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DUAL FINITE ELEMENT ANALYSIS FOR SOME UNILATERAL 
BOUNDARY VALUE PROBLEMS 

I. Laváček, Praha 

A great number of papers of both technical and mathematical cha-
racter has been devoted to the numerical solution of variational in-
equalities. For instance, in tha book [l] more than 300 titles ąre 
quoted. 

The boundary value problems with inequalities contain two im-
portant classes: 

(i) problems with inequalities on the boundary of the domain 
undeг consideration, 

(ii) problems with inequalities in the domain. 

In general, the pгoblems of both classes can be solved appгoxi-

mately by means of finite differences or finite elements. For pгo-

blems of the class (i), howeveг, where the inequalities are concen-

trated on the boundary, only the finite element method is applied 

in case of a geneгal boundary. In the following, we restrict oursel-

ves to the problems of the class (i) for elliptic equations. A sur-

vey of some recent results on the dual variational approach applied 

to several pгoblems of the second oгder will be presented. 

1. An equation of the зecond order 

To point out the main idea, let uз consider the following model 
2 

problem in a bounded polygonal domain GCR : 

(1) - A u = f in G , 

u = 0 on Г , 

u
>
 0 >
 ІL-S >- 0, ul-S = 0 on Г = Г - Г , 9 фn ' Ъ n a u ' 

where Г and Г
Q
 are parts of the boundary Г= 2G, дu/Эn de-u a 

notes the derivative with respect to the outward normal ji • 

We shall denote .Ѓ(G) = W^
k )
(G) the Sobolev spaces with the 

usual norm || .|L and H (G) = L^ÍG) . The semi-norm consisting of 
all derivatives of the k-th order only, will be denoted by | •L . 

Assume that the right-hand side of the equation (1) fЄL^ÍG) • 

1.1. Pгimary variational foгmulation 

Let us introduce the functional of the potential energy 

k(v) = \ J I grad v|
2
dx - J fvdx 

* G G 

and the set of admissible functions 
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K-{ve^(o)|^T|ru-o, r|r a"
0^ 

(where fv denote the traces of the function v )• 

The problem (1) corresponds to the following variational (pri

mary) problem: 

(2) to find a function u£K such that 

L(u) ̂ L(v) ¥ v€K . 

The problem (2) has a unique solution. It is not difficult to pro

ve that (i) any solution of the problem (1) satisfies the condition 

(2) and (ii) any solution of (2) satisfies the equation (1-̂ ) in the 

sense of distributions and the boundary conditions (I--,) in a functio-
—1/2 

nal sense, i.e. in the space H~ ( T ) # 

For the approximations to the primary problem - see e.g. [3],[5] • 

1.2• Dual variational formulation 

We often have problems when the gradient (or cogradient) of the 

solution u is more interesting than the solution itself. In physi

cal problems grad u represents the vector of fluxes, in elasticity 

it corresponds to the stress tensor. 

Therefore it may be useful to formulate the problem directly in 

terms of the unknown vector-function of the gradient. To this end let 

us introduce the set 

Q ={ qG [L2(G)]
2| div q€L2(G) } . 

For q£Q we may define the functional (outward flux) 

q.n € H"1/2 ( r ) as follows 

<q.n,w> = / (q.grad v + v div q)dx V VfGY^/2( D , 
G 

where vG.CT*(G) is an extension of the function w = jr-v • 

We write si > 0 for a functional sGH"1^2) T) if 
" a 

<s, jrv> £ 0 V v£K . 

Let us introduce the set of admissible functions 

U = { q € Q I div q + f = 0 in G, q.nl p ± 0 } , 
1 a 

the functional of complementary energy 

su>=iNI2o 
and the dual variational problem: 

to find q €U such that 

(3) S(q°)^S(q) V" qGU . 

The problem (3) has a unique solution. Moreover, there is a con-
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nection between the solution u of the primary problem and the solu
tion q of the dual problem as follows: 

(4) q = grad u , 

(5) L(u) + S(q°) = 0 . 

The proof of (4) and (5) can be based on the saddle point theory (cf. 

[5] ) . 
1.3* Approximations to the dual problem 

Assume that we have a vector qGQ such that div q + f = 0 in 
the domain G • (We can set e.g. q = (q-,,0), where 

q1(x1,x2) = - J f (t,x2)dt • ) 

Then it is readily seen that qGU if and only if p = q - q^UQ , 
where 

UQ = { p E Q | div p = 0, (p.n + q.n) i p > 0 } . 

Thus we are led to the following problem, which is equivalent with 
the problem (3): 
to find p €U Q such that 
(6) J(p°) ̂ J(p) V pGU 0 , 
where 

J(p) = | |p|o + <^P>0 • 
With respect to the definition of the set UQ , instead of the 

standard finite element spaces Vh we have to employ the spaces of the 
so called equilibrium (solenoidal) elements, which satisfy the equa
tion div p = 0 in the domain G at least in the sense of distribu
tions. To this end we apply the spaces N. of piecewise linear trian
gular elements, which were proposed by Veubeke and Hogge in [6j and 
studied in the paper [7] • The latter study yields the following ap
proximation property of the equilibrium spaces & (on any regular 
family of triangulations): 

(7) v I pG[H 2 (G)] 2 , div p = 0, 3 t f h £ N h : 

| | P - 7r h | | 0 ^ch 2 lp | 2 . 

In the following, we shall use the strongly regular family of 
triangulations {Th} (i.e., the minimal angle in Th is bounded from 
below and the ratio of any two sides in Th is bounded from above, 
the bounds being independent of the parameter h - the maximal side in 
the triangulation Th ). 

Assume that a function FG[E (G)] exists, such that 
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div F = 0 in G, F.nL = -q.n|p 
'a a 

Let us denote -q.n = g and construct a function gh£kp( P&) 

such that its restriction gu|o onto any side S. C p of the tri-
hl bj J a 

angulation Th coincides with the Lp(S .)-projection of g into the 

subspace of linear polynomials P,(S .) . 

Defining 
uoh = { p e N h l p - n | r a - % ) > 

we say that a vector P £Ur\h is a finite element approximation to 

the dual problem, if 

(8) J(ph)*J(p) V- p€U 0 h . 

(Note that UQh^ U0 u n l e s s &h - £ holds everywhere on Pft.) 

Theorem 1» Let the boundary P consist of a finite number of non-

intersecting polygons SG. and let 
meas ( P u O ^G•) > 0 V- -j . 

Assume that 

p°G[H2(G)]2 , (p°- D . n G B 2 ! /\ H P J 

holds for any side P of the polygonal boundary• 

Then for any strongly regular family of triangulations it holds 

(9) ||p-ph|0sC(p°)h--/
2. 

Proof, Let us define the mapping riT G ̂ ([^(T)] 2; [P^T)]2) 

for all -C^Th by the following conditions: the L2(S .)-project ion 

of the flux Q»n|s# is equal to the flux (/~ITq).n|ŝ  for each si-
d ' d 

de S. of the triangle T . 

Define also the set 

R(G) = { q | q G ^ t G ) ] 2 , div q = 0 } 

and the mapping rhG A-S(R(G);N-) by the conditions 

r h q | T = n T q ¥ T G T h . 

(Then n = rhp can be taken in (7).) 

Let us introduce the cones 

C = {qGQ | div q = 0, q , n | p > o } , c
h

 = c n N
h * 

' a 

Lemma 1. Denote U = p - FGC and assume that a ^ h
e c

h exists 

such that 2U - W hG C . Then it holds 

do) l|p0-Ph|loslu-\lo + l l F - r h F « o -
(For the proof of (10) one employs the variational inequalities 

characterizing p and p , respectively,) 
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Thus it suffices to find a suitable element W^^C^ close to U 
To this end we (i) construct a one-sided piecewise linear approxima
tion y/n of the boundary flux U.n and (ii) define W, = r̂ U in 
the interior elements TGT, , (iii) correct r,U in the boundary 
strip to obtain W, .n = 0//- on P . 

Let us present the approach in detail: 
Lemma 2. If the assumptions of Theorem 1 hold, then there exists 

a piecewise linear function i.//, on /"* (with the nodes determined 
by the triangulation T.̂  ) and such that 

(11) J Yv,ds = / (r-U).nds ¥ j , 
2G. n £>G. n 

(12) OST^h<u.n on Pfi , 

(13) ||(rhu).n - rh\\o,rs c *2 - £ | H 2 , P&n rm ' 
Proof. Denote U.n = t, (r.U).n = t, and consider a side S.C 

C T 0 • Let tT be the linear interpolate of t over S. • First a j. . l 
we construct the function YhiS. == T h * 

1 If t-t-. on S^ , setting 1//£ = t-j- we obtain 

(14) IIYh " t-hlks. - ! * - tillofSi * I * - ^lo.s. * 
< c h 2 | t | 2 ) S i . 

2 Let t<tj at some point P€S^ such that the tangent to 
the graph of t at P lies under the graph of t and, if y?" 
corresponds to the tangent , y ^ - 0 on S*. Then the estimate 
(14) holds. Thus we construct Y h over P . On 3G-- r we de
fine 

(15) T h = th * a. , 

where a. is a constant such that (11) takes place. The estimate (13) 
follows from (14) and (15). 

Lemma 3. Let a piecewise linear (discontinuous, in general) func
tion Lf> on P be given such that 

J LP ds = 0 V-(16) J o? ds = 0 t j 9 V 
Then there exists a vector-function r G i such that w^.n = <f 

on r and 

(17) lA.^-^Mo.r • 
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Proof* Let G. be the union of all triangles T ^ T
n such that 

T O P / 0 (a boundary strip of G )• We determine r G N ^ by means 
of properly chosen flux parameters on the sides of T n , such that 
supp v r C a • In particular, we choose the flux parameters /3 equal 
to the corresponding values of ^ on 3G. and equal to zero on 
9GP - 2G. . As the sides connecting 9G* and VG^ - ^G. are 
concerned, we set A = 0 at the vertices of 2 G £ - 0G. but the 
parameters at the vertices of dG. remain to be determined from the 
conditions (i) of the vanishing divergence and (ii) of the continuity 
of the fluxes along the interelementary boundaries* Using (16) the 
linear system for the remaining parameters can be solved and the solu
tion /S estimated from above, making use of the strong regularity of 
the triangulations, as follows 

\h\ *0h"*Mo,r • 
Then the estimate (17) follows easily. 

To finish the proof of Theorem 1, let us set 

y>= (rhU).n- yh , 

where T̂ . is the one-sided approximation from Lemma 2, and consider 
the extension w1 of a> from Lemma 3. Then the function W^ = 
= r.U - w 1 satisfies the conditions of Lemma 1. The assertion (9) 
follows from (10), (7), (17) and (13). 

Algorithm for the dual approximation 

The problem (8) belongs to quadratic programming. It can be sol
ved by various procedures, e.g. by the method of Uzawa (see [4]) or 
by a method of feasible directions (cf. [9JK 

1.4* A posteriori error estimates and two-sided bounds for the 

energy 

Having approximations of the primary and of the dual problem, we 
are able to calculate a posteriori error estimates and two-sided 
bounds for the energy of the solution u , as follows. 

Theorem 2. Let i^GK and /qh = q + p h€U • Then it holds 

I u - Ufcj? <- | 3 h - grad u j § + 2 f ^.nu^s ̂  E , 

1 
qh- gгad U|Q -B 

-ZUv^) -• |ug = (f,u)
Q
 ^2S(q

h
) . 

Proof. One can easily obtain 
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|v - u\l S2[L(v) - L(u)] V v G K . 

Prom (15) and (3) it follows that 
-L(u) = S(q°) ^ S(q) V q € U . 

Hence for any v € K and q€U, q - q = p e u Q h we may write 

|v - u\l * 2L(v) + 2S(q) = \v\f - 2(f,v)Q + |q|j| -

-Ik -q(v)|lo + 2(<l.<l(v)) - 2(f,v)Q , 
where q(v) = grad v • Moreover, we have 

(q>q(v)) - (f>v)n = J (q.grad v) + v div q)dx = 

c 
= <q.n, jr-v> = J^ q.nvds • 

a 
2# Some other unilateral problems 

Recently, the following boundary value problems have been sol
ved by the dual finite element method with analogous results as abo
ve: 

(i) equations with an "absolute" term 

(18) - A u + u = f in G 
with the conditions (1-,) on the whole boundary. Here the standard 
piecewise linear elements can be applied for both the primary and 
the dual approximations (see [5]); 

(ii) problems with a non-homogeneous obstacle on the boundary, 
i.e. an equation (18) with the boundary conditions 

u-s> 4i~° > (u-e>iri = 0 on r» 
where g is a given function (see [lo]); 

(iii) semi-coercive problems of the type (1), i.e. the equation 
(1-̂ ) with the conditions (1.-.) on the whole boundary. The proof of 
convergence requires a different approach, because the one-sided 
approximations of the flux cannot be used (see [12]); 

(iv) Signorini's problem in plane elastostatics and contact pro
blems for two elastic bodies (see [l4])« The triangular piecewise 
linear block-elements, which were proposed by Watwood and Hartz in 
[15] and studied in [l6] , [17] , have been used for the dual appro
ximations. 
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