
Dual Estimation and the Unscented 

Transformation 

EricA. Wan 
ericwan@ece.ogi.edu 

Rudolph van der Merwe 
rudmerwe@ece.ogi.edu 

Alex T. Nelson 
atneison@ece.ogi.edu 

Oregon Graduate Institute of Science & Technology 

Department of Electrical and Computer Engineering 

20000 N.W. Walker Rd., Beaverton, Oregon 97006 

Abstract 

Dual estimation refers to the problem of simultaneously estimating the 

state of a dynamic system and the model which gives rise to the dynam

ics. Algorithms include expectation-maximization (EM), dual Kalman 

filtering, and joint Kalman methods. These methods have recently been 

explored in the context of nonlinear modeling, where a neural network 

is used as the functional form of the unknown model. Typically, an ex

tended Kalman filter (EKF) or smoother is used for the part of the al

gorithm that estimates the clean state given the current estimated model. 

An EKF may also be used to estimate the weights of the network. This 
paper points out the flaws in using the EKF, and proposes an improve

ment based on a new approach called the unscented transformation (UT) 

[3]. A substantial performance gain is achieved with the same order of 

computational complexity as that of the standard EKF. The approach is 

illustrated on several dual estimation methods. 

1 Introduction 

We consider the problem of learning both the hidden states Xk and parameters w of a 
discrete-time nonlinear dynamic system, 

F(Xk , Vk, w) 

H(xk, nk, w), 

(1) 

(2) 

where Yk is the only observed signal. The process noise Vk drives the dynamic system, and 

the observation noise is given by nk. Note that we are not assuming additivity of the noise 

sources. 

A number of approaches have been proposed for this problem. The dual EKF algorithm 

uses two separate EKFs: one for signal estimation, and one for model estimation. The states 

are estimated given the current weights and the weights are estimated given the current 

states. In the joint EKF, the state and model parameters are concatenated within a combined 

state vector, and a single EKF is used to estimate both quantities simultaneously. The 

EM algorithm uses an extended Kalman smoother for the E-step, in which forward and 
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backward passes are made through the data to estimate the signal. The model is updated 

during a separate M-step. 

For a more thorough treatment and a theoretical basis on how these algorithms relate, see 

Nelson [6]. Rather than provide a comprehensive comparison between the different algo

rithms, the goal of this paper is to point out the assumptions and flaws in the EKF (Sec

tion 2), and offer a improvement based on the unscented transformation/filter (Section 3). 

The unscented filter has recently been proposed as a substitute for the EKF in nonlinear 

control problems (known dynamic model) [3]. This paper presents new research on the use 

of the UF within the dual estimation framework for both state and weight estimation. In 

the case of weight estimation, the UF represents a new efficient "second-order" method for 

training neural networks in general. 

2 Flaws in the EKF 

Assume for now that we know the model (weight parameters) for the dynamic system in 

Equations 1 and 2. Given the noisy observation Yk, a recursive estimation for Xk can be 

expressed in the form, 

Xk = (optimal prediction ofxk) + Gk x [Yk - (optimal prediction ofYk)] (3) 

This recursion provides the optimal MMSE estimate for Xk assuming the prior estimate Xk 

and current observation Yk are Gaussian. We need not assume linearity of the model. The 

optimal terms in this recursion are given by 

yl: = E[H(xl:, nk)], (4) 

where the optimal prediction xl: is the expectation of a nonlinear function of the random 

variables Xk-l and Vk-l (similar interpretation for the optimal prediction of Yk). The 

optimal gain term is expressed as a function of posterior covariance matrices (with Yk = 
Yk - Yl:) · Note these terms also require taking expectations of a nonlinear function of the 

prior state estimates. 

The Kalman filter calculates these quantities exactly in the linear case. For nonlinear mod

els, however, the extended KF approximates these as: 

YI: = H(xl:,fl), (5) 

where predictions are approximated as simply the function of the prior mean value for es
timates (no expectation taken). The covariance are determined by linearizing the dynamic 

equations (Xk+l ~ AXk + BVk, Yk ~ CXk + Dnk), and then determining the posterior 
covariance matrices analytically for the linear system. As such, the EKF can be viewed 

as providing "first-order" approximations to the optimal terms (in the sense that expres

sions are approximated using a first-order Taylor series expansion of the nonlinear terms 

around the mean values). While "second-order" versions of the EKF exist, their increased 

implementation and computational complexity tend to prohibit their use. 

3 The Unscented TransformationIFilter 

The unscented transformation (UT) is a method for calculating the statistics of a random 

variable which undergoes a nonlinear transformation [3] . Consider propagating a random 

variable a (dimension L) through a nonlinear function, (3 = g( a). Assume a has mean ct 
and covariance P Q. To calculate the statistics of {3, we form a matrix X of 2L + 1 sigma 

vectors Xi, where the first vector (Xo) corresponds to ct, and the rest are computed from 

the mean (+ )plus and (-)minus each column of the matrix square-root of P Q. These sigma 
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vectors are propagated through the nonlinear function, and the mean and covariance for [3 
are approximated using a weighted sample mean and covariance, 

/3 ~ -£ 1 {~g(xo) + -21 I:9(Xi)} , (6) 
+ ~ i=l 

Pp" L:~ {~[g(XO) - il][g(Xo) - il)T + ~ ~[g(X') - il)[g(X,) - ilf} (7) 

where ~ is a scaling factor. Note that this method differs substantially from general "sam
pling" methods (e.g., Monte-Carlo methods and particle filters [1]) which require orders 

of magnitude more sample points in an attempt to propagate an accurate (possibly non

Gaussian) distribution of the state. The UT approximations are accurate to the third order 

for Gaussian inputs for all nonlinearities. For non-Gaussian inputs, approximations are 

accurate to at least the second-order, with the accuracy determined by the choice of ~ [3]. 
A simple example is shown in Figure 1 for a 2-dimensional system: the left plots shows 

the true mean and covariance propagation using Monte-Carlo sampling; the center plots 
show the performance of the UT (note only 5 sigma points are required); the right plots 

show the results using a linearization approach as would be done in the EKF. The superior 
performance of the UT is clear. 

Actual (sampling) UT Linearized (EKF) 

mean .11"=- 0 
I - I 

(3 = g(o) 

(3 = g(o) Yi = g(Xi ) 
P(:! = ATPaA 

1 1 l 

Figure 1: Example of the UT for mean and covariance propagation. a) actual, b) 
UT, c) first-order linear (EKF). 

The unscented filter (UF) [3] is a straightforward extension of the UT to the recursive 

estimation in Equation 3, where we set 0: = Xk, and denote the corresponding sigma matrix 
as X(klk). The UF equations are given on the next page. It is interesting to note that no 

explicit calculation of lacobians or Hessians are necessary to implement this algorithm. 
The total number of computations is only order £2 as compared to £3 for the EKF. I 

4 Application to Dual Estimation 

This section shows the use of the UF within several dual estimation approaches. As an ap
plication domain for comparison, we consider modeling a noisy time-series as a nonlinear 

INote that a matrix square-root using the Cholesky factorization is of order L3 /6. However, the 

covariance matrices are expressed recursively, and thus the square-root can be computed in only order 

L2 by performing a recursive update to the Cholesky factorization. 
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UF Equations 

Wo = K/(L + K) , WI . .. W2L = 1/2(L + fl.) 

X(klk - 1) = F[X(k - 11k - 1), P!lv2 ] 

x"k = 2:~!o WiXi(klk - 1) 

P"k = 2:~!o WdXi(klk - 1) - x"k][Xi(klk - 1) - x"kf 

Y(klk - 1) = H[X(klk - 1), P~;] 

Y"k = 2:~!o WiYi(klk - 1) 

Phh = 2::!o Wi[Yi(klk - 1) - Y"kJ[Yi(klk - 1) - Yk"f 

P XkYk = 2::!o Wi[Xi(klk - 1) - x"k][Yi(klk - 1) - Y"kf 

Xk = x"k + PXkYkP~:h (n - Y"k) 

Pk = P"k - PX"Yk(P~:yJTP!'kYk 

autoregression: 

Xk = f(Xk-l, ... Xk-M, w) + Vk 

Yk = Xk + nk, Vk E {l. . . N} 

669 

(8) 

The underlying clean signal Xk is a nonlinear function of its past M values, driven by 

white Gaussian process noise Vk with variance 11;. The observed data point Yk includes the 
additive noise nk, which is assumed to be Gaussian with variance 11;. The corresponding 

state-space representation for the signal Xk is given by: 

+ B· Vk-I (9) 

Yk = [1 0 (10) 

In this context, the dual estimation problem consists of simultaneously estimating the clean 

signal Xk and the model parameters w from the noisy data Yk. 

4.1 Dual EKF I Dual UF 

One dual estimation approach is the dual extended Kalman filter developed in [8, 6]. The 
dual EKF requires separate state-space representation for the signal and the weights. A 

state-space representation for the weights is generated by considering them to be a station

ary process with an identity state transition matrix, driven by process noise Uk: 

Wk = Wk-l + Uk 

Yk = f(Xk-I,Wk) +Vk +nk· 

(11) 

(12) 

The noisy measurement Yk has been rewritten as an observation on w. This allows the use 
of an EKF for weight estimation (representing a "second-order" optimization procedure) 

[7]. Two EKFs can now be run simultaneously for signal and weight estimation. At every 

time-step, the current estimate of the weights is used in the signal-filter, and the current 

estimate of the signal-state is used in the weight-filter. 
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The dual UFIEKF algorithm is formed by simply replacing the EKF for state-estimation 

with the UF while still using an EKF for weight-estimation. In the dual UF algorithm both 

state- and weight-estimation are done with the UF. Note that the state-transition is linear in 

the weight filter, so the nonlinearity is restricted to the measurement equation. Here, the 

UF gives a more exact measurement-update phase of estimation. The use of the UF for 

weight estimation in general is discussed in further detail in Section 5. 

4.2 Joint EKF I Joint UF 

An alternative approach to dual estimation is provided by the joint extended Kalman filter 

[4,5]. In this framework the signal-state and weight vector are concatenated into a single, 

joint state vector: Zk = [xf wfV. The estimation of Zk can be done recursively by writing 

the state-space equations for the joint state as: 

(13) 

and running an EKF on the joint state-space to produce simultaneous estimates of the states 

Xk and w . As discussed in [6], the joint EKF provides approximate MAP estimates by 

maximizing the joint density of the signal and weights given the noisy data. Again, our ap

proach in this paper is to use the UF instead of the EKF to provide more accurate estimation 

of the state, resulting in the joint UF algorithm. 

4.3 EM - Unscented Smoothing 

A somewhat different iterative approach to dual estimation is given by the expectation
maximization (EM) algorithm applied to nonlinear dynamic systems [2]. In each iteration, 

the conditional expectation of the signal is computed, given the data and the current es

timate of the model (E-step). Then the model is found that maximizes a function of this 

conditional mean (M-step). For linear models, the M-step can be solved in closed form. 

The E-step is computed with a Kalman smoother, which combines the forward-time esti

mated mean and covariance (x{ ,pt) of the signal given past data, with the backward-time 

predicted mean and covariance (xf ,pf) given the future data, producing the following 

smoothed statistics given all the data: 

(14) 

(15) 

When a MLP neural network model is used, the M-step can no longer be computed in 

closed-form, and a gradient-based approach is used instead. The resulting algorithm is 

usually referred to as generalized EM (GEM) 2. The E-step is typically approximated by 

an extended Kalman smoother, wherein a linearization of the model is used for backward 
propagation of the state estimates. 

We propose improving the E-step of the EM algorithm for nonlinear models by using a 

UP instead of an EKF to compute both the forward and backward passes in the Kalman 

smoother. Rather than linearize the model for the backward pass, as in [2], a neural network 

is trained on the backward dynamics (as well as the forward dynamics). This allows for 

a more exact backward estimation phase using the UF, and enables the development of an 

unscented smoother (US). 

2 An exact M-step is possible using RBF networks [2]. 
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4.4 Experiments 

We present results on two simple time-series to provide a clear illustration of the use of 
the UP over the EKE The first series is the Mackey-Glass chaotic series with additive 

WGN (SNR ~ 3dB). The second time series (also chaotic) comes from an autoregressive 

neural network with random weights driven by Gaussian process noise and also corrupted 

by additive WGN (SNR ~ 3dB). A standard 5-3-1 MLP with tanh hidden activation 

functions and a linear output layer was used in all the filters. The process and measurement 

noise variances were assumed to be known. 

Results on training and testing data, as well as training curves for the different dual estima
tion methods are shown below. The quoted numbers are normalized (clean signal variance) 

mean-square estimation and prediction errors. The superior performance of the UT based 

algorithms (especially the dual UF) are clear. Note also the more stable learning curves 

using the UF approaches. These improvements have been found to be consistent and sta

tistically significant on a number of additional experiments. 

Mackey-Glass Train Test Chaotic AR-NN Train Test 

Algorithm Est. Pred. Est. Pred. Algorithm Est. Pred. Est. Pred. 

Dual EKF 0.20 0.50 0.21 0.54 . Dual EKF 0.32 0.62 0.36 0.69 

Dual UF/EKF 0.19 0.50 0.19 0.53 Dual UF/EKF 0.26 0.58 0.28 0.69 

Dual UF 0.15 0.45 0.14 0.48 Dual UF 0.23 0.55 0.27 0.63 

Joint EKF 0.22 0.53 0.22 0.56 Joint EKF 0.29 0.58 0.34 0.72 

Joint UF 0.19 0.50 0.18 0.53 Joint UF 0.25 0.55 0.30 0.67 

Mackey-Glass Chaotic AR-NN 
o. . Dual EKF . Dual UFIEKF 

0.' 0 Dual UF 
0 JointEKF 
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]05 " " ~ .. 
'" E E035 

go" 5 
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0 3 
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02 
0 25 

0.1 0 2 
0 5 • 10 11 0 10 15 20 2S '" iteration ~eration 

The final table below compares smoother performance used for the E-step in the EM algo
rithm. In this case, the network models are trained on the clean time-series, and then tested 

on the noisy data using either the standard Kalman smoother with linearized backward 
model (EKS 1), a Kalman smoother with a second nonlinear backward model (EKS2), and 
the unscented smoother (US). The forward (F), backward (B), and smoothed (S) estimation 

errors are reported. Again the performance benefits of the unscented approach is clear. 

Mackey-Glass Norm. MSE Chaotic AR-NN Norm. MSE 

Algorithm F B S Algorithm F B S 

EKSI 0.20 0.70 0.27 EKSI 0.35 0.32 0.28 

EKS2 0.20 0.3] 0.19 EKS2 0.35 0.22 0.23 

US 0.]0 0.24 0.08 US 0.23 0.2] 0.16 

5 UF Neural Network Training 

As part of the dual UF algorithm, we introduced the use of the UF for weight estimation. 

The approach can also be seen as a new method for the general problem of training neural 

networks (i.e., for regression or classification problems where the input x is observed and 
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no state-estimation is required). The advantage of the UF over the EKF in this case is not 
as obvious, as the state-transition function is linear (See Equation 11). However, as pointed 

out earlier, the observation is nonlinear. Effectively, the EKF builds up an approximation 
to the expected Hessian by taking outer products of the gradient. The UF, however, may 

provide a more accurate estimate through direct approximation of the expectation of the 
Hessian. We have performed a number of preliminary experiments on standard benchmark 
data. The figure below shows the mean and std. oflearning curves (computed over 100 

experiments with different initial weights) for the Mackay Robot Arm Mapping dataset. 

Note the faster convergence, lower variance, and lower final MSE performance of the UF 

weight training. While these results are encouraging, further study is still necessary to fully 

contrast differences between UF and EKF weight training. 

W 
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6 Conclusions 

The EKF has been widely accepted as a standard tool in the machine learning community. 

In this paper we have presented an alternative to the EKF using the unscented filter. The 
UF consistently achieves a better level of accuracy than the EKF at a comparable level 

of complexity. We demonstrated this performance gain on a number of dual estimation 

methods as well as standard regression modeling. 
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