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1. Introduction. In a recent paper, Aziz and Benzies [1] used regular perturbation
techniques to obtain approximate solutions of some heat-transfer problems with temper-
ature-dependent thermal properties. In the present paper, we adopt a different approach
which is based on the theory of dual extremum principles [cf. 2, 3], These principles
provide the basis of variational methods which lead to variational solutions of known
accuracy. The results are illustrated by two applications, one concerning a conducting-
convecting straight fin with variable heat-transfer coefficient, and the other concerning the
temperature distribution in a conducting-convecting-radiating fin with temperature-de-
pendent thermal conductivity. In both cases very accurate variational solutions are ob-
tained.

2. A class of problems. The problems we wish to consider are described by equa-
tions of the form

~cP(j)/dx2 = /(0), 0 < x < 1, (1)

with boundary conditions

(p'(0) = 0, 0(1) = k. (2)

Here k is a prescribed constant and /(0) is a known differentiate function of 0. In the
applications, 0 will denote the required nondimensional temperature.

To use the theory of dual extremum principles we first rewrite Eqs. (1) and (2) in
canonical form by taking

d<t>/dx = u = dH/du, (3)

—du/dx = /(0) = dH/d<}>, 0 < x < 1, (4)
with

0(1) = *, (5)
«(0) = 0. (6)

A suitable Hamiltonian H in Eqs. (3) and (4) is given by

H(u, 0) = I"2 + /W, (7)
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where

F(0) = ff(v)dv. (8)

The canonical variables u, 0 used here are analogous to the momentum and position p, q
variables in conventional Hamiltonian mechanics.

3. Variational principles. To give a variational formulation of Eqs. (3) to (6) we
introduce the action functional

/(£/, $)= /"{-£/$' - H(U, $)} dx - {£/($ - *)},_„ (9a)

= f {-£/'$ -//(£/,$)} dx + U(\)k - (7(0)$(0), (9b)
^0

where H(U, <i>) is defined by Eq. (7). It then follows that
3(a). Variational principle: For arbitrary independent functions U, <i>, the functional

/(£/, 4>) is stationary at the solution (u, <p) of the boundary-value problem described by
Eqs. (3) to (6).

Next we consider extremum principles, that is, maximum and minimum principles,
associated with our class of boundary-value problems.

3(b). First extremum principle: Using Eq. (9a) we define a functional J(0i) by

J(<t>i) = , <M, (10)
where ux and </>, satisfy

dtfii/dx = «!,(/>!(!)= k. (11)
This gives

A0i) = f <K0i'? - F(4>i)\dx, 0,(1) = A: (12)
J 0

= /(w, 0) + A7, (13)

where

A J = y £{(0i'-0')2 - (0'-0)2^}^, (14)

the bar over a derivative indicating that it is to be evaluated for some function 0 + 77(0,
0), 0 < ?? < 1. Eq. (13) shows that 7(0J is stationary at 0. This is the Euler-Lagrange
variational principle for the original problem described by Eqs. (1) and (2). Further, if

< 0 in 0<x< 1 for all u, (15)dv

we see from Eq. (14) that

AJ > 0 for all 0, , (16)
and by (13) we therefore have the global minimum principle
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I(U 0) < 7(0.) (17)

for all admissible functions 0! satisfying the condition 0i(l) = k.
3(c). Second extremum principle: Next, using Eq. (9b), we define a functional G(w2)

by
G(u2) = l{u2 , 02) (18)

where u2 and 02 satisfy

~(du2/dx) = /(02), 0 < x < I, u2(0) = 0. (19)

This gives

G(u2) = f t-u2'f~\-u2') - |w22 - F[/~1(-«2')]t dx + ku2{ 1), u2(0) = 0, (20)

= /(«, 0) + AG, (21)

where

AG = -4 £{(m2 - u)2 - 0)2^} rf-v, (22)

the bar over a derivative this time indicating that it is to be evaluated at some function u +
t](u2 — u), 0 < t] < 1. Eq. (21) shows that G(u2) is stationary at u. In addition, if the
condition

df/dv < 0 in 0 < x < 1, for all v, (15)

is satisfied, we see from Eq. (22) that

AG < 0 for all u2 , (23)

and so by Eq. (21) we have the global maximum principle

G(u2)<I{u, 0) (24)

for all admissible functions u2 satisfying the condition i<2(0) = 0.
3(d). Dual extremum principles: From the results in 3(b) and 3(c) we have the global

dual extremum principles

G(u2) < /(«, 0) < 7(0.) (25)

in the case when

df(v)/dv < 0 for all v, (26)

for all admissible functions 0, and u2 such that

0,(1) = *, u2( 0) = 0. (27)

Equality holds in Eq. (25) when </>, = 0 and u2 = u.

4. Error estimate. The dual extremum principles in 3(d) enable us to obtain an
estimate of the error in the variational function 0t . Thus from (25) we have
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a = J{<t>i) - G(u2) > y(0i) - /(«, 0)

/o' {(0x' - 0')2 - (0, - 0)2 ^ )dx, (28)d(j>

by (14). By Eq. (26), which we suppose is satisfied, Eq. (28) gives

2A > [' (0/ - <t>')2dx
J 0

= J' (0! - 0) (0, - 0) dx + [(0, - 0X0/ - 0')]o'. (29)

To obtain a useful result from this we make the boundary terms vanish. This is done by
imposing the extra condition

0/(0) = 0 (30)
on 0, , in addition to the condition 0i(l) = k already required for dual principles. Then
Eq. (29) becomes

2A >

> A f (0i — 0)2 dx, (31)
Jo

where A is a lower bound to the lowest eigenvalue X0 of

cPw— = Aw, 0 < x < 1, w'(0) = 0, w(l) = 0. (32)

We find that A0 = tt2/4, and so we can take

A = 7t2/4. (33)

Hence

Jr1 8 A 81 (0, - 0)2 dx < = 4 (7(0.) - G(w2)| - £(0,), (34)
0 7T 7T

say. £ provides a mean square estimate of the error in the variational function 0, .

5. Problem I. We now turn to applications of the foregoing variational results, and
our first application is concerned with a conducting-convecting straight fin with variable
heat-transfer coefficient. The problem is described by the nonlinear differential equation
[1]

d>c/>/dx2 = /V201+e, 0 < x < 1, (35)

with

0'(O) = 0, 0(1) =1. (36)

Here N is the fin parameter, e > 0 is a perturbation parameter, and 0 is the non-
dimensional temperature distribution.
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Problem I corresponds to the choices

f(v) = -N2v1+€, k = 1, (37)

in the general theory. From (37) we see that

df/dv = -iV2(l + e)v' (38)

and this is certainly nonpositive for all v > 0. We can therefore use the results of 3(d) and
obtain global dual extremum principles. From Eqs. (12) and (20) we find that the basic
functional J and G are given by

J(<t>l) = /o" {k0,T+ yj-^S+jdx, 0.(1)=!, (39)

and
r if 1 + f / u 1 \(*+0/<i+t)1

G(u2) = ~ J )dx + u2( 1), «,(0) = 0. (40)

It follows from the theory of Sec. 3 that the global dual extremum principles

G(u2) < /(«, 0) < 7(0.) (41)

hold, provided the trial functions for temperature are nonnegative.

6. Calculations for problem I. We have performed calculations with trial functions
of the form

0i = 1 +£«„(*"- 1), (42)
n = 2

"2=2 bnxn, (43)
n = l

which satisfy the essential conditions 0i(l) = 1, m2(0) = 0, and the error estimate condition
0/(0) = 0. The coefficients an and bn were determined by optimizing the functionals J and
G, and the results for N = 1, e = 0.25 are given in Table 1. Since the mean-square error
in 0, is less than E = 6 X 10"\ the variational solution 0! in Eq. (42) is very accurate.

7. Problem II. Our second application of the variational theory concerns the prob-
lem of the temperature distribution in a conducting-convecting-radiating fin with temper-
ature-dependent thermal conductivity. The problem is described by the nonlinear differen-
tial equation [1]

Ix l(1 + e>d) = m + t2^' 0<;c<l- (44>

Table 1. Variational parameters for problem I with N = 1, < = 0.25.

a2 a3 a, as ae J
0.25190 0.16269 -0.11734 -0.01002 0.04415 0.332194

bi b2 b2 b, bb be G E
0.59917 0.03315 0.03838 0.05957 0.00868 -0.01068 0.332187 0.000006
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with

0'(O) = 0, 0(1) =1. (45)

Here ei and e2 are nonnegative perturbation parameters, and 0 is the temperature distribu-
tion. To put these equations in a suitable form we set

0 = 0 + M2, (46)
for then the problem becomes

cPcfi/dx2 = N2a(<t>) + «2a4(0), 0 < * < 1, (47)

with

0'(O) = O, 0(0=1+16., (48)
where

a(0) = -{-1 + (1 + 2Cl0)1/2}. (49)
61

From Eq. (46),

0 = a(0) (50)
enables us to recover the original function 0 from the secondary function 0.

Problem II described by Eqs. (47) and (48) corresponds to the choices

f(v) = -N2a{v) - e2a\v), (51)

k = 1 + fc, (52)
in the general theory. From (51) it follows that

df(v)/dv < 0 for all v > 0. (53)

We can therefore use the results of Sec. 3 and obtain global dual extremum principles.
From Eqs. (12) and (20) we find that the basic functionals J and G are

Ml) = f (K01 ')2 - ^(0i)} dx , 0,(1) = 1 + fc. , (54)

and

G(«.) = [ - F{j-\-u2')]\dx

+ (1 +l€1)«,(l). "2(0) = 0. (55)

It follows from the theory of Sec. 3 that the global dual extremum principles

G(w2) < I(u, 0) < 7(0,) (56)
hold for nonnegative trial functions for temperature.

8. Calculations for problem II. We have performed calculations with trial functions
of the form
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Table 2. Variational parameters for problem II with N = 1, t, = t2 = 0.2.

d2 ^3 ^4 ^5 ^6 J

0.35975 0.01675 -0.04888 0.08738 -0.02575 0.457523

b i b% b$ b$ b$ G E
0.70210 0.01920 0.12570 -0.06450 0.09270 -0.02050 0.457521 0.000002

</>i = 1 + i«i + Y, an(xn ~ 1), (57)
n = 2

"2=2 bnXn, (58)
n = l

which satisfy the essential conditions 0i( 1) = 1 4- |e, , u2(0) = 0, and the error estimate
condition 0/(0) = 0. The coefficients an and bn were determined by optimizing the
functionals J and G in (54) and (55), and the results for N = 1,6, = 0.2, e2 = 0.2 are given
in Table 2. Since the mean-square error in 0! is less than E = 2 X 10", the variational
solution 0! in Eq. (57) is very accurate. By (50),

0. = a(<M = - f-1 +(1 + 2e101)1/2} (59)

is the corresponding variational approximation to the required temperature distribution d.

9. Conclusion. The solutions for these two problems have shown that variational
methods based on dual extremum principles can be usefully employed to treat nonlinear
heat transfer problems. The error estimates were found to be of the order of 10",
indicating great accuracy in the variational solutions.

One advantage of the variational approach is that it is not restricted, as the perturbation
method is, to small values of certain parameters.
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