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ABSTRACT To learn disentangled representations of facial images, we present a Dual Encoder-Decoder

based Generative Adversarial Network (DED-GAN). In the proposed method, both the generator and

discriminator are designed with deep encoder-decoder architectures as their backbones. To be more specific,

the encoder-decoder structured generator is used to learn a pose disentangled face representation, and the

encoder-decoder structured discriminator is tasked to perform real/fake classification, face reconstruction,

determining identity and estimating face pose. We further improve the proposed network architecture

by minimizing the additional pixel-wise loss defined by the Wasserstein distance at the output of the

discriminator so that the adversarial framework can be better trained. Additionally, we consider face pose

variation to be continuous, rather than discrete in existing literature, to inject richer pose information into our

model. The pose estimation task is formulated as a regression problem, which helps to disentangle identity

information from pose variations. The proposed network is evaluated on the tasks of pose-invariant face

recognition (PIFR) and face synthesis across poses. An extensive quantitative and qualitative evaluation

carried out on several controlled and in-the-wild benchmarking datasets demonstrates the superiority of the

proposed DED-GAN method over the state-of-the-art approaches.

INDEX TERMS Disentangled representation learning, encoder-decoder, generative adversarial networks,

face synthesis, pose invariant face recognition.

I. INTRODUCTION

Benefiting from the rapid development of deep learning

and the easy access to a large number of annotated face

images, face recognition [1]–[4] has advanced significantly

in recent years. Although impressive performance has been

achieved on several benchmarking databases, pose variation

is still one of the crucial bottlenecks for many practical

applications [5], [6]. Facial appearance variations caused by

poses are even larger than those caused by different iden-

tities [7]. To mitigate this difficulty, many approaches have

The associate editor coordinating the review of this manuscript and

approving it for publication was Peter Peer .

been proposed for pose-invariant face recognition (PIFR).

Existing PIFR methods can be divided into three categories.

One approach is to remap non-frontal faces to frontal ones,

and then extract facial features from frontalised faces for

better face representation [8]–[12]. The second one is to

learn pose-invariant representations directly from non-frontal

faces [13]–[16]. The last category aims to learn disentangled

facial representations so that identity-preserving features can

be disentangled from pose variation [17], [18]. Our proposed

method belongs to the last category.

The consensus regarding desirable properties of good

representations of data has recently been established in

[19]–[22]. Disentanglement, one of the properties of good
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representation, is a kind of distributed feature representa-

tion in which disjoint dimensions of a latent code reflect

different high-level generative factors of data. The disentan-

glement is also often described as statistical independence;

each independent factor is expected to be semantically well

aligned with the human intuition regarding the data gen-

erative factors. Specifically, the disentangled representation

can separate explanatory factors that interact non-linearly in

real-world data, such as object shapes, material properties,

light sources and so on. A representation distilling each

important factor of data into a single independent direc-

tion is hard to learn, but it is highly valuable for many

other downstream tasks like PIFR and face synthesis across

views [23]–[26].

Deep generative models facilitate learning disentangled

representations. It is a methodology that enables learning of

the probability distribution of data and generating new sam-

ples according to control codes in a latent space. By learning

the appropriate parameters, deep generative models can gen-

erate new data mimicking the distribution of the target data.

Once a disentangled representation is learned, the disjoint

dimensions of the hidden code model the data generative

factors separately. These underlying factors have the potential

to explain the major variations in the data. When only one

factor varies but all others are fixed, the generated sequence of

samples can show an interpretable change to human beings.

For example, when we generate a hand-written digit, a com-

ponent of the code may be associated with the stroke width.

When its value is changed, only the stroke width of the

generated digit becomes smaller, while other factors on the

images (e.g. class, shape, color) stay the same. In recent years,

Variational Auto-Encoder (VAE) [27] and Generative Adver-

sarial Networks (GAN) [28] based methods as two notable

branches of deep generative model have successfully been

used in the disentangled representation learning. For instance,

β-VAE [29] learns disentangled latent codes by encouraging

the latent distribution to be close to the standard normal

distribution, in which each random variable is independent.

DC-IGN [30] is another VAE-based generative model for

disentangled representation learning. However, DC-IGNmay

not apply to unstructured in-the-wild images, since it achieves

disentanglement by providing batch training samples with

one attribute being fixed. InfoGAN [31] also uses statistical

independence, which is motivated by the principle of maxi-

mization of mutual information. The Disentangled Represen-

tation learning GAN (DR-GAN) [18] learns generative and

discriminative facial representations, which disentangle the

face identity from pose so that it can better handle cross-pose

recognition. DR-GAN is also similar to the prior work [10]

in which joint representation learning and face rotation are

explored with a multi-task CNN. In summary, most of the

existing works disentangle the factors by using statistical

independence of a prior distribution.

Although DR-GAN has achieved impressive perfor-

mance in face synthesis across poses and PIFR, it has

some problems: 1) The process of training of DR-GAN is

not stable. In a few stable cases, a mode collapse often

occurs, producing degenerate images; 2) The pose variations

are categorized into several distinct classes by a one-hot

vector. Consequently, although it is a strong prior, the pose

information is insufficient for disentangled facial represen-

tation learning. To improve the training stability of GAN,

the encoder-decoder structured discriminator has been suc-

cessfully used in EBGAN [32] and BEGAN [33], which is

also used as a backbone network in our method. To achieve

stable model training, an equilibrium enforcing method

was proposed in BEGAN, in which a hyper-parameter is

introduced to balance the generator and discriminator dur-

ing the model training. Different from the classical GANs,

BEGAN aims to match the auto-encoder loss distributions,

not between sample distributions. We also introduce an

equilibrium enforcing strategy in our method. However, in

contrast to BEGAN, our method not only matches the distri-

butions between samples like in typical GANs, but also the

distributions of the reconstruction losses of samples, which

is conducive to better representation learning. Accordingly,

pixel-wise reconstruction error is used as another loss func-

tion, aside identity loss and pose estimation in our GAN

model.

DR-GAN codes the pose into several classes with a

one-hot vector, incurring information loss in the process.

Pose changes continuously, non-linearly but smoothly. For

this reason, we represent pose code by a continuous variable

rather than in a discrete form. This also allows estimating the

pose by regression rather than classification.

This paper addresses the problem of learning a generative

model for disentangled facial representation extraction.

By combining the advanced techniques of GAN-based repre-

sentation learning methods, we propose to learn disentangled

pose-robust features by modeling the complex non-linear

transform between face images with different poses through

a dual encoder-decoder structured deep neural network in an

adversarial way, namely Dual Encoder-Decoder based Gen-

erative Adversarial Networks (DED-GAN). The proposed

network is evaluated in terms of the quality of face synthesis

of different views on the one hand and pose-invariant face

recognition (PIFR) on the other hand. Our contributions are

summarised as follows:

• A new GAN architecture with fast and stable

convergence is proposed for disentangled facial

representation learning.

• Our proposed method can generate a face with arbitrary

pose variations.

• The proposedmethod learns identity-preserving features

simultaneously.

• To the best of our knowledge, this is the first attempt to

use pose regression for disentangled face representation.

The proposed continuous pose variation model provides

more detailed information about the pose. It is used

explicitly to control the manifold of identity-preserving

face synthesis.
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• Experiments in PIFR and face synthesis across poses

demonstrate the advantage of our method on multiple

benchmarking databases.

The rest of the paper is organised as follows: We first

overview the existing literature related to the proposed

method in Section II. Then we present the proposed

DED-GAN in Section III and introduce the implementation

details in Section IV. An ablation study and experimental

results are reported in Section V. Last, the conclusion is

drawn in Section VI.

II. RELATED WORK

A. GENERATIVE ADVERSARIAL NETWORK

Recently, the state-of-the-art in deep generative models,

especially in VAE [27] and GAN [28], have advanced signif-

icantly. As one of the most promising deep neural networks,

GAN has attracted widespread attention from the computer

vision and machine learning communities. It provides a sim-

ple, yet powerful way to estimate data distribution and gener-

ate realistic samples by the zero-sum two-player game [34].

Through modeling a real sample distribution, a GAN can

encourage the generated samples to move towards the true

image manifold, and thus generate photo-realistic images

with plausible high-frequency details. However, the classical

GAN suffers from computational problems, e.g. the inferior

performance caused by unbalanced training of the generator

without comparable attention given to updating the discrim-

inator. A collapsed generator will lose the capacity to fit

the target data distribution. To address the aforementioned

model collapse issue, some improved GAN architectures

have been proposed. For example, Zhao et al. [32] proposed

energy-based GAN (EBGAN) that considers the generator

and discriminator as energy functions. Salimans et al. [35]

introduced a bag of tricks to address GAN training strategies

and achieved great performance on semi-supervised learning.

Karras et al. [36] used a strategy of progressively growing

the generator and discriminator of a GAN for improved

image generation quality, stability and variation. Further,

Arjovsky et al. [37] presented Wasserstein GAN (WGAN)

using the earth mover’s distance. They proved that WGAN is

able to avoid the mode collapse problem to a certain extent.

Existing GAN models can handle most of the challenging

cases, in which the pose, illumination and expression of faces

are unconstrained. For example, Radford et al. [38] designed

DC-GAN that evaluates a set of constraints on the architec-

tural topology of convolutional GANs, whichmake themodel

stable to train. Huang et al. [39] focused on the local patches

that have some semantic meaning and proposed TP-GAN.

Li et al. [40] focused on themissing parts of the face and came

up with a novel two adversarial losses as well as a semantic

parsing loss to complete the faces. He et al. [41] edited the

face images with desired attributes while preserving other

details by encoder-decoder structured GAN. Both [42] and

[43] applied an extension of GAN to a conditional setting

and showed their utility in many tasks, including image

in-painting [44], super-resolution [45], style transfer [46],

face attribute manipulation [47] and even data augmentation

for classification models [48], [49]. The VariGAN model

was proposed by Zhao et al. [50] to solve the problem

of generating multi-view images from a single viewpoint.

Tran et al. [51] put forward DR-GAN, which fuses the pose

information and can take one or multiple face images with

yaw angles as input to achieve pose invariant facial repre-

sentation learning. Similarly, Antipov et al. [52] concentrated

on improving face synthesis in cross-age scenarios. Consid-

ering scene structure and context, Yang et al. [53] presented

LR-GAN that learns generated image background and fore-

ground separately and recursively to produce a completely

natural or face image.

These successful GANs provide a strong motivation to

learn disentangled facial representation and to develop a

method for different view synthesis. However, there are sev-

eral crucial issues with GANs such as training being unstable

and a quantitative evaluation proving difficult. The previous

work either focuses on the stability of training, the task of

synthesising images, or using the features in the discriminator

for image recognition. In contrast, we propose an innovative

method for constructing the generator for disentangled repre-

sentation learning, which is stable. The proposed DED-GAN

method is also quantitatively evaluated for pose invariant face

recognition.

B. POSE INVARIANT REPRESENTATION LEARNING

In conventional face recognition methods, local

descriptors [54]–[57] and metric learning [58], [59] are often

used to tackle the effect of pose variation. In contrast, deep

learning methods handle pose variation through building

pose-specific or pose-agnostic models with specific loss

functions [60], [61]. For instance, the DeepFace [62] model

uses a deep CNN coupled with 3D face alignment. The

inception architecture, utilised in FaceNet [15], is used in

DeepID2+ [63] and DeepID3 [64] where multi-task learning

and metric learning are performed simultaneously. However,

such data-driven methods heavily rely on well-annotated

data. Collecting labeled data covering all variations is

time-consuming and labor-intensive. Our proposed Dual

Encoder-Decoder based GAN (DED-GAN) presents an

idea similar to Disentangled Representation learning GAN

(DR-GAN) [18], which considers both face rotation and rep-

resentation learning in a unified network. However, our pro-

posed model differs from DR-GAN in the following aspects:

1) we use a continuous pose code for disentangling face

representation in DED-GAN, as it provides more detailed

information about the pose as a strong prior for training,

and 2) DR-GAN suffers from poor generalisation and from

optimisation difficulties, which limit its effectiveness in face

synthesis and face recognition. In contrast, our DED-GAN

overcomes these issues by disentangling the pose utilizing

pose regression and adding face reconstruction as a side task.

III. THE PROPOSED APPROACH

Our Dual Encoder-Decoder based GAN (DED-GAN)

model learns two tasks simultaneously: synthesis of
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FIGURE 1. Comparison of previous GANs architecture and our proposed DED-GAN.

different face poses and pose-invariant face recognition.

The encoder-decoder structured generator is used for face

rotation and untangling the identity from pose variation.

The encoder-decoder structured discriminator is used for

facial reconstruction, pose estimation, identity classification

and real/fake adversarial learning. The architecture of our

DED-GAN is shown in Fig. 1d. We also show different

architectures of earlier GANs such as Vanilla GAN,Auxiliary

Classifier GAN and DR-GAN for comparison in Fig. 1a,

Fig. 1b and Fig. 1c. In contrast to DR-GAN, we add a decoder

to the discriminator, which is optimised for pixel-wise loss

defined in terms of the Wasserstein distance, to balance the

generator and discriminator. We also code the pose using a

continuous variate instead of the discrete variate commonly

specified by a one-hot vector. As a result, the task of pose

disentanglement in the discriminator can be formulated as

one of pose regression instead of classification, which further

benefits the learning process.

It should be noted that the Encoder-Decoder structured

discriminator has also been successfully used in BEGAN [33],

to match the pixel-wise loss distributions of reconstructed

real and synthesised samples. Our method also incorporates

an Encoder-Decoder as the backbone of the discriminator

to achieve a balanced learning behavior as part of weakly

adversarial learning. Different from previous GANs, includ-

ing BEGAN, our method not only sets out to match data

distributions but also attempts to match image reconstruction

loss distributions. This is achieved by using a typical GAN

objective combined with an additional equilibrium term. To

provide a detailed description of our approach, we start by

introducing the original GAN, followed by our proposed

DED-GAN method.

A. GENERATIVE ADVERSARIAL NETWORK

A typical GANmodel consists of two networks pitted against

one another in a two-player game: a generative model, G,

is trained to synthesise images resembling the real data dis-

tribution and a discriminative model, D, is trained to dis-

tinguish the samples synthesised by G and real ones from

the training data. The generator generates unlabelled realistic

samples from the latent variable model to improve the dis-

criminative ability of the discriminator. To learn the genera-

tor’s distribution pg over data x, we define a prior on input

noise variables pz(z). The mapping G(z; θg) of z into the data

space is achieved by a neural network with parameters θg,

whereG is a differentiable function. A second neural network

with parameters θd is defined byD(x; θd ) that outputs a single

scalar. D(x) represents the probability that x comes from the

real data, pd , rather than pg. We train D to maximize the

probability of assigning the correct label to both training

examples and samples from G. We simultaneously train G

to minimise log(1 − D(G(z))). In other words, the generator

and discriminator are fighting against each other, which can

be formulated as:

min
G

max
D

L = Ex∼pd (x)[logD(x)]

+Ez∼pz(z)[log(1− D(G(z)))], (1)

where z denotes a random noise, typically sampling from

a Gaussian normal distribution, pz. G(z) denotes a sample

synthesised by the generator and pd denotes the distribution

of real data. It is proved in the original GAN [28] that this

minimax game has a global optimum when the distribution

pg of the synthetic samples converges to the distribution pd
of the real samples. At the beginning of training, the samples

generated by G are extremely poor and thus they are rejected
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by D with high confidence. This minimax game theoretically

has a global optimum for pg = pd . G and D are trained to

alternatively optimise the following objectives:

max
D

L = Ex∼pd (x)[logD(x)]

+Ez∼pz(z)[log(1− D(G(z)))], (2)

min
G
L = Ez∼pz(z)[log(1− D(G(z)))]. (3)

After several steps of the optimisation process, the generator

and discriminator will reach the point at which neither can

improve because pg = pd . The discriminator is unable to

differentiate between the two distributions, i.e. D(x) = 1/2.

B. DUAL ENCODER-DECODER BASED GAN

Our DED-GAN explicitly disentangles face imaging factors

to obtain an interpretable face representation for PIFR and

face synthesis across poses. The backbone of DED-GAN

consists of an encoder-decoder based generator and

encoder-decoder based discriminator, as depicted in Fig. 1d.

It learns the representation of a face by using the gen-

erator, where the encoded output of the generator is the

identity-preserving representation. The representation is one

part of the input to the decoder to synthesise various faces

of the same subject with different attributes, i.e., by virtually

rotating the facial pose code. We not only match the distri-

bution of face images by using classical real/fake adversarial

learning, but also the distributions of the reconstruction error

of samples reconstructed from the representation by using

pixel-wise adversarial learning. As numerous variations man-

ifest in face images such as pose, illumination and expression

influence face recognition evenmore than changes in identity,

it is desirable to prevent the generator from generating differ-

ent facial representations for the same person with different

face poses. In this work, we focus on pose variations and

disentangle the pose information as an explicit variation. This

facilitates learning a truly discriminative face representation.

1) PROBLEM FORMULATION

Our method aims to train a generative adversarial model

conditioned on the real face image x and specified pose

code c. Given a face image x with label y = {ya, yd , yc},

where ya, yd and yc represent the labels for real/fake, identity

and pose. There are two tasks in our learning method: to

learn a disentangled identity representation for PIFR and to

synthesise faces across poses with different pose code c.

Different from the discriminator in the original GAN, our

discriminator could be seen as a multi-task CNN consisting

of four components: D = [Da,Dd ,Dc,Dr ], where Da ∈ R
1

is for classical real/fake adversarial learning,Dd ∈ R
N d

is for

identity classification with N d as the total number of subjects

in the training set,Dr ∈ R
N c∗Nw∗N h

is for face reconstruction

and Dc ∈ R
N 1

is for pose regression.

For the pose regression task, we first obtain the pose

coefficients of all the training images. To obtain the pose of

an image, we use theMTCNNmethod to extract 5 facial land-

marks for each face image [65]. Then we transform face land-

marks to the pose code using a statistical shape model [66].

Mathematically, we can express the face shape with a base

shape s0 plus a linear combination of n shape eigenvectors

si as:

s = s0 +

n∑

i=1

cisi, (4)

where s0 is the mean shape, si is the ith shape eigenvector

by applying principal component analysis to all the training

shapes and ci is the corresponding coefficient. In general,

the first shape eigenvector controls pose variations of the

model thus we use c1 as the pose code c.

The discriminator aims to classify the face image x as real

or fake, to maximize the gap between the reconstruction error

of real image and that of the synthetic image, and to estimate

its identity and pose. Given an input image x, a random pose

code c and a random noise z, the generatorG generates a syn-

thesised face image G(x, c, z). The discriminator D attempts

to classify the image using the following objectives:

LDadv = Ex,y∼pd (x,y)[−logD
a(x)]

+Ex,y∼pd (x,y),z∼pz(z),c∼pc(c)

× [−log(1− Da(G(x, c, z)))], (5)

LDid = Ex,y∼pd (x,y)[−logD
d
yd
(x)], (6)

LDpos = Ex,y∼pd (x,y)|D
c
yc (x)|, (7)

LDpixel = Ex∼pd (x),z∼pz(z),c∼pc(c)

|Dr (x)− k · Dr (G(x, c, z))|. (8)

where k is a trade-off parameter to balance the distribution

of reconstruction error of real faces and that of synthetic

faces. For clarity, we eliminate all subscripts for expected

value notation, as all random variables are sampled from their

respected distributions (x, y) ∼ pd (x, y), z ∼ pz(z), c ∼

pc(c).D
d is used for identity classification. It should be noted

that pose regression Dc is used here rather than pose classi-

fication. The final objective for training D is the weighted

average of all objectives:

minLD = λaL
D
adv + λdL

D
id + λcL

D
pos + λrL

D
pixel, (9)

where λa, λd , λc and λr denote the weights of the four losses.

The generator G consists of an encoderGenc and a decoder

Gdec, where Genc aims to learn an identity-preserving repre-

sentation f (x) = Genc(x) from a face image x, Gdec is tasked

to synthesise a face imageGdec(f (x), c, z) with identity y
d and

a target pose specified by c, and z ∈ RN
z
is a noise variable,

modelling other variations besides identity or pose. The pose

code c ∈ R1 is of continuous value. The goal of G is to fool

D to classify G(x, c, z) to the identity of input x and estimate

the target pose with the following objectives:

LGadv=Ex,y∼pd (x,y),z∼pz(z),c∼pc(c)[−logD
a(G(x, c, z))], (10)

LGid = Ex,y∼pd (x,y)[−logD
d
yd
(G(x, c, z))], (11)

LGpos = Ex,y∼pd (x,y)|D
c
yc (G(x, c, z))|, (12)

LGpixel = Ex∼pd (x),z∼pz(z),c∼pc(c)|D
r (G(x, c, z))|. (13)
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Similarly, the final objective for training the generator G is

the weighted average of each objective:

minLG = µaL
G
adv + µdL

G
id + µcL

G
pos + µrL

G
pixel . (14)

where µa, µd , µc and µr denote the weights of the four

losses.

2) PIXEL-WISE LOSS

While classical GANs try to match data distributions

directly with Ladv, our method additionally aims to match

auto-encoder loss distributions using a pixel-wise loss Lpixel
based on Wasserstein distance. Firstly, we introduce the

auto-encoder loss, and then we compute a lower bound

to the Wasserstein distance between the auto-encoder loss

distributions of real and generated samples.

Let L : RNx 7→ R+, denote the loss for training a pixel-wise

auto-encoder defined as:

L(x) = |x − D(x)|η (15)

where D : RNx 7→ RNx is the auto-encoder, η ∈ {1, 2} is

the target norm, and x ∈ RNx is a sample of dimension Nx .

Furthermore, let µ1,2 be two distributions of auto-encoder

losses, and Ŵ(µ1, µ2) be the set all of couplings of µ1 and

µ2, whose respective means are m1,2 ∈ R. The Wasserstein

distance can be expressed as:

W1(µ1, µ2) = inf
γ∈Ŵ(µ1,µ2)

E(x1,x2)∼γ [|x1, x2|] (16)

Using Jensen’s inequality, we can derive a lower bound to

W1(µ1, µ2):

infE[|x1, x2|] ≥ inf |E[x1 − x2]| = |m1 − m2| (17)

We design the discriminator to maximise |m1−m2| by forcing

m1 → 0,m2 → ∞. Given the discriminator and generator

parameters θD and θG, each to be updated by minimising the

losses LDpixel and L
G
pixel , we express the optimisation problem

in terms of a pixel-wise loss function:

LDpixel = L(x)− kt · L(G(x)) (18)

LGpixel = L(G(x)) (19)

kt+1 = kt + λk (βL(x)− L(G(x))) (20)

where kt controls how much emphasis is put on L(G(x))

during gradient descent, λk is the learning rate for k . β

is diversity ratio as a hyper-parameter to balance L(x) and

L(G(x)).

IV. IMPLEMENTATION DETAILS

The proposedDual Encoder-Decoder basedGAN (DED-GAN)

is composed of a generator G and a discriminator D. Both

are based on deep encoder-decoder networks. We follow the

design for making G in the DR-GAN. The modified CASIA

Net [67] is used as the backbone network. It consists of five

convolution blocks, including one double-convolution block

and four triple-convolution blocks, followed by an average

pooling (AvePool) layer for feature extraction.

The generator G is composed of an encoder Genc and

a decoder Gdec, i.e., G = [Genc,Gdec]. Given a face

Algorithm 1 The DED-GAN Training Algorithm

Input:Training dataset X and label Y . X =

{x1, x2, . . . , xN }. Y includes the pose label and identity

label: Y = {(y
pos
1 , yid1 ), (y

pos
2 , yid2 ), . . . , (y

pos
N , yidN )}.

Initialise all the parameters θ = {θg, θd } in

generator and discriminator, trade-off hyper-parameters

λa, λd , λc, λr , µa, µd , µc, µr and Adam hyper-parameter

α. The number of iteration t← 0.

Output: θ = {θg, θd }

1: while θg does not converge do.

2: t← t+1.

3: Sample noisy data Z and pose code C and compute

the cost of L t (D) by L t (D) ← λaL
Dt

adv(X ) + λdL
Dt

id (X ) +

λcL
Dt

pos(X )+ λrL
Dt

pixel(X ,Z ,C) using equations (5)-(9).

4: Compute the back propagation error to optimise discrim-

inator 2t
d ← Adam(∇θ td

L t (D), α).

5: Sample noisy data Z and pose code C and generate data

Xg = {G(x1, z1, c1),G(x2, z2, c2), . . . ,G(xN , zN , cN )}.

6: Compute the cost of L t (G) by L t (G) ← µaL
Gt

adv(X ) +

µdL
Gt

id (X )+µcL
Gt

pos(X )+µrL
Gt

pixel(X ,Z ,C) using equations

(10)-(14).

7: Fix the discriminator parameter 2t
d and compute the

back propagation error to optimise generator 2t
g ←

Adam(∇θ tg
L t (G), α).

8: end while

image x, the encoder’s output code e = Genc(x) ∈ RNe

from the AvePool layer is concatenated with a pose code

c ∈ RNc and a noise z ∈ RNz to form [e, c, z], which is

used as the input of Gdec. Gdec is a de-convolution neural

network that transforms [e, c, z] to a decoded face image,

i.e., x̂ = Gdec([e, c, z]). Da and Dr are used to force the dis-

tributions of both synthesised samples and their auto-encoder

losses to match those of real samples. The discriminator

D is composed of an encoder Denc and a decoder Ddec,

i.e.,D = [Denc,Ddec]. Same as the generator, the backbone of

the discriminator is also an encoder-decoder network where

face reconstruction isDr , aiming to increase the divergence of

the auto-encoder loss distributions between real and synthe-

sised samples. The code layer of the auto-encoder is followed

by Da,Dc and Dd where Da(x) is for real-fake classification,

Dc(x) is for pose regression and Dd is for identity prediction.

In Algorithm 1, we summarise the learning procedure of the

proposed DED-GANmodel.We use the Adam optimiser [68]

for network training.

All the experiments were performed with the following

settings. All face images were aligned to a canonical view

of 100 × 100 in size. Randomly sampled regions of size

96× 96 pixels selected from 96× 96 each aligned face were

cropped for data augmentation. The image intensity was lin-

early scaled to the range of [-1,1]. All weights in the networks

were initialized by a normal distribution with 0 mean and

standard deviation of 0.02.We set the diversity ratio, β, to 0.9.

kt ∈ [0, 1] controls how much emphasis is put on L(G(x))
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TABLE 1. DED-GAN and its partial variants performance comparison.

during the network optimisation. We initialise k0 = 0 and

update k in each training step. λk is the learning rate for k.

We set λk to 0.001 in our experiments.We define the trade-off

between the respective components of the loss function by

setting λa = 1, λd = 1, λc = 0.1, λr = 10, µa = 1, µd = 1,

µc = 0.1 and µr = 10 through numerous experiments.

All experiments were run on a NVIDIA GeForce GTX Titan

Xp card with CUDA 8.0 and cuDNN 6.0, implemented in

Pytorch.

V. EXPERIMENTS

A. EXPERIMENTAL SETTINGS AND DATASETS

We evaluate DED-GAN qualitatively and quantitatively

under both constrained and unconstrained scenarios for face

synthesis across poses and PIFR. Our models were trained

separately on the Multi-PIE [69] and CASIA [67] datasets.

For the qualitative evaluation, we show visualised results

of face synthesis on Multi-PIE, CASIA and CFP [70]. For

the quantitative evaluation, we measure face recognition per-

formance using the learned facial representations with a

cosine distance metric on the Multi-PIE, CFP and LFW [71]

datasets.

The Multi-PIE database is the largest multi-view face

recognition benchmark in the constrained scenario. It con-

tains more than 750,000 images of 337 identities recorded

in five months. Each identity has images captured under

15 poses and 20 illuminations. These images were captured

in four sessions during different periods. Like the previ-

ous methods, we evaluate our algorithm on a subset of the

Multi-PIE database, where each identity has images from all

the four sessions under nine poses from yaw angles −60◦

to +60◦. For a fair comparison, we follow the setting used

in DR-GAN [18]. We evaluate our method on the Multi-PIE

dataset setting 2. The first 200 subjects are used for training

and the remaining 137 subjects are used for testing. Different

from DR-GAN in which the supervised pose information is

used, we use MTCNN to extract five landmarks and then

transform the landmarks to a pose label. In testing, one frontal

view with neural illumination is used as the gallery image

and other images are used as probes. Therefore, we have

N d = 200 for identity classification, N p = 1 for pose regres-

sion,N a = 1 for real/fake classification andN r = 3×96×96

for colour image reconstruction. We set the dimension of the

embedding feature and uncompressed noise to N f = 320 and

N z = 50 respectively.

The CASIA database offers 494,414 in-the-wild face

images of 10,575 subjects. It is a widely used large-scale

database for face recognition. We train our model on this

dataset to evaluate the performance of our model on a realistic

dataset. We have N d = 10, 575, N p = 1. N f and N z are set

as for Multi-PIE. We also evaluate the performance of our

model in terms of the quality of synthesised face poses.

The CFP database contains 7,000 images of 500 sub-

jects, where each subject has 10 frontal and 4 profile face

images. The data are randomly organized into 10 splits,

each containing an equal number of frontal to frontal and

frontal to profile pairs, with 350 intra pairs and 350

non-matching pairs, respectively. We evaluate the face ver-

ification performance in terms of front-to-front and profile-

to-front matching. We also evaluate the performance of

our model on its ability to synthesise faces across pose

variations.

The LFW database contains 13,233 face images

of 5,749 identities. The images were obtained by trawling

the internet followed by face centering, scaling, and cropping

based on the bounding boxes provided by an automatic face

detector. The LFW data have large in-the-wild variability,

e.g., in-plane rotations, non-frontal poses, non-frontal illu-

mination, varying expressions and so on. The verification

set consists of 10 folders, each with 300 matching pairs and

300 non-matching pairs. We measure the face verification

performance and compare it with existing methods.

B. ABLATION STUDY

Our discriminator is designed as a multi-task CNN with

four components, namely Da, Dc, Dd and Dr for real/fake

classification, pose regression, identification and face recon-

struction respectively. While Dd surely plays a significant

role in assisting the model to preserve the face identity, it is

instructive to understand the role of the remaining compo-

nents. In this subsection, the effect of the four loss functions

on the recognition performance is investigated. The results

are presented in Tab. 1 which reports the recognition perfor-

mance of DED-GAN partial variants with each of D compo-

nents removed. While the variant without adversarial loss Da

exhibits a slight performance drop, the models without face

reconstructionDr and pose regressionDc losses are degraded

more severely. When removing Dc, there is no pose label to

supervise the face discrimination, especially for the profile

faces. The average accuracy of DED-GAN partial variants

without pose estimation reduces from 95.75% to 93.47%.

This can be attributed to the pose information being entangled

with identity in the feature representation.

Tab. 1 also presents the performance of our model with-

out face reconstruction Dr . The average accuracy drops
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FIGURE 2. Comparison of training loss of DED-GAN without (top) and
with (bottom) pixel-wise loss on Multi-PIE (The top shows that training
losses of generator and discriminator of DED-GAN without pixel-wise loss
(DED-GAN (−Dr )); The bottom shows that training losses of generator
and discriminator of DED-GAN with pixel-wise loss (DED-GAN∗)).

from 95.75% to 93.92%. This shows that facial recon-

struction is almost equally important to pose estimation.

This suggests that the encoder-decoder structured discrim-

inator successfully balances the training of the two players

in GAN.

To gauge the impact of using pose regression, rather than

pose classification, we train separate DED-GAN models

using the respective formulations. The results show that the

performance of the model based on pose classification is

lower by about 1%. Thus continuous pose variation used for

regression benefits for preserving more information about the

pose.

The pixel-wise loss could effectively balance the generator

and discriminator and get a fast convergence of training.

To evaluate whether the pixel-wise loss could boost the con-

vergence performance of DED-GAN, we compare the GAN

loss with and without reconstruction task. Fig. 2 shows that

DED-GAN without pixel-wise loss almost achieves conver-

gence after 30 epochs. However, DED-GAN with pixel-wise

loss gets a balance between generator and discriminator after

about 20 epochs. The additional reconstruction task with

pixel-wise loss suggests a fast and stable training manner

between the generator and the discriminator of GAN.We also

compare the performance of DED-GAN with and without

pixel-wise loss on the test accuracy and synthesised faces.

As shown in Fig. 3, the DED-GAN with pixel-wise loss

almost gets a stable test accuracy after 20 epochs training,

while the DED-GAN without pixel-wise loss gets a sta-

ble accuracy at about 30 epochs. Fig. 4 shows the synthe-

sised faces of DED-GAN with and without pixel-wise loss

every five epochs during training. The result also shows that

FIGURE 3. Comparison of test accuracy of DED-GAN without (blue) and
with (red) pixel-wise loss on Multi-PIE.

FIGURE 4. Comparison of some synthesised faces of DED-GAN
without (top) and with (bottom) pixel-wise loss on Multi-PIE.

FIGURE 5. Comparison of DR-GAN and DED-GAN generated images on
Multi-PIE. Given three input images (the left column), the first, fourth and
seventh rows shows the faces synthesised by the DR-GAN; the second,
fifth and eighth rows show the faces synthesised by DED-GAN; the third,
sixth and ninth rows show the ground truth of nine poses within the
degree from −60◦ to 60◦.

DED-GAN with pixel-wise loss could boost the quality of

synthesised faces during training.
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FIGURE 6. Face manifold across poses on the CASIA database (Input is at the first column, the faces from the 2nd column to the last one are the manifold
of synthesised faces with the same identity by changing the value of pose code from −17 to 17).

C. FACE SYNTHESIS

To verify the performance of our method in terms of the

quality of face synthesis across poses, several experiments

are conducted on Multi-PIE, CASIA and CFP datasets. In

the first experiment, we compared the synthesised faces with

different poses between DR-GAN and our method on Multi-

PIE. The synthesised faces are verified on the test set of

the Setting 2. Hence, there is no overlap of subjects between

the training and test datasets. Given a random input face,

we generate synthesised faces within a pose range of ±60◦.

The experimental results are shown in Fig. 5. We can see that

the pose estimation capability helps to generate faces across

poses and successfully disentangle pose variation from the

feature vector in both methods. However, the quality of the

faces synthesised by our method appears to be better than that

of those output by the DR-GAN in texture, shape, as well as

identity preserving characteristics.

For an objective evaluation of the relative quality of faces

generated by the two types of GANs, we use the Fréchet

Inception Distance (FID) [72]. For a feature function φ

(by default, the Inception network’s convolutional feature),

FID models φ(pd ) and φ(pg) as Gaussian random variables

with empirical means µd , µg and empirical covariance 6d ,

6g. FID is expressed as FID(pd , pg) = ||µd − µg|| + Tr

(6d + 6g − 2(6d6g)
1/2), which is the Fréchet distance

between the two Gaussian distributions. Tab. 2 compares the

FID scores between DR-GAN and DED-GAN. DED-GAN

achieves a lower FID score than DR-GAN, which means that

the faces synthesised by DED-GAN are more similar to real

ones than those produced by DR-GAN.

To further demonstrate the ability to disentangle the pose

generative factor from other face attributes, we also evalu-

ate the performance of our model on face synthesis across

poses on another two uncontrolled datasets CASIA and CFP.

We use MTCNN to extract five facial landmarks for each

TABLE 2. Comparison of FID score.

face and then transform the landmarks to pose label by a

statistical shape model. The CASIA facial distribution across

poses is illustrated in Fig. 7 where the value zero denotes

the frontal face. Note that, different from the previous meth-

ods, DED-GAN can rotate an input face to any pose con-

trolled explicitly by the pose code. Hence, DED-GAN can

synthesise both frontal and profile faces. Fig. 6 shows the

pose manifold of generated faces by changing the value of

the pose code. Every row denotes the faces with the same

identity. The first column is the input face and the other

columns show the manifold of the synthesised faces with a

smoothly changing value of the pose code from -17 to 17.

We can see that our model preserves the identity well as we

change the pose code. It also shows that the pose variation is

explicitly untangled from the other face attributes including

identity.

We also test the face frontalisation performance for unseen

faces on the CFP dataset as shown in Fig. 8. Every column

shows the faces of the same identity. Given an input profile

face, we separately generate the frontal faces by DR-GAN

and our method. The up and down rows show the input profile

faces and paired real frontal faces separately. The second and

third rows show the synthesised frontal faces by setting the

pose code to zero. We can see that both methods can untan-

gle the face representation from pose variation and generate

frontal faces. However, the faces synthesised by our method

appear better in terms of texture detail and in preserving the

face identity.
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TABLE 3. Rank-1 recognition rates (%) across views, illuminations and sessions under Multi-PIE.

FIGURE 7. Face distribution across poses on the CASIA database.

FIGURE 8. Some face frontalisation results comparison on CFP database
(from top to bottom: input images, DR-GAN frontalised faces, our
frontalised faces, real frontal faces).

D. FACE RECOGNITION

One motivation for disentangled face representation learning

is to see, whether the untangled representation helps to pre-

serve the identity information, and thus boost the perfor-

mance in face recognition. To verify this, we also show

quantitative results obtained in PIFR experiments. We eval-

uate our method on Multi-PIE, CFP and LFW for identifica-

tion and verification tasks. The features are extracted from

Genc in all the experiments. The cosine distance between

two representations is used for face recognition in the

test step.

1) FACE IDENTIFICATION ON THE MULTI-PIE DATABASE

In the first experiment in PIFR, we evaluate the performance

of DED-GAN on the Multi-PIE dataset. We compare our

method with other state-of-the-art face recognition methods.

Our model achieves the best accuracy in different pose cate-

TABLE 4. Face verification accuracy(%) comparison on on CFP.

gories, with the most significant improvement noted for the

profile faces as shown in Tab. 3. It shows that our method can

remove the effects of the pose and retain the intrinsic face

shape and structure information of identity.

2) FACE VERIFICATION ON THE CFP DATABASE

To further demonstrate the advantages of our method in

PIFR, we evaluate it on an uncontrolled dataset. For the

in-the-wild setting, we train our model on CASIA and test

it on the CFP database. The experiments performed on

the CFP dataset aim to compare the capacity of the face

verification approaches across diverse poses. More specifi-

cally, the matching is performed between the frontal view

(yaw angle < 10◦) and profile view (yaw angle > 60◦).

The evaluation reports the mean and standard deviation of

accuracy, over 10 splits, for both frontal to frontal and

frontal to profile face verification settings. The verifica-

tion results are shown in Tab. 4. Our method again yields

better verification performance on both frontal-frontal and

frontal-profile matching sub-tasks. Thanks to the more stable

training structure andmore detailed pose information injected

into our method, DED-GAN achieves about a one percent

performance improvement over DR-GAN.

3) FACE VERIFICATION ON THE LFW DATABASE

To evaluate the performance on the in-the-wild dataset

further, we test the models described in the previous sub-

section on the LFW database. Tab. 5 shows the accuracy

achieved by different methods. As expected, our method

DED-GANdelivers the best accuracy, namely 97.52%, which

is comparable with other state-of-the-art methods. Although

DED-GAN is not trained on the LFW dataset, the untangled

discriminative representation generalises to other datasets,

including in-the-wild datasets.
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TABLE 5. Face verification accuracy (%) comparison on LFW.

VI. CONCLUSION

We propose a new GAN-based model (DED-GAN)

for disentangled representation learning to address the

challenging problem of pose-invariant face recognition and

photo-realistic face synthesis across poses. To the best of our

knowledge, this is the first time that a dual encoder-decoder

structured GAN has been used to learn disentangled

face representation. The encoder-decoder structured generator

is used for face rotation and learning disentangled face

representation. The encoder-decoder structured discriminator

is used for facial reconstruction and for predicting identity,

as well as for estimating the pose. The Encoder-decoder

structured discriminator with the additional pixel-wise loss

improves the training efficiency and stability of our GAN.

A continuous pose encoding provides more detail pose

information and benefits the discriminative representation

by untangling the identity and pose. Extensive quantitative

and qualitative experimental results show that our method is

competitive compared to state-of-the-art approaches to PIFR

and to face synthesis across poses. In the future, we plan to

incorporate more discriminative information into the design

of DED-GAN by extending the network to deal explicitly

with other image generative factors, including illumination,

expression, age and occlusion.
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