂[aλ|cd|,b] + ∂[cλ|ab|,d] ,

δCa|b = 2∂[aξ̃b] − ∂bξa +
1

4
ǫa

cde∂cλde,b .
(3.25)

The transformation in the first line is precisely the expected gauge transformation of a

(2, 2) gauge field, cf. (3.2), while the symmetry parametrized by µ in (3.2) trivializes in

D = 4 because there is no (1, 2) Young tableau. Note that the extra field Ca|b transforms

under the gauge symmetry parametrized by λab,c. The duality relation (3.16) in terms of

B and C reads

Qb|cd = −
1

3!
ǫb

efg Γefg,cd + 2∂[cCb|d] , (3.26)

with the generalized Christoffel symbol (3.3). It is an instructive exercise to verify the

gauge invariance of this equation: under ‘b-field gauge transformations’ with parameter ξ̃a
the left- and right-hand sides are not invariant, but their respective variations precisely

cancel. The right-hand side is manifestly invariant under the ξa transformations, while

under λ transformations the variations of the two terms on the right-hand side cancel.

We next show that the duality relation implies as integrability condition the desired

field equation for the (2, 2) field. To this end we act on (3.26) with ǫabij∂a, for which the

left-hand side gives zero, and one obtains

0 = −∂aΓ
aij

,cd + 2ǫabij∂a∂[cCb|d] . (3.27)
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Now summing over i, c and j, d, the second term depending on C drops out, leaving

0 = −∂aΓ
acd

,cd ≡ −∂[aΓ
acd

,cd] ⇔ Rabc
,abc = 0 . (3.28)

Thus, we obtained the expected field equation (3.9) for D = 4, which proves that the (2, 2)

gauge field propagates the single degree of freedom of the b-field in D = 4.

3.3 Dual action

Let us finally determine and analyze the Lagrangian in terms of the dual fields, obtained

by substituting (3.21) into (3.17),

L[B,C] =−
1

24
Γabc,de Γabc,de −

1

3!
ǫabcd Γbcd,

ef ∂eCa|f

+
1

2
∂aCb|c ∂aCb|c −

1

2
∂cCa|b ∂bCa|c −

1

2
∂cCa|b ∂aCc|b

+ ∂aC
a|b ∂bC −

1

2
∂aC ∂aC .

(3.29)

It is amusing to write this in a slightly more geometric form by defining the generalized

‘Einstein tensor’

Ga|b ≡
1

2

(
−�Ca|b + ∂c∂aCc|b + ∂c∂bCa|c − ∂a∂bC + ηab(�C − ∂c∂dCc|d)

)
, (3.30)

which satisfies the Bianchi identities

∂aGa|b = ∂bGa|b = 0 , (3.31)

and in terms of which the action reads

L = −
1

24
Γabc,de Γabc,de −

1

3!
ǫabcd Γbcd,

ef ∂eCa|f + Ca|bGa|b(C) . (3.32)

Note that decomposing C into symmetric and antisymmetric parts, Ca|b = sab + aab, with

sab ≡ s(ab), aab ≡ a[ab], the generalized Einstein tensor becomes

Ga|b(s, a) = Gab(s)−
1

2
∂chcab(a) , (3.33)

in terms of the standard 3-form curvature habc ≡ 3∂[aabc] and the (linearized) Einstein

tensor Gab = Rab −
1
2Rηab, where

Rab ≡ ∂aγc
c
,b − ∂cγca,b , γab,c ≡

1

2
(∂asbc + ∂bsac − ∂csab) . (3.34)

The above Lagrangian can then be written as

L =−
1

24
Γabc,de Γabc,de +

1

12
ǫabcd Γbcd,

ef haef −
1

6
ǫabcd Γbcd,

ef γae,f

+ sabGab(s) +
1

6
habchabc .

(3.35)
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Curiously, one obtains the conventional (linearized) Einstein-Hilbert term for sab plus the

standard kinetic term for aab, both multiplied by an overall factor of −2. These wrong-

sing kinetic terms for a ‘graviton’ and a ‘Kalb-Ramond field’ naively would lead one to

conclude that this theory propagates a ghost-like spin-2 mode and (in D = 4) a scalar

mode. However, since the action is not diagonal and since these fields are subject to larger

gauge symmetries parameterized by λab,c, there is no conflict with the equivalence to a

single scalar mode, which is guaranteed by the construction from a master action.

As a consistency check, let us verify that this action indeed implies the expected field

equation for the (2, 2) field. Varying (3.32) w.r.t. Bab,cd and Ca|b, respectively, yields

∂eΓe〈ab,cd〉 −R⋆
〈ab,cd〉(C) = 0 ,

Ga|b(C) +
1

12
ǫacde ∂fΓ

cde,f
b = 0 ,

(3.36)

where 〈 〉 denotes the projection onto the (2, 2) Young diagram representation,7 and we

defined the analogue of the linearized Riemann tensor for Ca|b and its dualization

Rabcd(C) ≡ 4 ∂[c ∂[aCb]|d] , R⋆
ab,cd(C) ≡

1

2
ǫab

ef Ref,cd(C) . (3.38)

This Riemann tensor satisfies the Bianchi identity R[abcd] = 0, which in turn implies that

the double trace of R⋆
ab,cd vanishes (note, however, that R[abc]d generally is non-zero because

C carries an antisymmetric part). As a consequence, taking the double trace of the first

equation in (3.36), the R⋆ term drops out, implying the required field equation Rabc
,abc = 0,

precisely as in (3.28). The (2, 2) projection of the dual Riemann tensor in (3.36) plays a

role analogous to the Weyl tensor in Einstein gravity (where it is left undetermined by

the field equations and hence encodes the propagating graviton degrees of freedom). Here,

on the contrary, the tensor R⋆
〈ab,cd〉 is fully determined by the (2, 2) gauge potential, in

agreement with the non-propagating nature of Ca|b.

4 Dualizations in Linearized DFT

In this section we discuss the relations between dual and standard fields in Double Field

Theory (DFT), using linearized DFT in the frame formulation [5, 6, 10, 11, 28]. We will add

Lagrange multipliers (denoted as D-fields in the following) to the linearized DFT action

in order to enforce the Bianchi identities. This will allow us to obtain duality relations

between the conventional fields and the D-fields and, as integrability conditions, second

order differential equations.

7Explicitly, acting on a tensor Xab|cd that is antisymmetric in each index pair, this projector reads

X〈ab|cd〉 ≡
1

3

(

Xab|cd +Xcd|ab +
1

2
Xac|bd −

1

2
Xbc|ad −

1

2
Xad|bc +

1

2
Xbd|ac

)

. (3.37)
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4.1 Linearized DFT in frame formulation

The fundamental fields in the frame formulation of DFT are the generalized vielbein EA
M

and the generalized dilaton d. The vielbein transforms from the right under global G =

O(D,D) transformations and has a local H = O(D−1, 1)×O(D−1, 1) action from the left:

E′
A
M (X ′) = OM

N EB
N (X)hA

B(X) , X ′M = OM
NXN , (4.1)

where O ∈ G and h ∈ H. The generalized vielbein and the dilaton also transform under

generalized coordinate transformations. The frame field is subject to a covariant constraint,

which can be stated in terms of the ‘flattened’ form of the O(D,D) metric

ηMN =

(
0 1

1 0

)
. (4.2)

In the original frame formulation of DFT the subgroup H = O(D − 1, 1) × O(D − 1, 1)

is embedded canonically, indicated by the index split of the doubled Lorentz indices A =

(a, ā), a, ā = 0, . . . , D − 1, under which the flattened metric is assumed to be diagonal,

GAB ≡ EA
MEB

NηMN ≡ 2 diag(−ηab, ηāb̄) , (4.3)

where ηab and ηāb̄ are two copies of the flat D-dimensional Lorentz metric diag(−+ · · ·+),

and the relative sign between them is so that the overall signature is compatible with the

(D,D) signature of ηMN .

A different but equivalent form of the constraint is given by choosing the flattened

metric so that it takes the same form as the O(D,D) metric,

ηAB ≡ EA
MEB

NηMN =

(
0 δab
δa

b 0

)
, (4.4)

where we denoted the frame field by EA
M to indicate that it satisfies a different constraint.

Due to this constraint, EA
M is a proper O(D,D) group element. The flat indices split as

A = (a, a) and, therefore, in this formalism one has to carefully distinguish between upper

and lower indices. The tangent space indices are raised and lowered with ηAB or GAB,

depending on the formalism.

The generalized metric encoding metric g and b-field can be defined conventionally

in terms of the frame field. For instance, in the formalism based on (4.4), we define the

O(D − 1, 1)×O(D − 1, 1) invariant metric

SAB ≡

(
ηab 0

0 ηab

)
, (4.5)

where ηab and ηab are again two copies of the flat Lorentz metric, in terms of which the

generalized metric can be written as

HMN = EM
A EN

B SAB . (4.6)
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In the following we use the perturbation theory for both formalisms, with frame fields

subject to either (4.3) or (4.4), because each is more convenient for different purposes. In

the remainder of this section we discuss the formalism based on (4.4), using the conventions

of [28], while the formalism based on (4.3) will be discussed and applied in section 5.

We now discuss the frame-like perturbation theory, whose details have been developed

in [36, 37] for flat and curved backgrounds. Here we consider perturbations around a

constant background, writing

EA
M = ĒA

M + hA
B ĒB

M . (4.7)

The constraint (4.4), which requires EA
M to be O(D,D) valued, implies to first order in the

fluctuation hAB + hBA = 0. We thus assume hAB to be antisymmetric.8 Moreover, in the

following we denote the linearization of the dilaton by d and its background value by d̄. The

linearized theory is naturally written in terms of generalized coefficients of anholonomy,

also known as generalized fluxes [28–31], which are defined as

FABC = 3D[AhBC] , FA = DBhBA + 2DAd , (4.8)

with the flattened (doubled) derivative

DA ≡ ĒA
M∂M . (4.9)

Note that in DFT we impose the ‘strong constraint’ ∂MX ∂MY = ∂M∂MX = 0 for any

fields X,Y , which then implies DADA = 0 acting on arbitrary objects (which we will

sometimes abbreviate as D2 = 0). It is then easy to verify that the above coefficients of

anholonomy satisfy the Bianchi identities

D[AFBCD] = 0 ,

DCFCAB + 2D[AFB] = 0 ,

DAFA = 0 .

(4.10)

Conversely, it is straightforward to prove, using the Poincaré lemma and the strong con-

straint DADA = 0, that the general solution of these equations is given by (4.8).

Let us now turn to the linearized DFT action, which takes the form

SDFT =

∫
d2DX e−2d̄

(
SABFAFB +

1

6
F̆ABCFABC

)
, (4.11)

where F̆ABC is defined as:

F̆ABC ≡ S̆ABCDEFFDEF , (4.12)

with the short-hand notation

S̆ABCDEF =
1

2
SADηBEηCF +

1

2
ηADSBEηCF +

1

2
ηADηBESCF −

1

2
SADSBESCF . (4.13)

8Note, however, that beyond first order this relation gets modified.
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The tensors S̆ and S satisfy the following identities:

S̆ABC
GHI S̆GHI

DEF = δA
DδB

EδC
F , SA

BSB
C = δA

C . (4.14)

The action (4.11) is invariant under infinitesimal generalized diffeomorphisms (with the gen-

eralized coefficients of anholonomy being invariant to first order) and local double Lorentz

transformations δΛhAB = ΛAB, with infinitesimal parameter ΛAB satisfying

ΛAB = −ΛBA , SA
CΛCB = SB

CΛAC . (4.15)

In fact, the local Lorentz group leaves invariant the two metrics (4.4) and (4.5), which

defines an O(D − 1, 1) × O(D − 1, 1) subgroup of O(D,D). Under these doubled Lorentz

transformations, the coefficients of anholonomy transform as

δΛFABC = 3D[AΛBC] , δΛFA = DBΛBA . (4.16)

The equations of motion following from the linearized DFT action (4.11) for hAB and d,

respectively, are given by

2D[BFA SC]A +DAF̆
ABC = 0 , (4.17)

2SABDBFA = 0 . (4.18)

4.2 Master action and duality relations

We now pass to a first-order or master action as in previous sections, promoting FA and

FABC to independent fields and introducing (totally antisymmetric) Lagrange multipliers

DABCD, DAB and D that enforce the Bianchi identities. The action thus reads

S =

∫
dX e−2d̄

[
SABFAFB +

1

6
F̆ABCFABC

+DABCD DAFBCD +DAB
(
DCFCAB + 2DAFB

)
+DDAFA

]
.

(4.19)

Varying w.r.t. the fundamental fields DABCD, DAB, D, FABC and FA, respectively, we

obtain the field equations

D[AFBCD] = 0 , (4.20)

DCFCAB + 2D[AFB] = 0 , (4.21)

DAFA = 0 , (4.22)

F̆ABC = 3
(
DDD

DABC +D[ADBC]
)
, (4.23)

2SABFB − 2DBD
BA −DAD = 0 . (4.24)

With the first three equations we recover the Bianchi identities, which can be solved as

in (4.8), giving back the original (linearized) DFT. The last two equations (4.23) and (4.24)
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can then be interpreted as the duality relations. From these we may obtain the original

second-order linearized DFT equations as integrability conditions. To this end, we act on

eq. (4.23) with DA and obtain

DAF̆
ABC = −2D[BDAD

|A|C] , (4.25)

where we have used D[ADB] = 0 and the strong constraint D2 = 0. Now we can use (4.24)

in order to eliminate DAD
AC on the right-hand side, which gives back the linearized field

equation (4.17). Similarly, by acting on eq. (4.24) with DA and using the strong constraint

one obtains the linearized dilaton equation of motion (4.18).

Let us now discuss the gauge symmetries in the dual formulation. First, the duality

relations and master action are invariant under the following gauge transformations:

δDABCD = DEΣ
EABCD +D[AΣBCD] ,

δDAB = D[AΣB] +
3

4
DEΣ

EAB ,

δD = DAΣ
A ,

(4.26)

where ΣABCDE = Σ[ABCDE] and ΣABC = Σ[ABC]. The D-fields also transform under

double Lorentz transformations. Using (4.16) in the above duality relations, one finds

δΛDABCD = 0 , δΛDAB = −SE
[AΛB]E , δΛD = 0 . (4.27)

4.3 Dual DFT

Let us now investigate the equations of motion for the theory in terms of the dual D-fields.

These are obtained from the Bianchi identities (4.10) and the duality relations (4.23)–

(4.24). First, we need to solve the duality relations for the coefficients of anholonomy in

terms of the dual D-fields, which yields, using eq. (4.14),

FABC = 3 S̆ABC
DEF

(
DGDGDEF +D[DDEF ]

)
, (4.28a)

FA = SA
B

(
DCDCB +

1

2
DBD

)
. (4.28b)

Inserting these into the Bianchi identities (4.10), we obtain

0 = S̆[ABC|EFG|DD]

(
DHDHEFG +D[EDFG]

)
, (4.29)

0 = 3 S̆CABDEFD
C
(
DGD

GDEF +D[DDEF ]
)
+ 2SC[BDA]

(
DDD

DC +
1

2
DCD

)
, (4.30)

0 = SABD
ADCD

CB +
1

2
SABDADBD . (4.31)

In order to illuminate further these equations for the dual D-fields, let us introduce

the following field strengths:

GABC ≡ 3
(
DDD

DABC +D[ADBC]
)
, (4.32)
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DFT Dual DFT

- - - D[DGABC] = 0

E.o.M’s 2D[BFA SC]A +DAF̆
ABC = 0 DCGCAB + 2D[AGB] = 0

2SABDAFB = 0 DAGA = 0

D[DFABC] = 0 - - -

B.I’s DCFCAB + 2D[AFB] = 0 2D[AGCS
B]C +DC Ğ

CAB = 0

DAFA = 0 2SABDAGB = 0

Table 1. Comparison of equations of motion and Bianchi identities between DFT and dual DFT.

and

GA ≡ DBD
BA +

1

2
DAD , (4.33)

which are invariant under the Σ-transformations (4.26). In terms of these field strengths

the duality relations take the following simpler form:

FABC = S̆ABCDEF GDEF ,

FA = SAB GB .
(4.34)

Finally, defining GABC ≡ S̆ABC
DEFGDEF and GA ≡ SA

BGB, the second-order equa-

tions (4.29)–(4.31) for the dual fields take exactly the same form as the Bianchi identities

for the original fields. Our final form of duality relations between fluxes and dual fluxes

is then

FABC = GABC ,

FA = GA .
(4.35)

The set of equations for the original and dual system is summarized in table 1.

5 Geometric form of dual DFT action

In this section we elaborate on the geometric form of the dual DFT action. We first present

a master action in terms of connections that, in a sense, is complementary to that presented

in section 4, but which leads to equivalent results. Finally, we determine the dual action

and write it in a geometric form that is completely analogous to the dual action for the

exotic duals discussed in section 3.

5.1 DFT action in connection form

In order to define the master action in a (semi-)geometric form, let us first review the

linearized frame-like geometry of DFT, based on a frame field EA
M , where the flat indices

split as A = (a, ā). Since the frame field is subject to (4.3), expansion about a constant

background,

EA
M = ĒA

M − hA
BĒB

M , (5.1)
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leads to the following first-order constraints on the fluctuations

hab̄ = −hb̄a , hab ≡ h[ab] , hāb̄ ≡ h[āb̄] . (5.2)

The first field is physical, encoding the symmetric metric fluctuation and the antisymmetric

b-field fluctuation. The final two fields are pure gauge w.r.t. the local O(D− 1, 1)×O(D−

1, 1) tangent space symmetry. Indeed, defining ∂A ≡ 〈EA
M 〉∂M , the linearized gauge

transformations can be written as

δhAB = ∂AξB − ∂BξA + ΛAB , (5.3)

where ΛAB = diag(Λab,Λāb̄), and therefore

δhab̄ = ∂aξb̄ − ∂b̄ξa ,

δhab = 2 ∂[a ξb] + Λab ,

δhāb̄ = 2 ∂[ā ξb̄] + Λāb̄ ,

(5.4)

while the dilaton transforms as

δd = −
1

2
(∂aξ

a + ∂āξ
ā) . (5.5)

From (5.4) we infer that hab and hāb̄ can be gauged away. The spin connection components

of the linearized theory read

ωab̄c̄ = −2 ∂[b̄h|a|c̄] + ∂ahb̄c̄ ,

ωābc = 2 ∂[bhc]ā + ∂āhbc ,

ωa ≡ ωba
b = ∂bhab + ∂ b̄hab̄ + 2∂ad ,

ωā ≡ ωb̄ā
b̄ = −∂bhbā + ∂ b̄hāb̄ + 2∂ād ,

ω[abc] = ∂[ahbc] ,

ω[āb̄c̄] = ∂[āhb̄c̄] .

(5.6)

These objects indeed transform as connections for the doubled local Lorentz symmetry:

δωab̄c̄ = ∂aΛb̄c̄ , δωābc = ∂āΛbc ,

δωa = ∂bΛab , δωā = ∂ b̄Λāb̄ .
(5.7)

In particular, the connections are fully invariant under generalized diffeomorphisms. The

above connections satisfy the Bianchi identities

∂aω
a + ∂āω

ā = 0 ,

∂āωābc − 2 ∂[b ωc] + 3 ∂aω[abc] = 0 ,

∂aωab̄c̄ − 2 ∂[b̄ ωc̄] + 3 ∂āω[āb̄c̄] = 0 ,

∂cωb̄ac − ∂ c̄ωab̄c̄ + ∂aωb̄ − ∂b̄ωa = 0 ,

∂[a ω|d̄|bc] − ∂d̄ ω[abc] = 0 , (5.8)

– 21 –



J
H
E
P
0
6
(
2
0
1
6
)
0
2
6

∂[ā ω|d|b̄c̄] − ∂d ω[āb̄c̄] = 0 ,

∂[a ωb]c̄d̄ + ∂[c̄ ωd̄ ]ab = 0 ,

∂[a ωbcd] = 0 ,

∂[ā ω b̄c̄d̄ ] = 0 .

This is a rather extensive list of identities, but except for the first one they are all con-

sequences of the algebraic Bianchi identity for the full Riemann tensor, R[ABC]D = 0,

see [50, 51], and are also equivalent to (4.10).

We now give invariant curvatures in order to define the dynamics of linearized DFT.

There is a linear generalized Riemann tensor,

Rab,c̄d̄ ≡ ∂[a ωb]c̄d̄ − ∂[c̄ ωd̄]ab = −4 ∂[a∂[c̄ hb]d̄] , (5.9)

which, however, does not have a non-linear completion. The linearized (generalized) Ricci

tensor (which is not the trace of the above Riemann tensor) reads

Rab̄ ≡ −∂cω b̄ac + ∂b̄ ωa ≡ −∂ c̄ωab̄c̄ + ∂aωb̄ , (5.10)

where the equivalence of the two definitions follows from the fourth Bianchi identity in (5.8).

The explicit expression in components reads

Rab̄ = �hab̄ − ∂a∂
chcb̄ + ∂b̄∂

c̄hac̄ + 2∂a∂b̄d , (5.11)

where � ≡ ∂a∂a ≡ −∂ā∂ā. As it should be, the pure gauge degrees of freedom dropped

out. Also note that there are differential Bianchi identities relating (5.9) to (5.10),

∂ c̄Rab,c̄d̄ = −2 ∂[aRb]d̄ , ∂aRab,c̄d̄ = 2 ∂[c̄R|b|d̄] . (5.12)

The linearized scalar curvature is

R ≡ −∂aωa ≡ ∂āωā = −2�d− ∂a∂ b̄hab̄ , (5.13)

where we have given the explicit component expression in the last step. Finally, the lin-

earized DFT action in terms of the connections reads

L
(2)
DFT =

1

2

(
ωab̄c̄ωab̄c̄ + 3ω[āb̄c̄]ω[āb̄c̄] + 2ωāωā

− ωābcωābc − 3ω[abc]ω[abc] − 2ωaωa

)
,

(5.14)

whose general variation reads δL = 4δhab̄Rab̄ − 8δdR. Let us note that, upon insert-

ing (5.6), the two lines in the above action actually give the same result, by virtue of the

strong constraint and the relative sign between them, but for our present purposes this

action is convenient because it treats barred and unbarred indices on the same footing.
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5.2 Master action

We now give a first-order master action that can be used to define the dual theory and in

which the connections are promoted to independent fields, in analogy to previous sections.

Apart from that, the approach is complementary to that used in previous sections in

that the dual fields do not enter the master action as Lagrange multipliers but rather

emerge upon ‘solving’ the field equations by reinterpreting them as Bianchi identities. This

approach is of course fully equivalent to that used before (the difference being whether the

fields or their duals enter the master action that serves as the starting point), but it is

reassuring to confirm explicitly that both procedures give the same result.

We now treat the connections as independent fields and replace the linearized DFT

action (5.14) by the first-order action

L
(1)
DFT =−

1

2
ωab̄c̄ωab̄c̄ + ωab̄c̄

(
− 2∂b̄hac̄ + ∂ahb̄c̄

)
−

3

2
ω[āb̄c̄]ω[āb̄c̄] + 3 ω[āb̄c̄]∂āhb̄c̄

− ωāωā + 2ωā(−∂bhbā + ∂ b̄hāb̄ + 2∂ād)

+
1

2
ωābcωābc − ωābc

(
2∂bhcā + ∂āhbc

)
+

3

2
ω[abc]ω[abc] − 3ω[abc]∂ahbc

+ ωaωa − 2ωa
(
∂ b̄hab̄ + ∂bhab + 2∂ad

)
.

(5.15)

The field equations for the ω determine them in terms of the physical fields as given

in (5.6), so that reinserting into the action we recover (5.14). On the other hand, varying

with respect to d, hab̄, hab and hāb̄, respectively, we obtain

∂āω
ā − ∂aω

a = 0 ,

−∂c̄ ω
ab̄c̄ − ∂c ω

b̄ac + ∂aωb̄ + ∂ b̄ωa = 0 ,

∂āω
ābc + 3 ∂aω

[abc] − 2 ∂[b ωc] = 0 ,

∂aω
ab̄c̄ + 3 ∂āω

[āb̄c̄] − 2 ∂[b̄ ωc̄] = 0 .

(5.16)

Expressing ω in terms of the physical fields, the first two equations give the DFT equations

Rab̄ = 0 and R = 0, while the last two equations are the second and third Bianchi identity

in (5.8).

In order to determine the dual theory we interpret now all four of the equations (5.16)

as Bianchi identities and solve them in terms of dual fields. We proceed hierarchically,

starting with the first equation, which can be solved as

ωā = ∂b̄D
āb̄ + ∂bD

bā + ∂āD ,

ωa = ∂bD
ab + ∂b̄D

ab̄ − ∂aD ,
(5.17)

with Dāb̄ and Dab antisymmetric, Dbā unconstrained and a singlet D. This result can be

obtained as follows. First, the non-singlet terms follow from the standard Poincaré lemma,

writing the equation as ∂AΩ
A = 0 for ΩA ≡ (−ωa, ωā), which implies ΩA = ∂BD

AB for

antisymmetric DAB, whose components give the above D fields. The only subtlety is that
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the derivatives are subject to the strong constraint, which allows for the singlet term that

drops out by ∂ā∂ā = −∂a∂a. Thus, (5.17) is the general solution of the first equation

in (5.16).

Next, we turn to the second equation in (5.16), where we can eliminate ωa and ωā

according to (5.17). We first solve the equation for the special case that all these D fields

are zero:

− ∂c̄ ω
ab̄c̄ − ∂c ω

b̄ac = 0 . (5.18)

This is solved by

ωab̄c̄ = ∂d̄D
b̄c̄d̄,a + ∂dD

da,b̄c̄ ,

ωb̄ac = ∂dD
cda,b̄ + ∂d̄D

ac,b̄d̄ ,
(5.19)

where the D fields are antisymmetric in each group of similar indices. Including now the

trace connections we need to solve the inhomogeneous equation

∂c̄ ω
ab̄c̄ + ∂c ω

b̄ac = ∂a∂c̄D
b̄c̄ + ∂a∂cD

cb̄ + ∂ b̄∂cD
ac + ∂ b̄∂c̄D

ac̄ , (5.20)

where we note that the singlet D dropped out. This equation is solved by

ωab̄c̄ = ∂aDb̄c̄ + 2 ∂[b̄D|a|c̄] ,

ωb̄ac = ∂ b̄Dac + 2 ∂[aDc]b̄ ,
(5.21)

which can be verified by employing the strong constraint again. Thus, the general solution

is given by the sum of (5.19) and (5.21),

ωab̄c̄ = ∂d̄D
b̄c̄d̄,a + ∂dD

da,b̄c̄ + ∂aDb̄c̄ + 2 ∂[b̄D|a|c̄] ,

ωb̄ac = ∂dD
cda,b̄ + ∂d̄D

ac,b̄d̄ + ∂ b̄Dac + 2 ∂[aDc]b̄ .
(5.22)

Finally, we solve the last two equations in (5.16). Inserting (5.17) and (5.22) determines

ω[abc] up to solutions of ∂aω
[abc] = 0, which by the Poincaré lemma are given by ∂dD

abcd for

a new totally antisymmetric tensor Dabcd. Applying the same reasoning to ω[āb̄c̄] introduces

the new field Dāb̄c̄d̄, and we finally find for the connections in terms of the dual fields,

ωab̄c̄ = ∂d̄D
b̄c̄d̄,a + ∂dD

da,b̄c̄ + ∂aDb̄c̄ + 2 ∂[b̄D|a|c̄] ,

ωābc = ∂dD
bcd,ā + ∂d̄D

bc,ād̄ + ∂āDbc + 2 ∂[bDc]ā ,

ωā = ∂b̄D
āb̄ + ∂bD

bā + ∂āD ,

ωa = ∂bD
ab + ∂b̄D

ab̄ − ∂aD ,

ω[abc] = ∂[aDbc] − ∂dDabcd −
1

3
∂d̄Dabc,d̄ ,

ω[āb̄c̄] = ∂[āDb̄c̄] − ∂d̄Dāb̄c̄d̄ −
1

3
∂dDāb̄c̄,d .

(5.23)
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For the reader’s convenience we summarize here the dual D fields:

D , Dab , Dāb̄ , Dab̄ ,

Dabcd̄ , Dāb̄c̄d , Dabc̄d̄ , Dabcd , Dāb̄c̄d̄ .
(5.24)

Comparing with the list of Bianchi identities (5.8) we infer that the D fields and Bianchi

identities are in one-to-one correspondence. Thus, these fields could be used as Lagrange

multipliers to impose the Bianchi identities, confirming the equivalence with the master

action procedure discussed in section 4.

We now turn to the dual gauge symmetries that leave (5.23) invariant and thus describe

the redundancies between the D fields. For the two-index fields one finds

δΣDab = 2 ∂[aΣb] + ∂cΣabc + ∂ c̄Σab,c̄ ,

δΣDāb̄ = −2 ∂[āΣb̄] + ∂ c̄Σāb̄c̄ + ∂cΣāb̄,c ,

δΣDab̄ = ∂aΣb̄ − ∂b̄Σa + ∂cΣca,b̄ + ∂ c̄Σc̄b̄,a ,

δΣD = ∂aΣ
a + ∂āΣ

ā .

(5.25)

Note that the dual diffeomorphism parameters Σa and Σā act on these fields in exactly the

same way as the original diffeomorphism parameters ξa and ξā act on hab, hāb̄, hab̄ and d.

For the four-index field we find

δΣD
āb̄c̄,d = ∂ēΣ

āb̄c̄ē,d − ∂dΣāb̄c̄ + 3 ∂[āΣb̄c̄],d ,

δΣD
ab,c̄d̄ = 2 ∂[aΣ|c̄d̄|,b] − 2 ∂[c̄Σ|ab|,d̄] ,

δΣD
abc,d̄ = ∂eΣ

abce,d̄ − ∂d̄Σabc + 3 ∂[aΣbc],d̄ ,

δΣD
abcd = ∂eΣ

abcde +
4

3
∂[aΣbcd] −

1

3
∂ēΣ

abcd,ē ,

δΣD
āb̄c̄d̄ = ∂ēΣ

āb̄c̄d̄ē +
4

3
∂[āΣb̄c̄d̄] −

1

3
∂eΣ

āb̄c̄d̄,e .

(5.26)

It can be verified by a straightforward computation that these transformations leave (5.23)

invariant. Finally, in order for (5.23) to transform under local Lorentz transformations as

required by (5.7), the D fields need to transform as

δΛD
ab = Λab , δΛD

āb̄ = Λāb̄ . (5.27)

Thus, exactly as for hab and hāb̄, these fields are pure gauge.

5.3 Geometric action for dual DFT fields

Let us now insert (5.23) into the master action (5.15) in order to obtain the action for

the dual D fields. The terms involving the original fields drop out because these fields

enter linearly, multiplying constraints that have been solved in terms of the D fields. The

second-order action therefore reads

L
(2)
DFT = −

1

2

(
ωab̄c̄ωab̄c̄ + 3ω[āb̄c̄]ω[āb̄c̄] + 2ωāωā

− ωābcωābc − 3ω[abc]ω[abc] − 2ωaωa

)
,

(5.28)
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with the connections given by (5.23). This takes precisely the same form as (5.14), except

that the overall sign has changed. The computation of inserting (5.23) is simplified by using

that the dependence of ω on Dab̄, Dab, Dāb̄ and D is precisely analogous to the expressions

in terms of the original fields, up to the following identifications,

Dab̄ → −hab̄ , Dab → −hab , Dāb̄ → hāb̄ , D → 2d , (5.29)

and an overall sign for the connections with unbarred Lie algebra indices, which is irrelevant

since the connections enter the action quadratically. A direct computation yields the

explicit form of the dual Lagrangian,

L =−
1

2
∂d̄D

b̄c̄d̄,a ∂ ēDb̄c̄ē,a − ∂d̄D
b̄c̄d̄,a ∂eDea,b̄c̄ −

1

2
∂dD

da,b̄c̄ ∂eDea,b̄c̄

+
1

2
∂dD

bcd,ā ∂eDbce,ā + ∂dD
bcd,ā ∂ ēDbc,āē +

1

2
∂d̄D

bc,ād̄ ∂ ēDbc,āē

−
3

2
∂d̄D

āb̄c̄d̄ ∂ ēDāb̄c̄ē − ∂d̄D
āb̄c̄d̄ ∂eDāb̄c̄,e −

1

6
∂dD

āb̄c̄,d ∂eDāb̄c̄,e

+
3

2
∂dD

abcd ∂eDabce + ∂dD
abcd ∂ ēDabc,ē +

1

6
∂d̄D

abc,d̄ ∂ ēDabc,ē

−Dab,c̄d̄Rab,c̄d̄(Dab̄)− L
(2)
DFT(Dab̄, D) .

(5.30)

Note that in the last line we encounter the standard linearized DFT Lagrangian L(2), but for

Dab̄ and D, with the ‘wrong’ overall sign, in complete analogy to the mixed Young tableau

action discussed in section 3. Also in perfect analogy to that discussion is that this wrong-

sign kinetic term does not indicate the presence of ghosts, for the action is not diagonal.

Rather, the off-diagonal term is proportional to the linearized Riemann tensor (5.9), but

expressed in terms of Dab̄. Thus, the Σa and Σā transformations are manifest symmetries

of this action, while the invariance under the remaining dual diffeomorphisms (5.26) can

be verified by a direct computation. Also note that the fields Dāb̄ and Dab dropped out,

as it should be in view of the Stückelberg-type Lorentz invariance (5.27).

We close this section by discussing two of the D-field equations, because they exhibit

an intriguing structure. Varying w.r.t. Dab̄ and D we obtain

Rab̄(D) = ∂c∂d̄Dac,b̄d̄ , R(D) = 0 . (5.31)

For the first equation neither the left-hand side nor the right-hand side are dual diffeomor-

phism invariant under transformations with parameter Σab,c̄ and Σāb̄,c, but their variations

precisely cancel against each other. The field equation for Dab,c̄d̄ reads

Rabc̄d̄ = Sabc̄d̄ , (5.32)

where we defined

Sabc̄d̄ ≡ ∂[a∂
eD|e|b],c̄d̄ + ∂[c̄ ∂

ēD|ab|,d̄]ē + ∂[a∂
ēD|c̄d̄ē|,b] + ∂[c̄ ∂

eD|abe|,d̄] . (5.33)

Thus, intriguingly, the equation takes the form of a second-order duality relation, relating

the (linearized) Riemann tensor to a ‘dual’ Riemann tensor. As above, both sides are not

separately invariant under dual diffeomorphisms with parameter Σab,c̄ and Σāb̄,c, but the

full equation of course is, as it should be and as may be verified by a quick computation.
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6 Comparison of results

In section 4 we have shown that at the linearized level the DFT equations and Bianchi

identities for the fluxes FABC and FA arise from first order duality equations given, for

instance, in eq. (4.35), relating these fluxes to the dual fluxes GABC and GA. The dual

fluxes are defined in terms of the field strengths GABC of the dual potentials (the D-fields)

in eqs. (4.32) and (4.33). The field equations and Bianchi identities for the fields and the

dual fields are listed in table 1. The aim of this section is to show that if one restricts

all DFT fields to only depend on x, i.e. if one sets ∂̃µΦ = 0 for any DFT field Φ, one

recovers the previous results of dualization: the standard dualities between the 2-form

and the (D − 4)-form and between the graviton (plus dilaton) and the mixed-symmetry

(D − 3, 1) potential discussed in section 2, and the exotic duality between the 2-form and

the mixed-symmetry (D − 2, 2) potential discussed in section 3.

The dual potentials introduced in section 4 are DABCD, DAB and D. Upon breaking

O(D−1, 1)×O(D−1, 1) to the diagonal subgroup, the field DABCD can be decomposed as

DABCD → Dabcd Dabc
d Dab

cd Da
bcd Dabcd , (6.1)

while the field DAB decomposes as

DAB → Dab Da
b Dab . (6.2)

When reducing to x-space we use, by a slight abuse of notation, the same symbols for the

components of the DFT D-fields and the supergravity D-fields. The identification uses

the ordering of the indices as given above to match the results of the previous sections.

The same applies for the components of GABC . We make an exception, in the following

subsection, for the identification of the components of DAB and D with the ones in x-space:

Dab → D′ab ,

Da
b → D′a

b , D → D′′ ,

Dab → D′
ab ,

(6.3)

the convention being that x-space fields carrying a prime can be gauged or redefined away.

If one inserts the above identifications into eq. (4.19), one recovers the first order actions

of section 2. In particular, the fields Dabcd, Dabc
d and D′ab are precisely the potentials that

we introduced in section 2 when we performed the standard dualization for the 2-form and

the graviton plus dilaton system. This requires that, in x-space, the fields D′a
b and D′′

can be redefined away and/or are irrelevant for the analysis. We will also see that Da
bcd,

Dabcd and Dab trivialize in x-space frame.

One can also recover the duality relations for each field by performing the decompo-

sition directly in the duality relation (4.35). We first identify the components of FABC in

x-space as:

FABC = {Habc, fab
c, Qa

bc, Rabc} ,

FA = {fa, Q
a} ,

(6.4)
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which at this stage are just labels for the components of the F flux. As we will see, Habc,

fab
c and fa play the same role as in in section 2, and we will discuss later Qa

bc, Qa and

Rabc, which are related to non-geometric fluxes. Note that because of the presence of the

tensor S̆ABCDEF in the definition of GABC in terms of GABC , eq. (4.35) relates a given

component of FABC to different components of GABC and thereby to different components

of the dual potentials. This has to be understood as follows: if one turns on a particular

component of the flux FABC , eq. (4.35) still gives equations for all the dual potentials.

The equations for the dual potentials dual to the vanishing fluxes will furnish algebraic

relations among the different components of GABC , and after reinserting these relations

into the duality relation for the non-vanishing fluxes one finds that this is dual to a specific

component of GABC suitably antisymmetrized. This will also be discussed in each case

in the remainder of this section, which is organized as follows. In the first subsection we

will show how from DFT one recovers the standard dualizations of section 2, while in the

second subsection we will show how the exotic dualization of section 3 is also contained

in DFT. Finally, in the third subsection we will briefly discuss the remaining dual fields,

which are related to non-geometric fluxes such as the R-flux.

6.1 Standard duality relations for the 2-form and graviton plus dilaton

The truncation of the action given in eq. (4.19) to x-space with only either the H-flux or

the f -flux turned on straightforwardly reproduces the field theory analysis of section 2. In

the case of the H-flux, only the component Dabcd of DABCD appears in the action, and one

immediately recovers eq. (2.8). In the case of the f -flux, one turns on only the component

Dabc
d in DABCD and D′ab in DAB to recover precisely the action in eq. (2.37). The analysis

performed in section 2 showed that D′ab is pure gauge while Dabc
d describes both the dual

of the graviton and the dual of the dilaton.

As anticipated at the beginning of this section, a more careful analysis is required if

one wants to perform the truncation at the level of the duality relations. In the case of the

H-flux, the duality relation (4.35) simply gives Habc = Gabc, with the other components of

GABC vanishing. In terms of GABC this gives

Habc = Gabc =
1

2
ηcfGab

f −
1

2
ηbeGac

e +
1

2
ηadGbc

d −
1

2
ηadηbeηcfG

def . (6.5)

In this equation both Gabc and Gab
c occur, but one has to take into account also the

equation for the vanishing dual flux Ga
bc, which gives

0 = Ga
bc =

1

2
ηbeGae

c −
1

2
ηcfGaf

b −
1

2
ηadη

beηcfGef
d +

1

2
ηadG

dbc , (6.6)

implying the algebraic relation

Gab
c = −ηbeηadG

dec . (6.7)

Upon inserting this relation into eq. (6.5) one obtains

Gabc = −2ηadηbeηcfG
def , (6.8)
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which is in agreement with (2.12), identifying Gabc = H̃abc and using the definition of Gabc

given in eq. (4.32).

We now perform the same analysis for the graviton-dilaton system. Turning on only

the fluxes fab
c and fa in eq. (4.35) we must recover eq. (2.45), where Gab

c is identified with

gab
c and Ga with ga. In terms of GABC , one has

Gab
c =

1

2
ηcfGabf −

1

2
ηadηbeη

cfGf
de −

1

2
ηadGb

dc +
1

2
ηbeGa

ec . (6.9)

The two components Gabc and Ga
bc that occur in this equation are related by the condition

that the dual flux Gabc vanishes, which yields the relation

0 = −
1

2
ηadηbeηcfGdef +

1

2
ηcfGf

ab −
1

2
ηbeGe

ac +
1

2
ηadGd

bc . (6.10)

Inserting this into eq. (6.9) one obtains

Gab
c = ηbeGa

ec − ηadGb
dc , (6.11)

which precisely reproduces eq. (2.45) by using (4.32). It is also straightforward to show

that Ga coincides with ga defined in (2.45) after using eq. (4.33).

6.2 Q-flux dualization from DFT

We now consider the truncation to x-space of the DFT dualization for the Q-flux component

in (6.4) and show that it reproduces the exotic dualization of the 2-form discussed in

section 3. We start from the first order action (4.19), specialized to the Q-flux components,

and reduce to x-space,

S[Q,D] =

∫
dDx

(
QaQa −

1

4
Qa

bcQa
bc −

1

2
Qa

bcQb
a
c

+ 3Dab
cd ∂aQb

cd + 2Da
b

(
∂cQa

bc + ∂aQ
b
)
+D∂aQ

a

)
, (6.12)

where the fields Dab
cd ≡ D[ab]

[cd], D
a
b, D and Qa, Qa

bc are independent, and we dropped

the primes relative to (6.3). The field equations for the D-fields read

∂[aQb]
cd = 0 ,

∂cQa
bc + ∂aQ

b = 0 ,

∂aQ
a = 0 , (6.13)

which are the Bianchi identities (4.10), reduced to x-space and specialized to the compo-

nents Qa
bc and Qa. The solution of these equations is

Qa
bc = ∂aβ

bc , Qa = ∂bβ
ba + constant , (6.14)

and we will see in the following that the constant term is irrelevant. The field equations

for Qa and Qa
bc yield the duality relations

2Qa = 2∂bD
b
a + ∂aD ,

−
1

2
Qa

bc −
1

2
Qb

a
c +

1

2
Qc

a
b = 3∂eD

ea
bc − 2∂[bD

a
c] ,

(6.15)
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which are equivalent to the duality relations following from (4.23) and (4.24) upon special-

izing to the Q-fluxes.

Comparing with the master action discussed in section 3, we observe that here we have

Lagrange multiplier fields, Da
b and D, which have no analogues in that previous analysis,

but we will now show that these fields are irrelevant. We first note that (6.12) is invariant

under the gauge transformations with local parameter χ

δχD = χ , δχD
a
b = −

1

2
χ δab , δχD

ab
cd = −

1

3
χ δ[ac δ

b]
d , (6.16)

with δχQ = 0. These act as a Stückelberg symmetry on D. Thus, we can gauge this

field to zero.9 Equivalently, we can express the action directly in terms of the gauge

invariant objects

D̂a
b ≡ Da

b +
1

2
D δab , D̂ab

cd ≡ Dab
cd +

1

3
D δ[ac δ

b]
d , (6.17)

which yields

S[Q,D] =

∫
dDx

(
QaQa −

1

4
Qa

bcQa
bc −

1

2
Qa

bcQb
a
c

+ 3D̂ab
cd ∂aQb

cd + 2D̂a
b

(
∂cQa

bc + ∂aQ
b
))

. (6.18)

As expected, the singlet D field dropped out. The field D̂a
b cannot be eliminated similarly

by a gauge symmetry. Rather, its own field equation yields the second of the Bianchi

identites in (6.13), and back-substituting their solution (6.14) into the action (6.18) gives

the free Kalb-Ramond action for the b-field, which at the linearized level is equivalent to

the ‘β-supergravity’ for the bi-vector field βab ≡ bab (with the indices raised by the flat

Minkowski metric) [46–49]. Note, in particular, that the constant term in (6.14) contributes

to the Lagrangian only an irrelevant constant and a total derivative term. Therefore, it is

physically equivalent to set the constant to zero, in which case Qa = Qb
ba and the second

and third Bianchi identity are no longer independent but are traces of the first one. Thus,

on-shell the above action is equivalent to the same action with Qa = Qb
ba and with the

only Lagrange multiplier being D̂ab
cd, enforcing the first Bianchi identity in (6.13). This

action is then manifestly equivalent to the master action (3.11) discussed in section 3.10

Thus, we have shown that in the Q-flux sector the DFT dualization reduces to the exotic

dualization of the B-field into a mixed-symmetry potential with a (D−2, 2) Young tableau.

6.3 The R-flux

We now consider the R-flux contribution of (6.4) in the truncation of the master ac-

tion (4.19) to x-space. The action reduces to

S =

∫
dDx

(
Da

bcd ∂aR
bcd +D′

ab ∂cR
cab
)
, (6.19)

9Note that this gauge invariance cannot be realized in the O(D,D) covariant formalism of DFT, for it

acts on the trace part of Da
b and the double trace part of Dab

cd. There are no analogous traces of the

covariant and fully antisymmetric fields DAB and DABCD.
10Note that the third Q2 term in (6.18) is absent in (3.11), but upon eliminating Q both actions agree

up to total derivatives, which is sufficient for the equivalence as master actions.
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x-space x̃-space

bab ↔ Dabcd βab ↔ Dabcd

ha|
b ↔ Dabc

d ha|b ↔ Da
bcd

βab ↔ Dab
cd bab ↔ Dab

cd

Table 2. Dual fields for the Kalb-Ramond field, vielbein fluctuation and β-field in x and x̃-space.

where Da
bcd = Da

[bcd] and D′
ab = D′

[ab]. Note that the field D′
ab can be absorbed into the

trace of Da
bcd. The equations for the dual potentials in this case simply imply that Rabc

has to be constant and hence that in this sector the fields carry no degrees of freedom.

This is consistent with the form of the R-flux in x-space at the non-linear level:

Rabc = 3β[a|e|∂eβ
bc] , (6.20)

whose linearization vanishes for vanishing β background. The duality then implies that

the dual flux Gabc also vanishes.

Finally, let us also note that the field Dabcd disappears from the action in x-space since

it couples to a Bianchi identity for the R-flux that explicitly contains a derivative ∂̃µ with

respect to the dual coordinate. The field Dabcd can be written as a (10, 4) gauge field in

D = 10 by using the epsilon tensor, as can be deduced by writing its gauge transformation

from eq. (4.26) and keeping only x derivatives. On the other hand, in an O(D,D) frame

in which we take all the fields to depend only on the coordinates x̃, Dabcd would become

the ‘standard’ dual of the field β since the R-flux takes the form

Rabc = 3 ∂̃[aβbc] , (6.21)

which plays precisely the same role as the H-flux in x-space. An analogous inversion of

roles also holds for all other fields, as is guaranteed by the O(D,D) invariance of the

action (4.19). We summarize this in table 2.

7 Conclusions and outlook

In this paper we have determined the dualization of double field theory (dual DFT) at

the linearized level, which captures in addition to the conventional dual fields in D = 10

string theory (the 6-form dual to the Kalb-Ramond 2-form and the 8-form dual to the

dilaton) fields in mixed-Young tableaux representations, such as the dual of the graviton

and an exotic dual of the 2-form, plus additional fields. The dual fields can be organized

into a totally antisymmetric 4-tensor under the T-duality group O(D,D), as suggested by

previous studies, but it turns out that defining an O(D,D) covariant master action (and,

consequently, an action for the dual fields) requires extra fields.

A careful analysis shows, however, that reducing the dual DFT to the physical space-

time yields precisely the expected dual theories. In particular, we analyzed the exotic du-

alization of the 2-form, following the strategy introduced in [33–35], which is illuminating

because it shows that, besides the dual (D − 2, 2) gauge potential, extra fields are needed
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that carry the representations and gauge symmetries of metric and 2-form fluctuations.

Consequently, they enter the action with (linearized) Einstein-Hilbert and Kalb-Ramond

terms, but due to non-trivial couplings to the dual fields this does not upset the counting of

degrees of freedom. Similarly, the dual DFT carries, besides the 4th rank O(D,D) tensor,

fields with the same representations and gauge symmetries as in the original DFT and,

therefore, they enter the action with the usual (linearized) generalized curvature scalar of

DFT. Again, because of the coupling to the dual fields, this does not indicate the presence

of unphysical modes, as is also guaranteed by the master action.

This unusual feature may provide important pointers for the full non-linear theory

yet to be constructed. In general, there are strong no-go theorems implying, under rather

mild assumptions, that there is no non-linear action for a mixed-Young tableau field that

is invariant under a deformation of the linear gauge symmetries [3, 4]. However, in the

O(D,D) covariant framework analyzed here, this problem presents itself in a quite different

fashion. Because of the coupling to extra fields (carrying the representations of the original

DFT fields), the no-go theorem is not applicable, and hence it may well be that there

is a consistent non-linear deformation of the dual DFT action (5.30). For instance, this

would require finding a non-linear extension of the field equation (5.32). The linearized

DFT Riemann tensor appearing on the left-hand side of that equation by itself does not

have a non-linear extension [50, 51] (which in turn is the reason that higher-derivative α′-

corrections require a deformation of the framework [52, 53]), but it is natural to speculate

that a non-linear extension exists which deforms not only the left-hand side but also the

right-hand side that encodes the mixed Young tableau fields.11

Another reason to be optimistic about the existence of a non-linear extension is that

in ‘exceptional field theory’ (the extension of DFT to U-duality groups) dual graviton

components are already encoded at the non-linear level [38–42], which is achieved by means

of additional (compensator) fields. The detailed formulation of these theories is somewhat

different, however, in that they require a split of coordinates and indices so that the mixed

Young tableau nature of the dual graviton is no longer visible. Therefore, the precise

relation between the dual formulation presented here and that implicit in [38–42] remains

to be established. Once this has been achieved and/or the full non-linear form of the dual

DFT has been constructed, we would have a fully duality covariant formulation of the

low-energy dynamics of the type II strings in terms of all fields and their duals, both for

the RR sector, for which this was established a while ago [54–56], and the NS sector.

The construction of such a theory would be very important for the description of

various types of (exotic) branes. Indeed, exotic branes are non-perturbative string states

that are electrically charged with respect to mixed-symmetry potentials. The branes that

are charged under the D potentials discussed in this paper have tensions that scale like

g−2
s in string frame. While the NS5-brane is charged under the standard potential Dabcd,

the KK monopole, the Q-brane and the R-brane are charged under the mixed-symmetry

potentials Dabc
d, D

ab
cd and Da

bcd, respectively. The Q-brane solution [26, 27] is locally

11Intriguingly, one may thus speculate that this could be a link to the problem of understanding higher-

derivative corrections in DFT.
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geometric, while the R-brane does not admit a geometric description. This is clearly in

agreement with our findings, namely that one can write down a duality relation in x space

at the linearized level for Dab
cd but not for Da

bcd. Actually, one should also consider non-

geometric objects that are charged under the potential Dabcd. Upon dimensional reduction,

this would give rise to space-filling branes with the same scaling of the tension, which have

been classified (see the second ref. in [21–23]). In general these branes do not have any

solution in supergravity, but their existence is crucial for instance in orientifold models.

The 1/2-BPS branes with tension g−2
s satisfy specific ‘wrapping rules’ [57]: the number

of p-branes in D dimensions is given by the number of p+1-branes in D+1 dimensions plus

twice the number of p-branes in D + 1 dimensions. This means that these branes ‘double’

when they do not wrap the internal cycle. As far as the (D−5)-branes, the (D−4)-branes

and the (D − 3)-branes are concerned, this is expected from the fact that such branes

are magnetically dual to the fundamental string, fundamental particles and fundamental

instantons, respectively. Therefore, for these branes the wrapping rules are simply the dual

of the wrapping rules for fundamental strings, that see a doubled circle, and thus double

when they wrap. The fact that all the potentials associated to these branes enter the DFT

duality relations discussed in this paper explains why also the (D− 2) and (D− 1)-branes

with tension proportional to g−2
s satisfy the same wrapping rules, although they are not

dual to propagating fields in x space.

The classification of 1/2-BPS branes in string theory was extended to branes with

tension scaling like g−3
s in the string frame in [58]. Such branes are charged with respect

to mixed-symmetry potentials that are magnetically dual to the P -fluxes (a prototype of

a P -flux is the S-dual of the Q-flux). In [32] it was observed that all such potentials

can be collected in the field EMN,α̇ in the tensor-spinor representation of SO(10, 10). It

would be very interesting to write down a linearized DFT duality relation for such field,

precisely as we did for the D fields in this paper. Such field is magnetically dual to the

p-form potentials γa1...ap (with p even in IIB and odd in IIA), that are U-dual to the RR

fields (for instance the IIB scalar γ is the S-dual of the RR axion), and group together to

form a spinor representation of SO(10, 10). The branes with tension g−3
s satisfy different

wrapping rules with respect to the g−2
s branes, namely they ‘double’ both if they wrap and

if they do not wrap. The precise DFT duality relation between the potential EMN,α̇ and

the potentials γ would give an explanation for this wrapping rule, which is at the moment

rather mysterious.

Acknowledgments

We are grateful to Nicolas Boulanger for helpful explanations on exotic dualizations. V.A.P

thanks Athanasios Chatzistavrakidis for enlightening discussions. E.A.B. wishes to ac-

knowledge the support and hospitality of the Center for Theoretical Physics at MIT where

this work was started. E.A.B, V.A.P., F.R wish to acknowledge the support and hospitality

of Mainz Institute for Theoretical Physics. F.R. thanks the Van Swinderen Institute, Uni-

versity of Groningen, for hospitality. O.H. is supported by a DFG Heisenberg Fellowship

by the German Science Foundation (DFG).

– 33 –



J
H
E
P
0
6
(
2
0
1
6
)
0
2
6

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C.M. Hull, Strongly coupled gravity and duality, Nucl. Phys. B 583 (2000) 237

[hep-th/0004195] [INSPIRE].

[2] P.C. West, E11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081]

[INSPIRE].

[3] X. Bekaert, N. Boulanger and M. Henneaux, Consistent deformations of dual formulations of

linearized gravity: a no go result, Phys. Rev. D 67 (2003) 044010 [hep-th/0210278]

[INSPIRE].

[4] X. Bekaert, N. Boulanger and S. Cnockaert, No self-interaction for two-column massless

fields, J. Math. Phys. 46 (2005) 012303 [hep-th/0407102] [INSPIRE].

[5] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826

[hep-th/9305073] [INSPIRE].

[6] W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47

(1993) 5453 [hep-th/9302036] [INSPIRE].

[7] C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664]

[INSPIRE].

[8] C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets,

JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

[9] O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory,

JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

[10] O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory,

JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

[11] O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011)

085404 [arXiv:1011.4101] [INSPIRE].
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[28] D. Geissbuhler, D. Marques, C. Núñez and V. Penas, Exploring double field theory, JHEP 06

(2013) 101 [arXiv:1304.1472] [INSPIRE].

[29] D. Geissbuhler, Double field theory and N = 4 gauged supergravity, JHEP 11 (2011) 116

[arXiv:1109.4280] [INSPIRE].

[30] G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field
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