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DUAL EXTREMUM PRINCIPLES FOR A NONLINEAR DIFFUSION PROBLEM

By N. ANDERSON anp A. M. ARTHURS (University of York, England)

Abstract. Maximum and minimum principles for a nonlinear boundary value
problem in diffusion with concentration-dependent coefficient D(c) are derived in a
unified manner from the theory of dual extremum principles. The results are illustrated
by a calculation in the case D(c) = exp c.

The purpose of this note is to give a new variational formulation of the nonlinear
boundary value problem described by the equation

—%(D(c)g—z)=%zg—:, 0<z2< o, 1)
0 =1, ¢(=)=0. ()

This problem arises in the study of diffusion into a semi-infinite medium, where the
diffusion coefficient D is a function of the concentration c¢. The associated flux is given by

() = D(c) dc/dz, <0, ®3)

and we shall suppose that D(c) € C'[0, 1] and that D(c) > 0 for ¢ > 0. Shampine [1]
has shown that this kind of problem possesses a unique solution and has discussed in [2]
some aspects of an approximate solution due to Macey [3]. This latter work formulates
the solution ¢ implicitly via an expression for z(c). That is, the dependent and independent
variables are interchanged.

If we adopt this approach, the problem in (1) to (3) may be written as [2]

dz/dc = D(c)/f,  2(1) =0, @
—df/dc =32, 0<c<1, f(0) =0 (5)

Here z and f are regarded as functions of the independent variable c.
To give a variational formulation of the problem we now observe that (4) and (5)
are examples of the canonical equations

dz/dc = 0H/df, (6)
—df/de = dH /e, @
with the Hamiltonian H(f, z) given by
H(f,z) = D(c) In|f| + 12", ®
We note that
O’H/3f* = —D(c)/f’, 9°H/97" = &. )

Since D(c) > 0, H is concave in f and convex definite in z, which in turn means that we
can obtain dual extremum principles [see 4, 5].
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Following the general procedure for canonical equations [see 4] we introduce the
action functional

10,9 = [ {2 - g9} de - g, (102)

N fo {_%Z - H{, z)} dec — (f2)c-0 - (10b)

The integral I is stationary at the solution (f, z) of (4) and (5).
Now we define two sets of functions

Ql={(f)z:%=p_3(¢c_))z(l)=0}’ (11)
L_df _ 1
Q = {(f,z).—zi—c=§z,0<6< 1, f(0) =0}- (12)

These sets intersect at the exact solution (f, z) of the problem, and they play a basic
role in our procedure for obtaining dual extremum principles. Thus, we define a functional
J by

J(z) = I(fi,2) via (10a), with (f,,2) in Q. (13)
This gives
J() = [ (D() — D) In |D@©)/2'| — 2.7} de, (14)
with
z (1) = 0. (15)
Also, we define a functional G by
G(f2) = 1(f2, 22) via (10b), with (f., 2,) in Q,. (16)
This gives
60 = [ 1627 = D@ In |f]} e, (17)
with
2(0) = 0. (18)

From their definitions, these functionals J and G are stationary at the exact functions
z and f respectively. In addition, the global dual extremum principles

J(@) < J(@) = G(f) < G(f2) (19)

hold, equality arising when z;, = z and f, = f. These dual principles for the transformed
problem (4) and (5) appear to be new, and they are much simpler than those correspond-
ing to the original problem (1) and (2) which can be obtained from the results in [6].

To illustrate the use of these dual extremum principles we have performed calculations
of the dual functionals for the case

D(c) = exp c. (20)
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As trial functions we took

2z =c¢*1 —¢) i a.c 21)

n=2

which satisfies z,(1) = 0, and
6
fo = — Z bnc") (22)
n=1

which satisfies f,(0) = 0. The parameters a, , b, and k were found by optimizing J and G.
The results are given in Table 1.

TaBLE 1. Variational parameters.

k= 0.1165 by = 1.8396
a; = 2.4374 b, = —1.5638
a; = 0.3344 by = 0.3580
ag = 0.1068 b4 = 0.4896
as = 0.8816 bs = 0.2152
as = —0.3044 bg = —0.1220
J = 1.9743 G = 1.9772

We see from Table 1 that the functional J is within 0.003 of the exact metric for the
problem, and hence in global terms the function z,(c) in (21) is an accurate variational
solution. The inverse of (21) therefore provides an accurate estimate of the concentration
¢(z;). Numerical values of this can be read from Table 2, along with values of the flux
f(c). For this problem we estimate the initial flux f(z; = 0) = f(¢c = 1) to be —0.7862.

TaBLE 2. Variational solutions 2z,(c) and fa(c).

¢ zi(c) c fa(c)

0 @ 0.0 0
0.00001 9.3255 0.1 —0.1687
0.0001 7.1300 0.2 —0.3089
0.001 5.4476 0.3 —0.4242
0.01 4.1329 0.4 —0.5184
0.1 2.9105 0.5 —0.5956
0.3 2.0689 0.6 —0.6591
0.5 1.4758 0.7 —-0.7113
0.7 0.9235 0.8 —0.7522
0.8 0.6363 0.9 —-0.7793
0.9 0.3308 1.0 —0.7862
0.95 0.1690
1.0 0
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