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Abstract

Conventional dual-energy CT (DECT) reconstruction requires two full-size projection datasets 

with two different energy spectra. In this study, we propose an iterative algorithm to enable a new 

data acquisition scheme which requires one full scan and a second sparse-view scan for potential 

reduction in imaging dose and engineering cost of DECT. A bilateral filter is calculated as a 

similarity matrix from the first full-scan CT image to quantify the similarity between any two 

pixels, which is assumed unchanged on a second CT image since DECT scans are performed on 

the same object. The second CT image from reduced projections is reconstructed by an iterative 

algorithm which updates the image by minimizing the total variation of the difference between the 

image and its filtered image by the similarity matrix under data fidelity constraint. As the 

redundant structural information of the two CT images is contained in the similarity matrix for CT 

reconstruction, we refer to the algorithm as structure preserving iterative reconstruction (SPIR). 

The proposed method is evaluated on both digital and physical phantoms, and is compared with 

the filtered-backprojection (FBP) method, the conventional total-variation-regularization-based 

algorithm (TVR) and Prior-Image-Constrained-Compressed-Sensing (PICCS). SPIR with a second 

10-view scan reduces the image noise STD by a factor of one order of magnitude with same 

spatial resolution as full-view FBP image. SPIR substantially improves over TVR on the 

reconstruction accuracy of a 10-view scan by decreasing the reconstruction error from 6.18% to 

1.33%, and outperforms TVR at 50 and 20-view scans on spatial resolution with a higher 

frequency at the modulation transfer function value of 10% by an average factor of 4. Compared 

with the 20-view scan PICCS result, the SPIR image has 7 times lower noise STD with similar 

spatial resolution. The electron density map obtained from the SPIR-based DECT images with a 

second 10-view scan has an average error of less than 1%.
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1 INTRODUCTION

Dual energy CT (DECT) has been increasingly used in different clinical applications, 

including direct angiography and bone removal,(Ruzsics et al., 2008; Tran et al., 2009; 
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Watanabe et al., 2009; Kau et al., 2011) assessment of lung perfusion,(Thieme et al., 2012; 

Zhang et al., 2013a) characterization of renal calculi,(Primak et al., 2007; Graser et al., 

2009) and generation of virtual unenhanced CT images.(De Cecco et al., 2010) Conventional 

DECT reconstruction theory requires two full-size projection datasets with two different 

energy spectra. In this paper, we aim to relax the data acquisition requirement of DECT for 

potential dose reduction and simplified imaging schemes by using an iterative reconstruction 

algorithm, which exploits the redundant structural information of the CT images acquired at 

two different x-ray energies.

The DECT theory assumes that the attenuation coefficient of any material in the diagnostic 

energy range can be approximated as a weighted summation of two universal energy-

dependent functions mainly accounting for photoelectric and Compton interactions.(Alvarez 

and Macovski, 1976) In practice, the basis functions can be the energy-dependent linear 

attenuation coefficients of two different actual or even virtual materials.(Sidky et al., 2004) 

The weight distributions of the two basis functions, i.e., the decomposed material images, 

are reconstructed from the data acquired with two different x-ray energy spectra, which can 

be used to calculate electron density maps or effective Z images.(Alvarez and Macovski, 

1976) The original concept of DECT requires acquisition of projection data with two 

different x-ray energies for each projection ray. Non-linear decomposition is then applied on 

the projection data to obtain the sinogram of two basis materials, from which decomposed 

materials are reconstructed via the same CT reconstruction principle. In practical 

implementations of DECT, dual-energy projection data can be acquired, for example, on 

advanced CT imaging systems, including dual-source CT(Petersilka et al., 2008) or fast kVp 

switching CT,(Hsieh, 2009; Xu et al., 2009) or using two sequential scans (so-called 

rotation-rotation mode) on a conventional diagnostic CT scanner. In these data acquisition 

schemes (except using a dual-layer detector as on the Philips IQon spectral CT 

system(Tanguay et al., 2010; Zhang et al., 1998; Murphy and Alaamri, 2015)), however, it is 

difficult or impossible to have dual-energy measurements on the same projection ray. The 

procedure of material decomposition is therefore more conveniently performed on CT 

images after the standard CT reconstruction, typically based on a linear model,(Dong et al., 

2014; Szczykutowicz and Chen, 2010; Sukovic and Clinthorne, 2000; Yu et al., 2012) at the 

price of losing the beam-hardening correction capability. In the existing literatures,

(Szczykutowicz and Chen, 2010; Yu et al., 2012) the terminology of DECT has extended 

from its original concept to include these imaging modalities based on image-domain 

decomposition. We follow the convention and refer to all imaging systems that acquire 

projection data with two effective x-ray spectra and perform material decomposition as 

DECT systems, although readers should be aware that DECT in the strict sense uses only 

non-linear decomposition in the projection domain.

DECT requires doubling the size of projection measurements. In current DECT 

implementations, this condition is satisfied by either scan time increase, as in the rotation-

rotation mode on a conventional diagnostic CT scanner, or hardware advancements, as on 

the dual-source CT,(Petersilka et al., 2008) the fast kVp switching CT(Xu et al., 2009) and 

the dual-layer detector CT.(Tanguay et al., 2010; Zhang et al., 1998) In this work, we focus 

on a software-based improvement to reduce the requirement of data acquisition for DECT. 

We propose a new reconstruction algorithm using a full CT scan plus a second scan with 
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very few projections for high-quality DECT, which potentially reduces imaging dose and 

allows for more flexible designs of data acquisition on clinical DECT systems. Our proof-of-

concept investigations are performed on DECT using a rotation-rotation mode, i.e., two 

sequential CT scans at different x-ray energies, with image-domain decomposition. The 

proposed method is expandable to other DECT imaging modalities using either image-

domain or projection-domain decomposition.

Iterative algorithms have demonstrated successes on CT reconstruction on sparse data.

(Sidky et al., 2006; Emil and Xiaochuan, 2008; Junguo et al., 2010; Ludwig et al., 2011; 

Kudo et al., 2013; Zhang et al., 2013b; Li et al., 2002; Hansis et al., 2008; Niu and Zhu, 

2012; Yan et al., 2014) The projection data for high-quality CT images are further reduced if 

the reconstruction is constrained by prior images, as shown in many recent applications, 

including 4D CBCT,(Leng et al., 2008) daily imaging CBCT,(Ho et al., 2012; Cho et al., 

2009) and cardiac CT.(Chen et al., 2009; Tang et al., 2010) We propose an iterative 

algorithm to improve DECT on sparse data with a design strategy different from those of 

existing algorithms. In the proposed DECT reconstruction, we first use a full scan to obtain 

an estimated classification of object structures. A bilateral filter is calculated as a similarity 

matrix from the first full-scan CT image to quantify the similarity between any two pixels. 

This similarity matrix remains approximately unchanged on the same object in different CT 

scans, although the CT image pixel values may vary. In a second CT scan with different x-

ray energy and significantly reduced projections, we reconstruct a high-quality CT image by 

an iterative method. In each iteration, we multiply the image vector to be reconstructed by 

the similarity matrix, a procedure equivalent to shift-variant low-pass filtering. To suppress 

noise and image artifacts on the reconstructed image, the algorithm updates the 

reconstructed CT image by minimizing the total variation (TV) of the difference between the 

image and its filtered image under the data fidelity constraint. Note that, the proposed 

algorithm for the second CT scan does not regularize on the TV of the image to be 

reconstructed as in the conventional TV based iterative CT reconstruction methods.(Emil 

and Xiaochuan, 2008; Sidky et al., 2006; Junguo et al., 2010; Kudo et al., 2013; Ludwig et 

al., 2011; Niu and Zhu, 2012; Yan et al., 2014) It is also distinct from other prior-image 

constrained iterative algorithms in that it does not rely on the matching of pixel values 

between the prior image and the image to be reconstructed. Instead, we improve the 

reconstruction accuracy from reduced projections based on an estimated classification of 

structures shared by the two images. The proposed iterative algorithm is therefore referred to 

as structure preserving iterative reconstruction (SPIR).

In this paper, we evaluate the DECT quality using SPIR on both digital and physical 

phantoms. In particular, we investigate the effects of structure classification errors on SPIR 

and the limit of data reduction for satisfactory DECT accuracy. Reconstruction error, spatial 

resolution, noise level and error of measured electron density are used as the image quality 

metrics in these DECT studies.
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2 METHOD

2.1 Formulation of SPIR framework

In the presented studies, we choose to reconstruct a full-scan image at high kVp using the 

standard FBP algorithm, and aim to reconstruct a second sparse-view scan image at low kVp 

with the aid of structure preservation from the first CT image using SPIR. Similar to the 

optimization framework of other regularization-based iterative reconstruction algorithms,

(Sidky et al., 2006; Chen et al., 2008; Dong et al., 2014) the proposed SPIR method is 

formulated as the following constrained minimization:

f L* = arg min λ · R f L, f H +
1
2

M f L − b
2

2
, s . t . f L(i) ≥ 0, (1)

where f
L
 is the vectorized image at low kVp to be reconstructed, f

H
 is the vectorized image 

at high kVp reconstructed by FBP, R( f
L

, f
H

) is the regularization term quantifying the extent 

of structure preservation. M is the system matrix modeling CT forward projection, vector b⃗ 

is the measured line integrals, and ‖M f
L

− b ‖
2
 calculates the L-2 norm of the difference 

between the estimated and the raw projections, i.e., the data fidelity error. λ is a user-defined 

penalty weight, which balances structure preservation and reconstruction accuracy. Each 

element of f
L

, f
L

(i), is constrained by image non-negativity.

The design of the regularization term R( f
L

, f
H

) is the key to the success of SPIR. We first 

extract the structural information from the full-scan FBP image via a procedure that we refer 

to as structure classification, which is inspired by the bilateral filtering method originated in 

imaging processing field.(Tomasi and Manduchi, 1998) Bilateral filtering combines two 

types of image filtering, domain filtering and range filtering. The domain filtering suppresses 

image noise via weighted averaging with domain weights that decrease as spatial distance 

between two pixels increases. The range filtering is performed in the same way with range 

weights that decay with pixel value differences. In the structure classification of our method, 

we use combined domain and range weights of bilateral filtering to quantify the similarity 

between any two pixels of the first full-scan CT image. These weights are organized in a 

matrix form and the bilateral filtering becomes similarity matrix multiplication.

In our implementation, the domain weight with respect to distance is set as a box function 

centered at 0 with a window size of X-by-X pixels, and the range weight with respect to the 

pixel value difference is set as Gaussian function centered at 0 with a kernel width h. The 

similarity between two pixels i and j, Wij, on the full-scan CT image f
H

 is calculated by the 

following formula:
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W i j( f H, X, h) =

exp −
f
H

(i) − f
H

( j)
2

h
2

∑
j ∈ Ω

i
(X) exp −

f
H

(i) − f
H

( j)
2

h
2

0 otherwise

j ∈ Ωi
(X), (2)

where X and h are user-defined parameters, Ω
i
(X) is the X-by-X subset of the pixels in the 

neighborhood centered at pixel i. Note that the total similarity for one pixel is normalized to 

one.

To reduce errors of similarity calculation, we first generate a noise-suppressed f
H

 via 

bilateral filtering, i.e. multiplication by the similarity matrix W:

f H = W f H, (3)

where each element of W is calculated using Eq. (2) with X = 3 pixels and h = σ, the noise 

standard deviation (STD) measured on a uniform area in f
H

. We then update the similarity 

matrix W on the noise suppressed CT image f
H

 using Eq. (2) again (i.e., f
H

 is replaced by 

f
H

) with h = σ and X = 41. In case that one pixel of interest does not have sufficient pixels 

with non-zero similarity, we adaptively increase the window X until the number of pixels 

with non-zero similarity exceeds 200 or the size of search window equals to that of the 

image.

The generation of similarity matrix W is a process of structure classification, because W 

contains the structural information of the image. For example, if the size of the high energy 

image is N by N, the kth row of W, Wij, i = k, j = 1, 2, … N2, can be reshaped as an N-by-N 

image, showing the relative similarity values of all pixels across the entire image compared 

with the kth pixel. In our method, we compute W on the high-kVp CT image (hereafter we 

refer to as WH). Since the object structure remains unchanged in the low-kVp CT scan, the 

computed WH is also an accurate estimate of the similarity matrix on the low-kVp CT image 

f
L
, WL, i.e.:

WH ≈ WL . (4)

As a process of bilateral filtering in nature, multiplication of an image vector by an accurate 

similarity matrix W yields a noise or error suppressed image. The reconstructed low kVp 
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image, f
L
, is expected to have a reduced quality due to insufficient projection data. As such, 

the similarity matrix calculated on f
L
 is inaccurate, and cannot be used to effectively reduce 

reconstruction errors. We therefore rely on Eq. (4) for improved reconstruction of f
L
. If f

L
 is 

reconstructed accurately with low noise or small errors (e.g., from successful iterative 

reconstruction), multiplication of f
L
 by an accurately estimated similarity matrix (WH based 

on Eq. (4)) should have small effects on f
L
, i.e.:

f L ≈ WH f L (5)

We use Eq. (5) as an additional data constraint in the design of the regularization term of the 

optimization framework. We notice that the difference between W
H

f
L
 and f

L
 is relatively 

large at structure edges. To better preserve edge signals, we design the regularization term 

R( f
L

, f
H

) to be the TV of the difference of W
H

f
L
 and f

L
 as:

R f L, f H =
1
2

f L − WH f L TV
=

1
2

∇ A f L 1
, (6)

where = I − WH, I is an identity matrix with the same size as that of WH and ‖·‖1 calculates 

the L1 norm. Note that, in Eq. (6), the matrix WH is equivalent to a shift-variant low-pass 

filter computed from f
H

, thus A = I − WH is equivalent to a shift-variant high-pass filter. By 

plugging Eq. (6) into Eq. (1), we reformulate the SPIR method as the following constrained 

minimization problem:

f L* = arg min
λ

2
∇ A f L 1

+
1
2

M f L − b
2

2
, s . t . f L(i) ≥ 0 . (7)

The contribution of our algorithm development is mainly two-fold. First, we reformulate 

bilateral filtering into similarity matrix multiplication, a form compatible with the 

framework of iterative CT reconstruction. Bilateral filtering, which is equivalent to shift-

variant high-pass filtering, is included in the regularization term for improved CT 

reconstruction. Secondly, we propose to use SPIR to reduce the data acquisition of DECT 

since CT images at different energies on the same object share the same structures and 

therefore have almost identical similarity matrices. Only one high-quality CT image is 

needed to calculate an accurate similarity matrix, and thus we can reduce the projection data 

of a second CT scan and use SPIR to suppress reconstruction errors.

2.2 Implementation details of the SPIR algorithm

2.2.1 Summary of SPIR workflow—The DECT method using the SPIR algorithm 

implemented in this paper is summarized as follows:
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1. Reconstruct a high kVp CT image f
H

 from a full scan using FBP reconstruction.

2.
Generate noise-suppressed f

H
 by bilateral filtering via Eq. (2) and Eq. (3).

3.
Calculate the similarity matrix WH on f

H
 using Eq. (2).

4. Solve Eq. (7) and output f
L
.

2.2.2 Solver to Eq. (7)—We efficiently solve the constrained minimization problem, i.e., 

Eq. (7), by gradient projection with an adaptive Barzilai–Borwein (GP-BB) step-size 

selection scheme. The implementation is similar to that presented in our previous work(Niu 

and Zhu, 2012), except that the gradient of the regularization term is included in the 

calculation of the descending direction of the objective function. Let h = A f
L
, and the 

regularization term (Eq. (6)) can be rewritten as

R =
1
2

∇ h 1 =
1
2 ∑

m, n
hm, n − hm, n − 1

2
+ hm, n − hm − 1, n

2
, (8)

where we reshape the vector h⃗ as a NX × NY image matrix whose elements are hm,n, 0 < m ≤ 

NX, 0 < n ≤ NY. NX × NY is the image size of reconstruction. Similarly, we reshape f
L
 as fs,t 

and A as Am,n,s,t, 0 < s, m ≤ NX, 0 < t, n ≤ NY. Thus, we have hm,n = Σs,t Am,n,s,tfs,t. 

Denoting the gradient of Eq. (8) with respect to f
L
 as ∇R⃗, we calculate its element via the 

following equation:

( ∇ R)i, j =
∂R

∂ f i, j

= ∑
m, n

(hm, n − hm, n − 1)(Am, n, i, j − Am, n − 1, i, j) + (hm, n − hm − 1, n)(Am, n, i, j − Am − 1, n, i, j)

(hm, n − hm, n − 1)2 + (hm, n − hm − 1, n)2 + ε
,

(9)

where ε is a small positive number to avoid singularities in the derivative calculation and set 

as 10−8 in the algorithm.

ALGORITHM I shows the pseudo code of solver to Eq. (7) by the GP-BB method. Line 1 

lists algorithm parameters with typical values controlling the optimization. The penalty 

weight λ in the optimization objectives balances the strength of noise suppression and data 

fidelity error. We empirically choose the value of λ to match the data fidelity error of image 

with those of other methods for a fair comparison in the studies presented later. A typical 

value range is also given in Line 1. The initial guess of low-kVp image in the optimization 

can be zero or generated by other iterative reconstruction algorithm (line 2). Note that, zero 
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initial will give the same optimal solution but with more computation time. Line 3 to 16 is 

the main loop solving Eq. (7) using GP-BB method. When the L1 norm of the image 

difference between two adjacent iterations ‖ f
L

− f
L, old

‖
1
 is less than the preset tolerance 

(line 15) or the number of iterations exceeds the upper limit Niter, the iteration stops with a 

final result image f
L
 (line 17).

ALGORITHM I

Pseudo code of solver to Eq. (7) by the GP-BB method (the comments are shown in italic).

1: Niter ≔ 2000; κ ≔ 0.3; tol ≔ 10−10; λ ≔ 0.1~1; empirical control parameters

2:

f
L

≔ 0 or result from other iterative reconstruction;

initial guess

3: for t ≔ 1: Niter do main loop

4:

  g = ∇ R + M
T(M f

L
− b ;

gradient of objective function

5:   for i ≔ 1: N do enforce gradient negativity and projection non-negativity

6:

    if g⃗ (i) ≤ 0, or f
L

(i) ≥ 0, then p⃗ (i): = g⃗ (i); else p⃗ (i): = 0 end if;

7:   end for;

8:   if t ≔ 1, then

9:

    f
L, old

≔ 0; p
old

≔ 0; α ≔ 0;

10:   else adaptive BB step size

11:

    α
BB1 ≔

( f
L

− f
L, old

)
T

( f
L

− f
L, old

)

( f
L

− f
L, old

)
T

( p − p
old

)

, α
BB2 ≔

( f
L

− f
L, old

)
T

( p − p
old

)

( p − p
old

)T( p − p
old

)
;

    if αBB2/αBB1 < κ, then α: = αBB2; else α: = αBB1; end if;

12:

    f
L, old

≔ f
L

, p
old

≔ p ;

13:   end if;

14:

  f
L

≔ f
L

− α p ;

update image

15:

  if f
L

− f
L, old 1

< tol, then break; end if;

stopping criterion

16: end for;

17:

return f
L

;

2.3 Evaluation

We demonstrate the feasibility of the proposed algorithm through both computer simulation 

and phantom experiments. In all the investigations, we use imaging parameters matching 

those of an On-Board Imager (OBI) cone-beam CT (CBCT) system on a Varian radiation 
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therapy machine (e.g. Trilogy or Truebeam), except that we focus on fan-beam CT studies to 

avoid scatter errors. Each projection contains 1024 pixels with a pixel pitch of 0.388 mm. A 

full scan over 360° acquires 655 projections. The reconstructed CT images and the 

decomposed material images have a dimension of 512×512 with a pixel size of 0.5×0.5 

mm2. The CT images are converted to CT number in Hounsfield Unit (HU), and the 

decomposed material images are the relative weights (i.e., the effective volume fractions) of 

the basis materials. In simulation studies, we use a mono-energetic source at 47 keV and 61 

keV. No scatter is simulated. Poisson noise is added on projections to simulate an image 

noise level close to that in experimental results. The phantom experiments are performed on 

our tabletop CBCT system at Georgia Institute of Technology, with two x-ray tube energies 

of 75 kVp and 125 kVp. A fan-beam geometry with a longitudinal beam width of 15 mm on 

the detector is used to acquire views with scatter contamination inherently suppressed.(Zhu 

et al., 2006) More details of the tabletop CBCT system can be found in Ref.(Niu and Zhu, 

2011)

High-energy CT images are reconstructed from raw data by the FBP method with a 

Hamming filter and are used for structure classification in SPIR. Low-energy CT images are 

reconstructed using SPIR with different numbers of equi-angular views. A practical reason 

of using a full high kVp scan and a sparse-view low kVp scan is that compared with the CT 

image of a full low kVp scan, the CT image of a full high kVp scan is less noisy in our study 

and thus can generate a more accurate similarity matrix. A more accurate similarity matrix 

leads to a high-quality CT image of the second sparse-view scan reconstructed by our 

proposed method. The decomposed material images are generated from high-energy and 

low-energy CT images by an iterative image-domain decomposition method recently 

developed in our group.(Niu et al., 2014) CT images and decomposed material images by 

the conventional two-full-scan FBP method are used as the ground truths. The proposed 

algorithm is implemented in MATLAB. The majority of computation occurs in minimizing 

the objective function of SPIR, which typically takes about 10 minutes on a 2.67GHz CPU. 

The generation of similarity matrix W takes about 20 seconds with 8-thread parallel 

computation.

The performance of the proposed DECT heavily relies on the accuracy of structure 

classification. To investigate DECT image qualities when structure classification is 

challenging, we first evaluate our algorithm on a digital phantom with a water equivalent 

background containing 8 rods. On the high-energy CT image where structure classification 

is performed, we carefully design the attenuation coefficients of the 8 contrast rods to assess 

the proposed SPIR-based DECT for the following three scenarios:

Scenario I: Rods have sufficient contrasts compared with the background and each rod has a 

different CT value and therefore is identified as a different material.

Scenario II: Rods have sufficient contrasts compared with the background but have the 

same CT values on the high-energy CT image. These rods may be therefore falsely classified 

as the same material although they have different CT values on the low-energy CT image.
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Scenario III: Rods have no contrasts compared with the background on the high-energy CT 

image. Structure classification therefore completely fails.

Scenario I represents the most common situation on clinical DECT images. Scenario II may 

happen in some cases such as angiography bone removal when the intensities of iodine and 

bone partially overlap. Scenario III is an extremely challenging case for assessment purposes 

only. We hypothesize that SPIR can accurately reconstruct the image of rods in Scenario I 

with a high overall image quality, and may have lower accuracy in Scenario II and III 

depending on the number of views. In addition, we include one small rod with a diameter of 

1cm which contains a 0.5cm calcium rod surrounded by iodine solution. Similar to scenario 

II, the two materials in this rod have the same pixel value in the high energy image but 

different pixel values in the low energy image. We use this rod to simulate the scenario in 

angiography that a vessel contains calcium plaque and iodine contrast with similar HU 

values in the high kVp image, and to evaluate the preservation of the calcium/iodine 

boundary in the reconstructed image by our proposed method.

In the above studies, we focus on the evaluation of SPIR accuracy on the low-energy CT 

scan. The relative root-mean-square error (R-RMSE) is used as an image quality metric, 

which is calculated as

R − RMSE =

1
N

∑i = 1
N (μi − μi0)2

1
N

∑i = 1
N

μi0

× 100%, (10)

where i is the index of the region of interest (ROI), µi is the mean reconstructed CT value 

inside the ROI, µi0 is the corresponding ground truth value, and N is the total number of the 

ROIs.

Measurements of line-spread function are used to evaluate the method performance on 

image spatial resolution. Besides rods, three 1-by-7-pixel lines with contrasts of 127 HU 

(line #1), 1017 HU (line #2) and 94 HU (line #3) corresponding to scenario I, II and III, 

respectively, are added in the digital phantom to further study the performance of the 

proposed method. For each line, 7 1D profiles pass through all the 7 pixels at the direction 

perpendicular to the line and are averaged along the direction of the line. The averaged 

profile is fitted by a Gaussian function and then converted to modulation transfer function 

(MTF). The frequency at 10% of maximum value of MTF is used to quantify the MTF 

function, and is referred as “10% MTF frequency” for conciseness in the presentation of our 

results. A larger value of 10% MTF frequency indicates a higher spatial resolution.

The overall performance of the proposed method is further evaluated on two physical 

phantoms, the Catphan©600 phantom and an anthropomorphic pediatric phantom. The slice 

of line pairs on the Catphan phantom is used to investigate the spatial resolution. Both CT 

images and decomposed material images are generated. A uniform ROI in CT image is also 

selected to measure the noise level. A similar study is performed on the anthropomorphic 

pediatric phantom to evaluate the method performance in the presence of complex object 
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structures. A further evaluation is performed on head patient DECT images acquired at 140 

kVp and 80 kVp. The full-scan CT image at 140 kVp is used for similarity matrix 

calculation. As we do not have access to raw projection data on the clinical CT scanner, the 

full-scan CT image at 80 kVp is forward-projected to generate a full-size sinogram. The 

projection views of the sinogram is then downsampled to simulate different sparse-view 

scans. This simulated sparse-view scan is reconstructed by the proposed method, and used in 

material decomposition of “iodine” and “tissue” images. In this paper, we focus on the 

evaluation of virtual unenhanced imaging using DECT, a common clinical technique that 

removes iodine from contrast-enhanced DECT images and reduces the need for an 

unenhanced CT scan.(Sahni et al., 2013) We generate virtual unenhanced images by 

weighted summation of the decomposed images, in the same way as shown in Ref (Kaza et 

al., 2012).

The contrast rod slice of the Catphan phantom is used to investigate the measurement 

accuracy of electron density using DECT, which is important in dose calculation for 

radiation therapy.(Hatton et al., 2009) The electron density map is generated as the 

summation of the decomposed basis material images weighted by their known electron 

densities. We use Teflon and polystyrene as the two basis materials of which electron 

densities can be found in the phantom manual. The contrast rods are selected as the ROIs. 

We calculate the measurement error of electron density as:

Ei =
ρi − ρi0

ρi0
× 100%, (11)

where ρi is the mean electron density of the ith ROI and ρi0 is its ground truth obtained from 

the phantom manual. The absolute values of Ei of all ROIs are then averaged for 

comparison.

In above studies, we compare our SPIR approach with the FBP method as well as a 

conventional TV regularization-based iterative reconstruction method (TVR), which uses the 

TV of the image to be reconstructed as the regularization term.(Song et al., 2007; Niu and 

Zhu, 2012; Park et al., 2012). On the digital phantom, we also compare our approach with 

two iterative reconstruction method: Prior Image Constrained Compressed Sensing (PICCS), 

a state-of-the-art algorithm that uses a prior image to improve iterative CT reconstruction 

algorithm.(Chen et al., 2008) In PICCS, we set the strength parameter of prior image 

constraint the value recommended in Ref (Chen et al., 2008) (i.e., α = 0.91 in Eq.(3) of Ref 

(Chen et al., 2008)). In all the comparisons, we manually tune the parameters of different 

algorithms to have the same data fidelity errors on the reconstructed images.

In particular, we assess method performance on DECT data of a full scan and a second scan 

with different numbers of projection views. For conciseness, the following abbreviations are 

used in the presentations of our results. On the results of CT images, “Full-scan FBP” stands 

for the FBP reconstruction using a full scan dataset, “N-view SPIR/TVR/PICCS” stands for 

reconstruction by SPIR, TVR or PICCS using data of N views, and “high E/low E” stands 

for high energy CT image or low energy CT image. On the results of decomposed material 
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images, electron density maps and virtual unenhanced images, “Full+Full FBP” refers to the 

conventional two-full-scan FBP method, and “Full+N SPIR” refers to the proposed DECT 

method using one full-scan FBP image and a second N-view SPIR image.

3 RESULTS

3.1 Digital phantom study

Fig. 1 shows the digital phantom setting at low energy and high energy. Both images are 

reconstructed by full-scan FBP as the ground truths. Fig. 2 shows the CT images of the 

digital phantom reconstructed by SPIR, TVR and PICCS with a sparse-view scan at the low 

energy level. In the comparison of TVR and PICCS with SPIR results, we tune the algorithm 

parameters to achieve the same data fidelity errors. The parameter α in PICCS, i.e., the 

strength of prior image constraint, is set as 0.91, the recommended value in Ref (Chen et al., 

2008).

From Fig.2, it is seen that TVR and SPIR have similar reconstruction accuracy on a 50-view 

scan. The advantage of SPIR becomes prominent as the number of views further decreases. 

The images of SPIR on scans with 20 and 10 views show fewer patchy artifacts than those 

by TVR (see Figs. 2(a2), (a3), (b2) and (b3)). This finding is consistent with the measured 

reconstruction accuracies of CT numbers listed in Table I. SPIR with a 10-view scan has an 

R-RMSE of 1.33%, while TVR introduces large errors with the same number of views and 

increases R-RMSE to 6.18%. The CT images of SPIR shows sharper edges for rods with 

sufficient contrast in the high-quality CT image of the first scan (i.e., the scenario I and II 

rods) than the TVR images, which indicates a better spatial resolution on these objects. The 

result of PICCS shows a comparable accuracy and spatial resolution with that of SPIR, 

while it is much noisier. On the zoomed-in ROI of “vessel” simulating calcium plaque and 

iodine contrast which have the same pixel values in the high energy image, the boundaries 

between calcium and iodine are preserved in the low energy images of SPIR with scans of 

20 views or more, a similar performance compared with TVR and PICCS (see Figs. 2(a2), 

(b2) and (c2)). However, TVR and PICCS fail to maintain the vessel shape, mainly because 

of their poor reconstruction accuracy for such a small object. On the scenario III rods with 

no sufficient contrast in the CT image of the first scan, the structure classification fails in 

SPIR. However, we find that SPIR still achieve similar image qualities with 10 views as 

TVR and PICCS. It is worth emphasizing again that the scenario III represents the most 

challenging case for SPIR and is considered rare in clinical practice.

The measured 10% MTF frequency and noise STD are listed in Table II. On both line #1 and 

line #2 (i.e., scenario I and II, respectively), SPIR outperforms TVR on spatial resolution 

with the 10% MTF frequency higher by an average factor of 4, and maintains a similar noise 

STD. SPIR and PICCS show similar spatial resolution indicated by similar 10% MTF 

frequency. However, SPIR outperforms PICCS on noise suppression with a noise STD lower 

by a factor of 7. On line #3 (i.e., scenario III), SPIR, TVR and PICCS all fail to show 

observable contrast for this line. The above study reveals that the proposed SPIR is superior 

to TVR on spatial resolution with similar noise suppression, and superior to PICCS on noise 

reduction with similar spatial resolution.
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3.2 Catphan phantom study

Fig. 3 shows the CT images of the Catphan phantom on the slice of line pairs, reconstructed 

by FBP, TVR and SPIR. The dotted circle area in Fig. 3(c) is selected as the ROI, of which 

the means and noise STDs are measured in Table III. SPIR achieves noise STD reduction by 

a factor of more than 10 compared with the full-scan FBP reconstruction. With the same 

data fidelity error, SPIR substantially outperforms the TVR method on image spatial 

resolution with half of the noise STD. As shown in the zoomed-in insert of each image on 

the ROI (indicated by the white rectangle in Fig. 3(a)), the TVR method has a spatial 

resolution of less than 5 pairs/cm when the view number is 50 (see Fig. 3(f)), while SPIR on 

even 10 views (see Fig. 3(e)) has a spatial resolution of 6 pairs/cm, comparable to that of the 

full-scan FBP image. The corresponding DECT decomposed images are shown in Fig. 4. 

The aluminum (the line-pair material) and the epoxy (the background) are chosen as the 

basis materials. It is seen that the high quality of CT images reconstructed by SPIR leads to 

high spatial resolution on the decomposed images.

We notice some low frequency artifacts in the decomposed images shown in Fig. 4(d2). 

Compared with simulation studies, phantom experiments contain larger projection errors 

mainly from beam-hardening and scatter. These errors propagate through both 

reconstruction and decomposition processes. In reconstruction, because of the very limited 

number of views in one scan, the error is non-uniformly distributed across the reconstructed 

image. This artifact is not obvious in CT images, but it is magnified and becomes noticeable 

after material decomposition, which is an error-sensitive process. (Niu et al., 2014)

A different slice of contrast rods of the Catphan phantom is used to evaluate the electron 

density measurement accuracy of SPIR-based DECT. Fig. 5 shows the electron density maps 

generated by the conventional two-full-scan FBP and SPIR-based DECT. The measurement 

errors of ROIs are listed in Table IV. The average errors on the results by SPIR-based DECT 

are comparable with those of the conventional two-full-scan FBP, which indicates the high 

accuracy of the decomposed images and electron density maps obtained by our method. As a 

side note, the measurement errors of electron densities shown in Table IV are different from 

those reported in the recent papers from our group.(Niu et al., 2014; Dong et al., 2014) It is 

mainly because of the different basis materials used in the DECT decomposition as well as 

the different phantom geometry.

3.3 Pediatric phantom study

An anthropomorphic pediatric phantom with realistic vertebra structures is used to evaluate 

the performance of our method on objects with a complex geometry. The bone of the 

phantom is made of calcium and the soft tissue is composed of epoxy. Fig. 6 and 7 show the 

CT images and decomposed material images. Similar to our previous results, SPIR-based 

DECT generates accurate CT images and decomposed images with clearly separated bone 

and tissue structures. The error maps of CT image reconstructed by SPIR are shown in Fig. 

6(c), with the full-scan FBP image considered as the ground truth. Three rectangles 

indicated by the dashed rectangle in Fig. 6(a1) are used as the ROIs for the measurement of 

the root-mean-square-error (RMSE) in HU, shown in Table V. Overall, SPIR maintains a 

low reconstruction error of less than 10 HU for scans with different number of views, except 
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for the 10-view scan where the RMSE increases to 18 HU. A similar performance on image 

qualities for different numbers of views is observed on decomposed images shown in Fig. 7. 

We also notice similar low frequency artifacts shown in Fig. 7(e2) as those of Fig. 4(d2). 

These artifacts stem from the reconstruction error shown in Fig. 6(c), which is magnified in 

the error-prone procedure of material decomposition.(Niu et al., 2014)

3.4 Clinical study

We use head patient DECT images acquired at 140 kVp and 80 kVp with full scans to 

further evaluate the performance of SPIR on a clinical dataset. Fig. 8 and 9 show the CT 

images and the virtual unenhanced images, with a narrow display window of 80 HU. To 

quantify the reconstruction accuracy by SPIR, RMSEs are measured on CT images in three 

uniform ROIs indicated by the dashed rectangles in Fig. 8(a1). The maximum RMSE is 7.2 

HU when SPIR uses a second scan of only 10 views. As the number of projection views 

reduces, image non-uniformity and artifacts increase on the SPIR results. However, in the 

virtual unenhanced images of Fig. 9, it is seen that the vessels containing iodine contrast 

agency are successfully removed in the results using SPIR reconstructions on even 20 views, 

with an image quality similar to that using full-scan FBP.

4 DISCUSSION AND CONCLUSIONS

In this work, we propose a new iterative CT reconstruction algorithm, SPIR, to reduce the 

data requirement for DECT. On a digital phantom, SPIR reduces the number of views in the 

second scan of DECT to as low as 10 with a reconstruction error of less than 1.5%. On 

physical phantoms, in addition to reduction of data acquisition in the second scan down to 

tens of views, SPIR achieves the same spatial resolution and an average error of less than 20 

HU compared to the CT image reconstructed by the full-view FBP with image noise STD 

one order of magnitude less. Comparisons show that SPIR substantially improves over TVR 

on the reconstruction accuracy of a 10-view scan by decreasing the reconstruction error from 

6.18% to 1.33%. SPIR also outperforms TVR at 50-view and 20-view scan in image spatial 

resolution with a higher 10% MTF frequency by an average factor of 4. Compared with the 

results by PICCS in 50-view and 20-view scan, the image reconstructed by SPIR has similar 

spatial resolution but with a noise STD 7 times lower. The high accuracy of SPIR leads to 

the high spatial resolution of decomposed material images and the high accuracy of electron 

density maps. The electron density map obtained from the SPIR-based DECT images with a 

second 10-view scan has an average error of less than 1%.

We demonstrate the performance of SPIR using a rotation-rotation mode of the broad-sense 

DECT technique with linear image-domain decomposition. Compared with the non-linear 

projection-domain decomposition of DECT in its original concept, such an implementation 

simplifies the signal processing of DECT at the price of lacking beam-hardening correction 

capability.(Yu et al., 2012) It should be noted, however, that our research presented in this 

paper is focused on the design of a new reconstruction algorithm for DECT independently of 

the decomposition process, and the use of SPIR does not require an image-domain 

decomposition. For example, we can first perform a non-linear decomposition on the dual-
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energy projection data using the same method as shown in our recent publication,

(Petrongolo et al., 2015) and then carry out SPIR on the decomposed projections.

In this paper, we primarily focus on the development of a new reconstruction framework that 

reduces data acquisition for DECT without much degradation of image quality. In the 

presented proof-of-concept studies, we choose to evaluate the method performance using a 

rotation-rotation scan mode. It should be noted, however, that the rotation-rotation scan 

mode is not an ideal scheme of DECT imaging for our proposed method in clinical use. The 

involuntary patient movement might comprise the assumption that the second CT scan of 

DECT contains the same structural information as the first CT scan. The performance of the 

proposed algorithm is therefore expected to be more robust on advanced DECT scanners,

(Xu et al., 2009; Petersilka et al., 2008) where patient motion is minimized via acquisition of 

dual-energy projections in a single scan.

We develop a new reconstruction framework that reduces data acquisition for DECT without 

much degradation of image quality. By reducing data acquisition for DECT, we can 

potentially reduce radiation dose on patients and hardware costs of the imaging system. For 

example, a “fast kVp switching” CT scanner (Xu et al., 2009) acquires dual-energy 

projections in one single rotation via switching the x-ray energy for neighboring projections. 

Since data acquisition is doubled without increasing scan time, the scanner is equipped with 

a fast detector and a fast-switching high-voltage generator, both of which significantly 

increase the system cost. The small number of projections in the low-kVp scan enabled by 

our method indicates that the switching rate can be significantly lowered on the kVp-

switching CT scanner. A fast detector also becomes unnecessary as the total number of 

DECT projections only slightly increases compared with that of a single-energy CT scan. 

The manufacturing cost can therefore be substantially reduced on such a “slow kVp 

switching” DECT system.(Szczykutowicz and Chen, 2010) On a dual source CT,(Petersilka 

et al., 2008) The second sparse-view scan used by the proposed algorithm potentially leads 

to dose reduction on DECT imaging. In this paper, we have shown that a second scan with 

only 20 views (3% of a full scan, and thus negligible imaging dose) is sufficient for DECT 

imaging with a satisfactory image quality. In a clinical DECT protocol, it has been reported 

that, in order to maximize CNR, the optimal dose ratio between the low- and high-energy 

scans is approximately 1:2.(Richard and Siewerdsen, 2007; Sabol et al., 2001; Li et al., 

2011) We can therefore roughly estimate the dose reduction achieved by the proposed 

method as about 30%, compared with the dose of DECT using two full scans. A thorough 

evaluation of dose reduction, however, entails comprehensive studies for different image 

quality metrics, clinical tasks and disease sites, and it is considered beyond the scope of this 

paper.

The parameters in similarity matrix generation are empirically chosen to yield results with 

satisfactory qualities. In the step of bilateral filtering for noise suppression, a small size of 

spatial window (i.e., X = 3) is used to ensure that each pixel is locally averaged by its 

neighboring pixels. In the step of similarity calculation step, a large window (i.e., X = 41) is 

used such that each pixel has a large number of pixels for similarity calculation. An over-

large window includes too distant pixels that are less likely to be the same material, and also 

dramatically increases the memory burden. If the found similar pixels are less than a 
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threshold value (200 in the presented implementations), the window size is adaptively 

enlarged until the threshold value is met. Otherwise the pixels with few similar pixels are 

less regularized and tend to be reconstructed poorly. In this paper, we find that the results 

obtained by the proposed algorithm are not sensitive to the above parameter values. As such, 

these parameters are fixed in all presented studies on different phantom data. For fair 

comparisons of SPIR, TVR and PICCS, we manually tune the regularization weighting of 

different algorithms to have the same data fidelity errors on the reconstructed images. 

Readers may notice that the results of TVR (see Figs. 1(c), (e), (g) and 6(f)) appear over-

smoothed. It is because the data fidelity error is too large for TVR, while the same data 

fidelity error enables our proposed method to achieve a very high image quality with 

significantly reduced noise.

Future work is needed to further assess and improve the proposed SPIR algorithm. First, the 

method of generating similarity matrix W proposed in this paper is not the only solution of 

structure classification for SPIR. We will investigate more sophisticated image segmentation 

methods for improved calculation of the similarity matrix.

The success of SPIR mainly stems from the establishment of an additional data constraint 

shown in Eq. (5), where we use a similarity matrix W to exploit the redundant structural 

information of the CT images of the same object acquired at two different energies. By 

enforcing the new data constraint during the iterative reconstruction, SPIR shows promise on 

more accurate CT construction than TVR, a popular algorithm of iterative CT 

reconstruction. Studies have shown that TVR could over-smooth CT images and generate 

contouring artifacts because of its tendency to penalize the image gradient irrespective of the 

image structures.(Junguo et al., 2010; Yan et al., 2012; Tang et al., 2009; Liu et al., 2014) 

Instead of reducing signal variations only on adjacent pixels as done in TVR, SPIR reduces 

signal variations for all pixels of the same structure, which effectively avoids the image 

artifacts of a TVR reconstruction. As SPIR adopts an optimization framework with 

regularization, it is also possible to combine SPIR with TVR for unified benefits of these 

two algorithms.
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Figure 1. 

CT images of a digital phantom reconstructed by full-scan FBP reconstructions at (a) low 

energy level, (b) high energy level. The labels in (a) are the indices of ROIs, and the labels in 

(b) indicate the different scenarios for each ROI. The dashed-line square in (a) indicates the 

region where the zoomed-in “vessel” at the bottom-left of each image is located. The black 

arrow, white arrow and double line arrow in (a) show the positions of line #1, line #2 and 

line #3 (corresponding to scenario I, II and III, respectively). Display window for full-FOV 

images is [−250 250] HU, and for zoomed-in “vessel” at bottom-left is [HU − 80 HU + 80]

HU, where HU is the mean HU value of the “vessel” in each case.
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Figure 2. 

CT images of a digital phantom at low energy reconstructed by (a) SPIR, (b) TVR and (c) 

PICCS using (1) 50 views, (2) 20 views and (3) 10 views. The zoomed-in “vessel” at the 

bottom-left of each image is indicated by the dashed-line square in Fig. 1(a). The dashed 

circle shown in (c) is the ROI on which the noise STD in Table II is calculated. Display 

window for full-FOV images is [−250 250] HU, and for zoomed-in “vessel” at bottom-left is 

[HU − 80 HU + 80] HU, where HU is the mean HU value of the “vessel” in each case.
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Figure 3. 

CT images of the Catphan phantom on the slice of resolution line pairs, reconstructed by 

FBP on full scan data at (a) low kVp and (b) high kVp, SPIR at low kVp using (c) 50 views, 

(d) 20 views and (e) 10 views, and (6) TVR at low kVp using 50 views. The dashed 

rectangle shown in (a) is the region where the zoom-in inserts of line pairs are located. The 

dotted circle shown in (c) is the ROI on which Table III is calculated. Labels in the bottom 

figure of (a) show the value of line pairs per cm for each line cluster. Display window: [−500 

2500] HU.

Wang and Zhu Page 22

Phys Med Biol. Author manuscript; available in PMC 2018 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 

The decomposed material images of line pair slice, based on the reconstruction images at 

low kVp and high kVp using (a) conventional two-full-scan FBP, SPIR-based DECT using 

one full scan and a second (b) 50-view, (c) 20-view and (d) 10-view scan. Row (1): “bone” 

images; row (2): “tissue” images; and row (3): magnified views of bone images in the ROI 

of dashed rectangle in Fig. 5(a). Display window: [0.1, 1.2].
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Figure 5. 

Electron density maps of contrast rods, based on the reconstruction images at low kVp and 

high kVp using (a) conventional two-full-scan FBP, SPIR-based DECT using one full scan 

and a second (b) 50-view, (c) 20-view and (d) 10-view scan. The labels in (a) indicate the 

ROIs on which Table IV is calculated. Display window: [2.5 6.5]× 10−23 cm−3.
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Figure 6. 

CT images of the pediatric phantom, reconstructed by full-view scan using (a1) FBP at high 

kVp, (a2) FBP at low kVp and (a3) SPIR at low kVp, and SPIR at low kVp using (b1) 50 

views, (b2) 20 views and (b3) 10 views. The error maps of SPIR using (c1) 50 views, (c2) 20 

views and (c3) 10 views compared with the full-scan FBP are also shown. The dashed 

rectangles in (a1) are the ROIs on which Table V is calculated. Display window is [−500 

1500] HU for (a) and (b), and is [−150 150] HU for (c).
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Figure 7. 

The decomposed material images of the pediatric phantom, based on the reconstruction 

images at low kVp and high kVp using (a) the conventional two-full-scan FBP, the proposed 

SPIR-based DECT using one full scan and a second scan with (b) full views, (c) 50 views, 

(d) 20 views and (e) 10 views. Row (1) is the “bone” image and row (2) is the “tissue” 

image. Display window: [0.1 1.2].
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Figure 8. 

CT images of a head patient, reconstructed by (a1) full-view FBP at high kVp, (a2) full-view 

FBP at low kVp, (a3) full-view SPIR at low kVp, and SPIR at low kVp using (b1) 50 views, 

(b2) 20 views and (b3) 10 views. The dashed rectangles in (a1) are the ROIs on which 

RMSE is calculated. Display window is [0 80] HU.
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Figure 9. 

The original CT image and the virtual unenhanced CT images of a head patient. The virtual 

unenhanced CT images are generated from decomposed soft tissue and iodine images using 

(a2) the conventional two-full-scan FBP, the proposed SPIR-based DECT with one full scan 

and a second scan of (a3) full views, (b1) 50 views, (b2) 20 views and (b3) 10 views. The 

contrast-enhanced full-scan FBP image at low kVp is shown in (a1) for reference. Display 

window is [0 80] HU.
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Table III

The means and the noise STDs of the CT number (in HU) in the ROIs indicated by the dotted circle shown in 

Figure 3(c).

Methods Mean ± STD

Full scan FBP at 75kVp −4±128

Full scan FBP at 125kVp 60±62

50-view SPIR at 75kVp −4±9

20-view SPIR at 75kVp −7±6

10-view SPIR at 75kVp −4±7

50-view TVR at 75 kVp −4±16
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Table V

Measurements on error of mean pixel value and RMSE (both in HU) on CT images reconstructed by SPIR 

with different numbers of views. The ROIs are marked in Fig. 6(a1). The CT image of full-scan FBP at low 

kVp is chosen as the ground truth.

Number of views

Error of mean HU

RMSE

ROI 1 ROI 2 ROI 3

655 5 −1 2 3

50 13 0 8 9

20 10 2 8 7

10 14 0 28 18
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