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DUAL FINITE ELEMENT ANALYSIS FOR CONTACT PROBLEM
OF ELASTIC BODIES WITH AN ENLARGING CONTACT ZONE

TrAN VAN BoN

(Received December 21, 1984)

Summary. Dual finite element analysis of the contact problem of two elastic bodies with an
enlarging contact zone is presented. Approximations of the solution are defined on two types
of triangulations by piecewise constant stress fields. Convergence is proved in both cases.
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INTRODUCTION

Dual finite element analysis for the contact problem of two plane elastic bodies
without friction was given in [1]—IH by Haslinger and Hlavdéek, but only for the
case of a bounded contact zone. In the case of the contact zone enlarging during
the deformation a primary finite clement analysis was discussed in [1]—1L It is
the aim of this paper to analyse the latter problem by a dual procedure. Two types
of triangulations are used. The convergence of the dual finite approximations for
each type of triangulations is proven. )

1. THE DUAL VARIATIONAL FORMULATION

First of all we recall the primary variational formulation of a contact problem
with an enlarging contact zone (see [ 1] -1, § 1 for details). We introduce the following
notation: the norm and the semi-norm in the Sobolev space H¥Q) are denoted

by || [l | |- respectively. P,(T) denotes the set of all polynomials of order k defined
on T.

k>

W={u|u=(v,u)e[H(Q)]* x [H(Q)]*},
Ve={ueW|u =0onT, uy=0on I},
K, ={veV]|vy) - v:n) = e(n) forae. neda, by},

where v}(n) is the component of the displacement vector v™ in the direction ¢,
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e(n) = f'(n) — f"(n); f', f” are functions describing the arcs I'y and I'g, respectively
(see Fig. 1), f',f" e C*(<a, b)).

Au, v) = ,f cjmeif) e(v)dx, Q=0 uQ",
2

Fig. 1

where e;;(u) = ¥(0u;/0x; + 0u;[0x;) are the components of the strain tensor with
respect to the displacement vector u, c;;, are coefficients defined by the generalized
Hooke’s law. Assume that there is a positive constant ¢, such that each symmetric
tensor of the 2nd order = = (1)), i,j = 1, 2 satisfies

CintTijTi = €oTyyTi; forae. xeQ.

Throughout this paper we shall use the adding convention, i.e., sum from 1 to 2
for any twice repeated index.

L(v) :j F;dx +f P, dsS,
o r'uls”

where F;, P, are the components of the body forces and the surface loads, respectively.
Fiv) =L A(v,v,)— L'v).
Then the primary problem is to find u € K, such that
(1.1) Z(u) < £(v) Vvek,.

The existence and uniqueness of a solution were discussed in [1]—1.
We now consider the sets

S={N = (Ny), i,j=12|N;eLy(Q), N/; =N},
W,=8 xK,,
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and the functional

KN V] 3) = Lo Y) + j hfenv) — ) dxs [Hov]ew,, Les,
Q
where

1
LN, v) = Ef i N g dx — Liv).

Q

Lemma 1.1. 1.If {[A"*, v¥]; A*} is a saddle-point of the functional # on W, x S,
i.e.,
AT ) £ AN 20 5 [0 7
holds for all [ A", v] € W, and pe S, then a solution u of the primary problem (1.1)

exists and
./’V‘* = e(u) > V* = U s -)b* = T{u) ]

where e{u) and r(u) are the strain and the stress tensor, respectively.

2. If uis a solution of the primary problem (1.1), then {[e(u), u]; (u)} is a saddle-
point of H# on W', x S.

Proof. 1. From the properties of the saddle-point we deduce that

(1.2) S H([N*, v¥]; %) = 0= N = e (v),
(1'3) 5#’7()\1[‘/‘/*’ v*]; ’1*) =0 ’l:'kj = L'ij.r;t-/V:t s
(1.4) S AN, v¥]; A%) (v —v¥) 20 Vvek,,

where e.g. 9,5 denotes the partial Gateaux differential of s with respect to A.
From (1.4) it follows that

(1.5) j Ajei(v — v¥)dx = Liv — v¥) Vvek,.
2
Making use of (1.5), (1.3) and (1.2), we obtain
[ CieiY — v¥) e /v)dx = Lv — v¥) VWvekK,,
S0
i.e., v¥ = u is a solution of (1.1). Furthermore,
N =)y, I =1(u).
2. Let u be a solution of (1.1). We have to verify that
(1.6) H([e(u), u]s p) = A([elu), u]; rw)) = AN, v]: o(u))
YueS, [A,v]ew,.

1t is easy to show that the left inequality holds even with the equality sign.
We have
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(17) AN,V ]; ofw)) — H([elu), u]: (w) =
— 2, V) = 2 (elu),u) + j r(u) [enf¥) — ] dx =

= %J‘ Cukt[-/Vij - eij!‘fu)] [-/Vm - ekz(u)] dx + Alu,v — u) — Liv — u).
Q

Since u is a solution of (1.1), we have
(1.8) Alu,v —u) — L'v—u) =0 Wek,.
From (1.7), (1.8) and the positive definiteness of the coefficients ¢;;, the right

inequality of (1.6) follows. Thus {[e(u), u]; t{u)} is a saddle-point of # on ¥, x S.
Q.E.D.

Using the definition of & and the relation

0 if W =ev),
Su qle(v V.. ldx = /
zesp_f ety) = Ayl Noo if AN e(v),

we arrive at

(1.9) L) = Inf L(v) = Inf Sup #([AN,v]; 1),
veKe veK, ieS
AeS

where u is an arbitrary solution of (1.1).
The problem: to find

(1.10) Sup Inf #([A,v];A)

AeS [N ,v]eW e
will be called dual to the primary problem (1.1).

We shall reformulate the dual problem (1.10) in a simpler form. To this end, we
introduce the decomposition

%”([Af v]; ,1) = %l(w", /1) + A4, v) s
where

1
HAN, D) = ‘ZJ CijiaN A 1 dx — J A iy dx,
2 0

(1.11) Ho(Av) = f (v)dx — Lfv).

The definitions of 4, #, imply that

(1.12) Inf ([ A, v]; 4) = Inf H (N, A) + Inf A4, v).
[V vIeWe veK,
It is readily seen that
. 1
(1.13) Inf A (N, A) = H(NF, )= — —f b dx .
NS 2J)o

where a,;,, are the coefficients of the inverse generalized Hooke’s law, and A7) =
= Qijritar
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Since K, < K, and K, is a convex cone (K, denotes K, with ¢ = 0), the infimum
of #, on K, is finite only if
(1.14) Ho(Av) 20 VvekK,.
We set
Stp=1{AeS|#,(4v)20 VekK,}.

It is possible to show that for any A e S;,P smooth enough we have

(1.15) %i—'j-!—Fl——-Om Q, i=12,

(1.16) Agn; =P,on I, i=12,

(1.17) T/(3") = 0 on Iy,

(1.18) T,(Xy =0 on I}, T,(A") =0 on Ik,

(1.19) —T{(X)(cos o)™ = T/{2") (cos 0’} ' =0, nela,b)

where o™, M ="', " is the angle between the axis n and the tangent to I'y and
(cos a™) * = [1 = (r™]on)*] .

In fact, from the condition A € S} , it follows that any v € K, satisfies

0A;;
—J‘ v; — dx +J ui/'v.x-jnjdsgf Fup,dx +J P, dsS.
o 0x; 20 LeQ” o) I.

Inserting v = +¢;e C3(QM), M = ', ” we obtain (1.15). Then we arrive at

J vA;n; dS :Z_’[ P, ds.
09" u00" r.

Choosing v; = +, such that the trace of i, has its support in I',, we obtain (1.16).
Consequently, we deduce

0= J Di;{ijni dS = f [Tcl(’l,) l’é + Tr;('{,) U'/l] ds +
02T I'k’

; f [T() o) + To(&) ] ds +j T/ ol dS WeK,.
I'r”

Io

Choosing v’ = 0, v" with v, = 0, 0] = 4 on I'g, where the support of  is contained
in I'y, we obtain (1.17). Thus we are left with the following inequality

(1.20) f [Tiv; + T,v,] dS + J‘ [T{v] + T,v,]dS 20 VveK,.
Ik’ k"
Taking v e V such that v, = v; = 0 and v; = v; = -+ ¢ for points on I'y U I'y
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having the same coordinates # and with ¢ e Cg(<a, b)) we have

o= [ [mweles+ |

I'g

T(A) ¢ dS =

b
= J’ [Ty(27) (cos a”) ™t + T{(A") (cos o) 1] o dny .
Consequently, we deduce
(1.21) —T{(A) (cos &) ™' = Ty(A") (cos a") ™' Vnela, by.

Choosing v; = vi = 0,0 = 0,0, = F¢ on I'y, we obtain from (1.20) that T,,(1) = 0
on I'y. The condition T,(4”) = 0 on I'y can be deduced in the same way. Thus,
(1.20) yields that

b
J [Ty(2") (cos ") 1] (vf — ve)dn 2 0 VvekK,.

a

By virtue of the condition v; — v; < 0Vv € Ko, (1.19) follows.
From (1.15) up to (1.18) and (1.21) it is readily seen that for any veK,, 1€ S5 »
we have

b
(1.22) H A4, v) = J T;(A") (cos o") ™! (v} — vz)dn.

We can show that for any A€ S} p,

b
(1.23) Inf (2, v) = j T3 (cos o)~ () dy

a

In fact, from (1.22), (1.19) and the definition of K, it follows that

b
(124)  As(iv) 2 f TY(A") (cos @) " e(n) dn WveK,, AeSip.

Let the functions f* and f” describing I'y and I'g, respectively, be twice continuously
differentiable on {a, b). There exists a function ug e [H'(Q")]* such that ug, = 0
on Iy, ug: = ¢(n) on (a,by. Choosing u, = (uj, uj), where uy =0, we have
u, €K, and

b
(1.25) HH(A, up) = J T/(A") (cos a”) ™" &(n) dn .

a

Then (1.23) follows from (1.24) and (1.25).
Combining (1.23), (1.12) with (1.13) we arrive at
(1.26) Sup Inf #([A,v]:1) = — Inf #,(7),
AeS [N, vIeW e lsS},p
where

1 Y gy "-
L) = EJ Ajihih dx — J. T;(2") (cos o) " &(n) dn .
Q

a
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We introduce the following notation for g, 1€ S:
{6,7) = J. o, t;dx, (0,7) =<cto, ),
2
Iels = <z o>, [ol* = (z.9)

where ¢: § — S is the isomorphism defined by the generalized Hooke’s law:
O = ces0;; = Cijxly -
Then, making use of (1.25) and (1.11), we may write
F1(2) = = HA[* = <eluo), 4> + L(uo)
and the dual problem (1.]0) is reformulated as follows: to find A* € S;r,,, such that
(1.27) F(2*) £ #(A) VieSip,
where (1) = 3[4]% — {e{uy), A).

*.__
ij) =

Lemma 1.2. Let u be a solution of the primary problem (1.1). Then 2* = (A
= (cijenlu)) is the unique solution of the dual problem (1.27).

Proof. It is easy to see that A*e Sfp since v = u + weK, for any weK,.
For any 1€ Sf.p we have

1
H0) - 90 = 1 f il — A5) (s — 25 dx +

1]

+J aijkz/lf'j‘(/lkt - /1:1) dx — <e(u0)7 A= 2A¥y =
o

> ? (Aij = A5) (g — Aiy) dx +J e (u)(A;; — A dx — {e(ug), A — A%y =

Q Q2
; <e(u - uo)s A — /1*> ’

where we have used the ellipticity of the coefficients @;xi- The solution u of the pri-
mary problem satisfies

* e(v —u)y =z Liv —u) WeK.
Since uy € K we have

Ce(u — ug), —2*> + L{u — uy) 2 0.

From 1€ Sy p and u — u, € K, it follows that
0 < (4 u — ug) = e(u — ug), 2> — L{u — uy).
Adding the two inequalities we arrive at

Ce(u — up), A— 2%y 20 VieSi,,
ie.,
F() 2 FO¥) VieSi,-
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This implies that A* solves the problem (1.27). Moreover, since the functional &(4)
is strictly convex on S;{P, the uniqueness of A* follows. Q.E.D.

Remark 1.1. Let u, A* be as in Lemma 1.2. Making use of (1.9), (1.25) and the
relation between &4(4) and &(4), it is possible to show that

P(u) + Llug) + #(A*) = 0.

Remark 1.2. A result analogous to that of Lemma 1.5 in the paper [1]—III
can be obtained. Namely, if a solution u of the primary problem (1.1) exists, then the
set S;!P is non-empty, convex and closed in S. Existence and uniqueness of a solution
of (1.27) can be shown directly by using the strict convexity and the lower weak
semicontinuity of the functional &(2).

We here emphasize the fact that the dual problem (1.27) is uniquely solvable if
the primary problem possesses at least one solution. The existence of the solution
of the dual problem, however, can be proved directly, if in some way we show the
non-emptiness of the set S7 ,. Thus, the dual problem may have a solution even in
some cases when the primary problem has none.

2. APPROXIMATION OF THE DUAL PROBLEM

As in [2] it is possible to approximate the solution of the dual problem by means
or piecewise constant stress tensors. Here we follow the procedure suggested by
Haslinger and Hlavadek [2].

Let us consider a triangulation 7} of @, M = ’, " such that the triangles adjacent
to the boundaries may have a curved side along the boundary, and the nodes on 'y
are on lines parallel to the & axis. If a curved triangle Te 7, = 7, v .7, adjacent
to I'y is convex, it will be divided by the chord into the “straight” triangle T, and
the segment T, such that T= Tou T,. If T.e J, is not convex, one of its sides
must be parallel to £ axis. We define

Y, = {v e V|vlp, e[P(T)]* VT, = Te 7, adjacentto I'y ,
ov
o¢
6_v
il

vlr € [P,(T)]* for the other triangles T} )

=0 VI,c TeJ, adjacentto 'y,
Ts

= 0 for each non-convex triangle 7, adjacent to I'}l ,
T.

We introduce the sets
Sh ={T€SITU€P0(T*); T*:TwaT(h’TS)n; i:j:]azl9
Kp=1{veV,|vi —v; £0 Vnela,by on TI'yulyg}.
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Then we define approximations S,,T,Py,‘ of S;,P as follows:

Skpu =14 S| <A e(vy)> = Liv,) Vv, e Koy

1t

It is readily seen that the condition v; — v; £ 0, veV, holds everywhere on
{a, b) if only it holds for the nodes lying on I'y.

Let the function u, = (0, ug) be known (see (1.25)).

Then the approximate dual problem is formulated as follows: to find A, € Sf 5,
such that \

(2.1) F(d) £ L) VYieSip,.
We introduce the projection mapping r,: S — S, defined by the relation
(2'2) o= rt i =0 Vel

Lemma 2.1. Let 1€ Sy p. Then 1t € Sf p .

Proof. It is readily seen that

(2.3) (r47)

7+ = (mes T*)_IJ‘ tdx, VI* =T, Ty, . T.e 7,
T*

HV;.T - r”o -0, h—-0.
Assume that v, € K. Then e(v,) € S,, and using (2.2) we obtain

<rhf’ e(vir)> = <Ta e<vh)> g L{"h)
because of Ko, = K, 7€ Sy p. This yields r,t € Sf 5. Q.E.D.

Next we recall some results of [2].

Lemma 2.2. Let I'yn I, =0, I'x " Ty = 0. Assume that the number of points
of I.nT,,[,nTqisfinite,and fM e C"({a — 8,b + 9)),0 >0, m=1,M ="".
Then the set

H oy =Ko [CHQV]? x [C™Q)]?
is dense in K.
Lemma 2.3, Let v e [HX(Q)]* x [H*(Q")]?, fM e C*(<a, b)). Define the Lagrange
> linear interpolation v, € V,, as follows: If A; is a node of a curved non-convex tri-
angle, v,(A,) = v(D,), where D, is the projection of A; onto I'y in the direction &;
v(4;) = v(A4;) at the other nodes. We construct v; such that vi e V,, i.e., v, is a piece-
wise linear function which is extended continuously by constants on segments T,
and on non-convex curved triangles. Then

“VI - v”l,Q’uQ” -0 for h-0

for any regular system of triangulations.
We can prove the following result about the convergence of 4, to A*.

Theorem 1. Let f®eC?> M ="'," in a neighbourhood of the interval {a,b)
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and let the same assumptions on 'y, 'y, I'o, I, as in Lemma 2.2 hold. Assume
that Sy p #* 0.

Then the approximate dual problem (2.1) possesses a unique solution A, and
(24 = 0 0, B0

holds for any vegular family of triangulations T, where A* is the solution of the
dual problem (1.27).

Proof. The set S;{P.,, is convex and closed. Lemma 2.1 implies that it is non-empty.
The functional (1) is strictly convex and lower weakly semicontinuous on S}L,p,,,.
The existence and uniqueness of the solution of (2.1) follows.

To show (2.4), we shall apply an abstract theorem about the convergence of the
Ritz-Galerkin method (see e.g. [3], Chapt. 4). We only have to prove the following
two conditions:

(1) ). €Sk pp T — A*in S for h >0,

(i) 74 € Sfpu T, — 7 (weakly) in S implies © € Sy .

Choosing 7, = r,A*, making use of Lemma 2.1 and (2.3) we deduce that (i) holds.

Now let v be an arbitrary element of K,,. By virtue of Lemma 2.2 we find v, e 4,
such that for any y > 0,

Hv}' - V“l,n’ug" <7.
Using Lemma 2.3 we arrive at
”Vyl - vv”1,!2’u!)” -0, h—>0.

It is clear that v,; € K. Then we obtain

I[vv, = V1000 S ”vy, — vy”l,Q,UQ,, + “vy — v”lyg,um — 0fory, h — 0.

If 7,€ S§ p, We have
<r,,, e(vﬂ» 2 L(vﬂ) .
Since 7, — © (weakly) in S and e{v,;) — e(v) (strongly) in S, passing to the limit
for h,y = 0 we conclude
(z,e(v)y 2 L(v) VveK,
ie., T€ ST p. Q.E.D.

3. AN ALGORITHM FOR THE SOLUTION OF THE APPROXIMATE PROBLEM

As in [2] we can simplify the approximate problem (2.1) by eliminating the
auxiliary functions v,, which appear in the definition of Sf p .

We set N
vi(¢,m) = L aiedS ),
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where g; are the values of the displacement components at the nodes of the triangula-
tion .

If we describe the condition vy ~ vy, < 0 at the nodes lying on I'k, then precisely
two components {gy,, q;,} intervene at any pair of the nodes (A, B,)e [k (see
Fig. 2). Namely, the condition vj; — v;, < 0 implies q,, — g, < 0. We now intro-
duce that linear transformation

q = Fyy: R* > R?
defined by the relations
Ve = Ay s Vi = Qiy — i, -

(
Calb
B, Aq
B
2 % A2
S N\A )
57 C7a 1 Fig. 2

It is readily seen that F is regular. We consider the same transformation for any
pair My = {qi,» 4.}, k = 1, ..., Q corresponding to the pair of nodes (4,, B,) € I',.
0

We also set y, = q, for q,¢ U M,, 1 < p < N. Finally, we have
k=1

(3.1) q=Fy:R¥ > R", and
vieKoy, > qet<yed,={yeR", y,<0, k=1,..,0}.

Let 7. be the characteristic function of the figure T*e 7, T* = T, T,, T,, T..
Then we have

(3.2) € Sy (&) = T*ZF o T*) Yga(&, 1)
Denoting by
(3-3) th = {Tll(Tl)a Tzz(Tl)s T12(T1)a ‘Cll(Tz)s Tzz(T2)> le(Tz), }

the corresponding vector in RM, we obtain

N
(roe(vi)> = ) 7(T*) 3, q.e(9;) A dn = (Et,q),
T*Tn ) s i=1
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where E is a matrix of order N x M (N < M) and (Et, q) = q"Et. Since
L) = 3 L) = (1.9).

where ! is a fixed vector in R", the condition 7 e Sy 5, can be written in the form
(I—Et,q) <0 VYqex,.

Applying the mapping F, we obtain an equivalent condition

(3.4) (I— Et,Fy) =0 Vyex,.

Denote by J~ the set of all indexes ky, k = 1,..., Q, and J® = {1, .., N} = J ™.
Since the cone ¢, is defined by the vectors

{e;, —e,; jelJ’ meJ ™}
where {ej, e,,,} create an orthonormal basis of R, (3.4) is equivalent to the system
(3.5) g{t) = (I — Et,Fe;) =0, j eJ°,
(3.6) gn't)= (I — Et,Fe,) <0, meJ .

Inserting (3.2), (3.3) into the functional ¥(z,), we arrive at the following problem:
& ot) = min over the set of all t satisfying the conditions (3.5) and (3.6).

Remark 3.1. When choosing global coordinates (x;, x,) instead of (&, #) the
procedure is analogous, but the situation is somewhat more complicated. In fact,
if we describe the condition vy; — v, = 0 at the nodes on Iy, there exist precisely
four components {qy,, 4i.. qi;» Gr,} at any pair of nodes (A, B,) € I'x. The condition

4

Uhe = e = O implies 2. b;a,, =0, where by = —by = —cos (x4,8), by = —b, =
= cos (x,, &). =1

4. ANOTHER APPROXIMATION BY FINITE ELEMENT METHOD

In Section 2 the dual problem (1.27) was approximated by piecewise constant
external approximations using the triangulation suggested by Haslinger and Hlavdcek
[2]. 1t is the aim of this section to approximate the same problem using another
triangulation, analogous to that suggested by Hlavddek and KfiZek in [4]

Assume that the parts 'Y, M = ', " consist of a finite number of convex and
concave arcs. Here an arc I’y < 09 is called convex {concave) if there exists a convex
domain Q, = Q (Q, = R* = Q) such that I', < 3Q,,.

Next we define a triangulation of Q@ = Q' U Q". We construct domains Q'
approximating Q¥ and such that 2 < G, M = ', ”. Each concave arc belonging
to I'Yl is approximated by a polygonal curve consisting of a finite number of line
segments whose lengths are not greater than h. Each of these line segments is tangential
to the concave arc. Furthermore, each inflexion point of I'f must be a vertex of the
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polygonal curve. By I'y, we denote the union of the convex arcs and the approximate
polygonal curves. The part of Q¥ bounded by 'Y and I'k, will be denoted by DY.
Then the domain QY = @ = DY will be triangulated in the standard way used
in the finite element method. The triangles adjacent to the boundary may have
a curved side along the boundary. We require each end point of I'tf and each node
of the approximate polygonal curves to be also a node of the triangulation. Moreover,
the corresponding nodes 4;, B; lying on Iy, and Iy, must lic on the lines 4,B;
parallel to &-axis (see Fig. 3). This triangulation will be denoted by 77" and 7, =
=T, 0T,

L+

Fig. 3

We say that the system {7}, 0 < h < hy is regular if the smallest internal angle
of all triangles of 7, for any 0 < h < h,, is not smaller than a constant 0 > 0,
independent of /. Here if a triangle is curved, the internal angles are defined by the
angles of the “straight™ triangle with the same vertices.

If a curved triangle Te 9, adjacent to I'y is convex, it is divided by a chord into
a “straight™ triangle T, and a segment T, such that T = T, u T,.

We introduce

Vi ={veV|v|r, e[P(T,))* VT, = Te 7, adjacent to Ty,
0
— v
(05 >
(i v> =0 VT,< D,, where T, is a curved triangle defined by H, A4;, H;;,
ot Jlr, (Fig. 3),

v|; € [P,(T)]* for all the remaining triangles}.

=0 VYT, c TeJ, adjacent to I'y ,

Ts
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In other words, V), consists of piecewise linear vector-functions which are extended
continuously on segments T, and on non-convex curved triangles, constantly in the
direction ¢&.

Let ¢ > O be fixed. We define GM < @™ to be the so called e-skin of the curved

part of I'Y, i.e.,

GM = {yeQM’ Ixelrd¥ - F;M:dist(x,y) <&, M=""
where I'j™ = {xe '™ there exists a line segment S < I'.xe S}, and G = G U G”
(Fig. 4).

Fig. 4

The following assertion holds.

Lemma 4.1.  Let ve[HYQ)n W'*(G)]* x [HHQ") n Wh (@)%Y e
e C¥(<a, b). We define a Lagrange linear interpolation v, € V, as follows: if A, is
a vertex of a side tangential to I'y, v\(A;) = ¥(D;), where D; e I'Y is the projection
of A; in the direction &; vi{a;) = v(a;) at the other nodes; then we construct v,
so that vy € V,. Then

[vi = v|i g =0 for h=0

holds for any regular system of triangulations.

Proof. Let ¥ be the space of all piecewise linear functions on 7, U D,, continuous
on O™, M =',”, where each convex curved triangle T = T, u T, will remain un-
divided while each non-convex curved triangle T, < D, is divided by the line segment
A;D; into two triangles T.", m = 1,2, on which the functions from V{ are linear
and defined by the values at the nodes A;, H;, H;,, (see Fig. 3). Let the functions
w;, € V0 be constant in the direction &, i.e. ((8/0) wy)|zm = O for each wj e V.,
m = 1, 2. The interpolation vy € V0 of v is defined so that v) = v at all nodes of
the triangulation 7, i.e., except the nodes D,.

First of all, we shall show that

(4‘1) ”V;? - v”l,g'ug” -0 for h—-0.
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In fact, there exists an extension Ev e [H*(R?)]? of v such that
|Ev]2.02 < Cl[V]2.0m

(see e.g. [5], Chapt. 2). For any convex curved triangle adjacent to I'y we define
T = Ad,a;a, (ie. twice extended Tp) (see Fig. 5). T= Tif T is a straight triangle.
Let 7 denote the linear interpolation on T with the nodes a;, a;, a,. Using the affine
equivalence and the regularity of the system {7} we deduce

(4.3) |rEv — Ev|, 7 < Ch|Ev|, 7,

where C is independent of h and Ev. Since nEv = vy on T*, VT'* € 7,, making use
of (4.2), (4.3) we arrive at

@8 v=viliaw= % Iv-vilirs ¥ v-vlir=
*e T pM

T*eT M

= Ccn? ; M\1Ev||ff* < 2Ch*||Ev|3 pe £ Cih?|v]5 ou .

T

IN\NAi+

Furthermore, it is readily seen that for each point (&, ) € T, we have
el s max Jof4d] s [vfowa, J=1.2,
c=i—1,i,i+
because for h small enough T, = G and ve[W"*(G)]2 Consequently, we have

lvl?(és 1’]) - V(é, ’7)! é 2HVHO,m.G V(C, }7) € Tc
and

(45) 1~ vir, < 4] names T,

Let us consider (8/dn) v, on T} (Fig. 6). It is readily seen that
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0
v b vi(cos o) + (sin ocM)a2 vy = (cos o) azv,? ,

on ¢ n

QD
<

i.e.,

é

0
— vy = (cosa™)™ Z vy .
an ) oy

But v,? is linear in the direction v, therefore we have

° v, = VF?(ALH) - v;’)(A;) = V(A"”) ~ v(4) = 9 v(N,),
ov IAiAi+ll lAiAHll ov

where N, is a point lying between 4; and 4, ,. Since

~

< vN,) = g v(N;) (sin o) + (cos a™) ;% v{N,)

v an
we have
2 vy = 2 v(N)) + (tg ™) 2 v(N))
" g
ie.,
] = O

Here C is independent of T, bzcause of the fact that

ltg | = [/M]lcrcans -
A similar result holds for T2,
Finally, we obtain
S0 = = M
d o
— (i = V)| = Vs
on
Thus we deduce
(4.6) v = V| 7. < C|v|3, .o mes T..

Combining (4.5) with (4.6) we arrive at

i = vlir. = Clv]icmes T
and
(4.7) v = VI3 ﬁT Zw“"i? —v|ir. £ C|v|i .. cmes DY >0

for h — 0 since mes D) — 0 for h — 0. Then (4.1) is a consequence of (4.4) and (4.7).
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Next we show that
(4.8) lvi = villion >0 for h—>0.
In fact, it is clear that
Supp (v; — v;) < UT,u D, U E,,

where E, is the set of all “straight” triangles having at least one vertex at the point
of intersection of two tangents to I'y.

In every T, we may write
on(& ) — vr (& m) = vif(& m) — vrE(s).m) = [€ - f(s)] ”h;

for the j-th component, j = 1, 2, where ((s), #) is the projection of the point (&, 1)
on the chord in the direction &. Since f™ e C*(<a, b)) we have |& — &(s)| < h.
Thus we deduce

2
(4.9) J‘ (vg; — v;)? dédn < hZJ (5% v,?j> dédy.
T, T,

For T, we also have

ivl(x)ja
o0&

0 G, 0 ...
— (on; — vr)) = — — vhy— &(s)
on

0
4.10 = (00, — v =
( ) 65 (vhj vI]) 611 65

= ltg 0‘] = ”fMHct(@,b)) , j=12,

where « is the angle between n-axis and the chord. From (4.9), (4.10) we obtain
(4.11) lvi = villf.r. £ Cvilir

Let us consider a Te E,. Then T < G for h small enough We know that T has
either the position of T* or T** (see Fig. 7).

X5

Fig. 7 Fig. 8
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If T has the position of T*, then vy(a;,,) = v;{a;, ), ie.,
(4.12) |on; — v gkzn_g)illv,?j(Ak) ~o{A4)|, j=12.

If T has the position of T**, vy (a,) = vy{ay), k = i, i + 1, and for each (&, i) e T**

we have
(4.13) I”i?i(f’ n) — v(&, ’1)| = ‘v,?j(A,-) - UIJ'(Ai)l » J=12.
Moreover, for the j-th component, j = 1, 2, we have
R D a D; a
(4.14) |op(4)) — v{A)] = |v(4) — v{Dy)| = — v, d¢| < — v,| dE.
Ai 66 A ai

If h is sufficiently small, 4D, = G, |4,D;] £ Ch}, where C is independent of A,
and h,. Furthermore, we have

= Mi,oo,c , (&) GZEE

0
POy
g

Thus, from (4.14) we get

(4.15) i 4) — v, A)| = Chzlvly -
Combining (4.12)=(4.15), for every Te E, we obtain
(4.16) v = ¥illo,r £ CH?V]{ 0.6 »
(4.17) V9 = vi|3+ < Chilv]y 0 mes T.

Since v, and v, are linear on T and the system {7} is regular, setting w = v; — v,
we have (see Fig. 8)
w; _ wi{0y) — ij/OZ) 2|wlo...r <

: = == w o b I - 1 2
ox, 10,0, 2or ” lo.cx

where o > 0 is the number from the definition of the regularity of {7,}. Making
use of (4.16) we obtain

2
ow;

(418) |

0x4

1
dx = - hﬂv teemesT, j=12,
o

and a similar estimate for {; [ow;/dx,|* dx.
Finally, (4.17), (4.18) imply

(4.19) vi = vilir < CR?|v|; g mesT.
Let us consider the last case, when T, < D, is defined by sides 4,H;, A,
and the arc ﬁTH,-“ (see Fig. 6). By definitions of v;, v, we get
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‘ on(As) = v(4)), v {4) = v(D),
ie.,

(4.20) O Ar) — vr(4;) = v(4;) — v(D).
Furthermore, for each (6, 11) e T, we can show

(421) (&, 1) — v (&m)| = max 1]”J‘(Ak) — v Dy)|

=i~1,i,i

because of the fact that

lony(H,) — v {H)] s max 1|v,.(Ak) — oD, s=ii+1; j=12

and the functions vy, are linear on T, m = 1, 2 (see Fig. 6).
From (4.14), (4.15) and (4.21) we deduce
[vi — vilo.r. < ch*|v|? g mes T, .
Moreoves, for each T, we have

T —v)=o,

o¢
Consequently,

g CIV‘I oG

d

"“a“ V}?} = Clvihmﬁ ’ ,f) v
on

|VI(1) - vll%,T‘\ S_. C‘[vlf,w,G mes T(‘
holds, i.e.,

(4.22) [vi = vt r. < (Ch* + Cy)|v|? , g mesT,.
Using (4.11), (4.19) and (4.22) we arrive at
(4.23) i = wilte = ; [vi = vill¥e, + TZE Vi = vl

+ 2w = villia, = Cilor, + vl

€Dy

2
Lt

Lecomes(E,uD)->0, h-0.

Here we have also used the fact that mes(E, U D) — 0 for h — 0, (using (4.4))
mes (LT,) = 0 for b — 0 and [V} or, £ [V]ior + Vi = v]1 0. -

Combining (4.1), (4.23) with the triangle inequality we obtain the assertion of
lemma 4.1. Q.E.D.

Theorem 2. Assume that fMe C* M ="'," in a neighbourhood of the interval
{a, by. Let the assumptions on I'Yl, 'y, I',, I', from Lemma 2.2 hold. Assume that u
satisfies the conditions of Lemma 4.1 and Sy , += 0.

Then the approximate problem 2.1 possesses a unique solution and

|4 = 2% -0, h—0

holds for any regular system of triangulations {7}, where A* is the solution of
the dual problem {1.27).
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Proof is parallel to that of Theorem 1, but instead of Lemma 2.3 we use Lemma
4.1.

Acknowledgement. The author is grateful to Ing. I. Hlavddek, CSc. for his valuable
discussions.
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Souhrn

DUALNI ANALYZA KONTAKTU DVOU PRUZNYCH TELES
S PROMENNYM ROZSAHEM KONTAKTU METODOU KONECNYCH PRVKU
TrRAN VAN BoN
V praci je provedena dualni analyza kontaktniho problému dvou pruZnych téles s prom&nnym
rozsahem kontaktu. Aproximace feSeni metodou konednych prvku jsou definovany na dvou

typech triangulaci po &astech konstantnimi poli napéti. Dokazuje se konvergence obou typu
aproximaci.

Peswome

JIBOMCTBEHHBIN AHAJIM3 KOHTAKTHOM 3AJAYM VIIPYIUX TEJ
C PACIIMPSOIIEVICS 30HOM KOHTAKTA
TrRAN VAN Bon
OrnpenensieTcs ABOMCTBCHHAsS BapualHOHHAs GOPMYIUPOBKA KOHTAKTHOR 32024y JIBYX YIPYTHX

TeJT. ANNpOKCHMALMHA TTOCTPOCHBI IIPH IIOMOIIH JIBYX THUIIOB TPUAHTYJISUUM H TIO 4ACTSIM MOCTOSH~
HBIX TI0JIEH HaNpshKEHU. B 060MX cllyyasx JOKa3biBACTCA CXOIUMOCTD ATlMPOKCUMALIUH.
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