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Abstract 

The field of data envelopment analysis (DEA) has evolved rapidly since its introduction to 

decision-making science 40 years ago. DEA has since attracted the attention of many researchers 

because of its unique characteristic to measure the efficiency of multiple-input and multiple-output 

decision-making units (DMUs) without assigning prior weight to the input and output, unlike most 

available decision analysis tools. The body of research has resulted in a huge amount of literature 

and diverse DEA models with very many different approaches.  

DEA classifies all units under assessment into two groups: efficient with a 100% efficiency 

score and inefficient with a less than 100% efficiency score. This ability is considered both a 

strength and a weakness of the standard DEA model because, although it allows DEA to evaluate 

the efficiency of any dataset, it lacks the power to rank all DMUs, by giving full efficiency scores 

to many efficient units. This issue has attracted many researchers to investigate the weak 
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discrimination power of classical DEA models, resulting in a subfield of research that focuses on 

DEA ranking. 

This thesis focuses on the development of the conventional DEA model, and an attempt 

has been made to study models that are considered as improved models, or approaches that bring 

a better ranking field, that may bring more accurate evaluation than the original DEA. After 

studying DEA ranking models, the thesis presents various models under the optimistic and 

pessimistic DEA ranking approaches. The first and fundamental contribution are the optimistic 

and pessimistic free disposal hull (FDH) models. In this study, authentic optimistic and pessimistic 

DEA models without convexity are developed from both input and output orientation. 

Further into the research investigation, extended models have been proposed, by combining 

the conventional and FDH ranking models with other different approaches in the literature. Chapter 

4 of this thesis presents three extended FDH models: an FDH slack-based model, an FDH super-

efficiency model, and a dual frontier without infeasibility super-efficiency FDH model. Chapter 5 

shows the development of extended models when virtual DMUs are considered. Improved virtual 

DMU models and improved FDH virtual DMU models are proposed in order to develop the DEA 

ranking ability from both optimistic and pessimistic approaches. The final model is an optimistic 

and pessimistic forecasting approach using regression analysis. The forecasting model can be used 

by decision makers to determine the resources needed for future planning to build an efficient new 

unit with reference to the current DMU set.    
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1.1.  Background and motivation 

Data envelopment analysis (DEA), a well-known method for measuring efficiency between 

decision-making units (DMUs), was introduced more than 40 years ago when Charnes et al. [1] 

presented their so-called CCR model, through which they were able to transform the fractional 

linear measure of efficiency into a linear programming model. DEA has since attracted the attention 

of a number of researchers because of its unique ability to measure the efficiency of multiple-input 

and multiple-output DMUs without assigning prior weight to the input and output, resulting in the 

proposal of diverse DEA models by different authors. Indeed, empirical applications of DEA are 

found in many sectors, including education [2], banking [3, 4], manufacturing [5], logistics [6], 

telecommunication [7], healthcare [8], and even sports [9, 10]. 

 

DEA can be used as a decision analysis tool in several areas because it does not focus on 

finding universal relationships between all the units under assessment in the sample. Rather, DEA 

allows every unit in the dataset to have its own production function and then it evaluates the 

efficiency of that single unit by comparing it with the efficiency of the other units in the dataset. 

More specifically, DEA classifies all units into two groups: efficient with a 100% efficiency score, 

and inefficient with a less than 100% efficiency score. This classification is considered both a 

strength and a weakness of the standard DEA model because, although it allows DEA to evaluate 

the efficiency of any dataset, it lacks the power to rank all units. For instance, in practical 

applications, decision makers (DMs) are typically not just interested in classifying data into efficient 

and inefficient; more often, they wish to rank all units under evaluation. In order to overcome this 

discrimination problem of DEA, a modified approach is required to rank all DMUs under 

assessment. 
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This problem has been examined extensively by DEA researchers, and a number of ranking 

methods have been introduced, based on different techniques and approaches. Most of these 

methods can be considered to provide post-analysis to standard DEA models in order to achieve a 

better final ranking. However, a subgroup of research papers has focused on developing ranking 

methods specifically for DEA. Adler et al. [11] reviewed the literature on DEA ranking methods, 

for example, focused on the development of this research stream between 1986 and 2000.  

 

This dissertation focuses on the development of the conventional DEA models, and an 

attempt was made to study models that are considered as improved models or approaches that bring 

better ranking and more accurate evaluation than the original DEA. This development of DEA 

literature is immense. To get a sense of the literature, Emrouznejad et al. [12] noted in 2008 that the 

body of DEA published work was nearly 7,000 entities. This number has increased rapidly in later 

years, for example, searching the sicencedirect.com database shows that the number of entities 

published in the field of data envelopment analysis is nearly 1,600 entities for each year between 

2013 and 2015. Among this huge literature of theoretical articles and empirical studies, there is a 

subgroup of research work focused on DEA ranking methods. This subgroup of research work has 

become a vital component to any efficiency assessment process that involves DEA. The essence of 

ranking methods in decision science and DEA has resulted from the weak ability of the classical 

DEA model to distinguish among strong but different decision-making units. Most of the time, 

decision makers require full assessment rather than classifying DMUs to be either efficient or 

inefficient, and that is considered to be one on the main conventional DEA weaknesses.  

After identifying the weakness of the conventional DEA ranking method, a study of the 

literature was carried out, as shown in chapter 2. It was found that the six categories of DEA 
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ranking methods that were long ago introduced into the literature and discussed in the work of 

Adler et al. [11] are fairly mature and well developed. But while searching all other available 

methods, four new categories were identified that are still being developed under the topic of DEA 

ranking methods. These four developing approaches are the “pessimistic DEA frontier,” “implying 

virtual DMUs,” “decision-maker imposition,” and “fuzzy DEA.” Realizing that these four 

approaches are still under development was the motivation to study them more closely. After doing 

so, the conclusion was reached that the standard data envelopment analysis (DEA) model usually 

evaluates decision-making units (DMUs) using the best relative efficiency approach. This 

approach is known as the optimistic approach, and it is very common that this model returns many 

units with 100% efficiency scores, making it hard to rank these efficient DMUs. More so, the 

optimistic approach is biased if it alone is considered, as is shown mathematically later in chapter 

3. This biasness in the conventional optimistic approach that is commonly used in DEA ranking 

methods was the motivation to work to focus the search on avoiding this drawback and focus on 

the approach that comprehensively incorporates optimistic and pessimistic approaches at the same 

time. And since the pessimistic approach is still under development, multiple directions are 

identified that it is believed will make a valuable contribution to the DEA literature at large and to 

the optimistic and pessimistic DEA literature specifically.   

 

1.2.  Research overview 

With the first objective of overcoming the weak ability of the classical DEA method in 

bringing a full distinct ranking evaluation to all DMUs in the dataset, and with a second major 

objective of bringing unbiased assessment, this dissertation focused on achieving the goal of the 

first objective through combining optimistic and pessimistic approaches in order to avoid biased 
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evaluation. In other words, the research statement of this dissertation is developing an improved 

state of the art optimistic and pessimistic DEA framework, in order to achieve a better and unbiased 

efficiency assessment.  

 

As a starting point, the dissertation studied the available ranking approaches in the 

literature, and, after close investigation of the literature of optimistic and pessimistic approaches, 

it brings new directions under the topic of pessimistic and optimistic DEAs. One of the main 

directions that this thesis contributes to the literature is the development of the free disposal hull 

(FDH) model in optimistic and mainly pessimistic approaches. Moreover, another direction that 

improves the results of optimistic and pessimistic approaches is using virtual DMUs in the 

assessment in order to improve the evaluation results. With these objectives and directions in mind, 

it is believed that this thesis contributes to the literature a general optimistic and pessimistic 

framework, based on two models. The first base is the FDH base, and the second base is the virtual 

DMU base. The research done under this framework led to a variation of models in each direction. 

For example, the original FDH model under the optimistic and pessimistic framework is useful in 

real-life scenarios where DEA assumptions need to be relaxed, but, on the other hand, did not show 

strong discrimination power. This resulted in further investigation to overcome this issue, and 

brought about three different variations of the model: one slack-based FDH model and one super-

efficiency FDH model, the latter suffering the problem, in some cases, of infeasibility, which led 

to the third variation of the super-efficiency model without infeasibility.  

The main objective of this research work is to overcome the ranking issue of the DEA 

model when it is applied to any existing data. Right through the body of research, the question has 

been raised of how the proposed models can serve future or non-existent virtual data. The 
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broadened aim, therefore, is a new model that integrates the previous model with regression 

analysis to serve the objective of estimation efficiency for future DMUs or customizable ones. The 

new integrated model is also built under the framework of optimistic and pessimistic approaches.  

 

1.3.  Dissertation organization  

The following chapter of this thesis discusses the literature of the DEA ranking methods in 

detail, and presents a comprehensive review of this topic that should benefit any researcher working 

in this field. After investigating the complete body of the relevant literature, this thesis identified a 

gap in the field. The present review has recommended that researchers can develop similar ranking 

models to those discussed in the review for other types of DEA models. This thesis develops an 

extensive work that incorporates the approach of the seventh category, under the optimistic and 

pessimistic DEA category, with the DEA-FDH model and the virtual DMUs approach. This 

development of the research is presented in the remaining chapters of the thesis. 

Chapter 3 discusses in detail the optimistic and pessimistic approach and shows the 

development of optimistic and pessimistic FDH models from both input and output perspectives. 

This model can be considered the main contribution of this research work. As mentioned above, it 

is believed that this approach has never been investigated before, and that this model not only 

contributes to the theoretical part of DEA, but opens up new options of application for many 

empirical studies when the convexity assumption of conventional DEA needs to be relaxed. Chapter 

3 can be considered as the foundation of this research, and the following chapters will present 

various models that can be considered as improved or extended models of the chapter 3 models.   
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Chapter 4 introduces and discusses an essential development of the optimistic and 

pessimistic FDH models presented in chapter 3. Slack-based model and super-efficiency models 

are developed and discussed in chapter 4 in detail.  

Chapters 5 and 6 describe the development of the optimistic and pessimistic models that 

incorporate virtual DMUs with dual frontier analysis. Two models are presented: one is the virtual 

DMUs approach with conventional DEA and the other one uses FDH-DEA.     

Chapter 7 discusses an estimation approach that aggregates the optimistic and pessimistic 

approach in order to predict future DMUs efficiencies based on past data. Chapter 8 highlights the 

main findings and possible future work.  

Figure 1.1 shows the general flow of the proposed work in this thesis. As mentioned in the 

previous section, the objective of the work presented in this dissertation is to develop a better 

ranking methodology that leads to better discrimination power. After reviewing the literature, the 

optimistic and pessimistic approach has been selected to be the general umbrella that all models 

will be developed under. Under this framework, four different approaches are proposed, with 

multiple models that lead to better discrimination in DEA, which is the initial goal of this thesis. 

Three approaches have been considered to achieve the ranking goal. The first approach is the FDH 

based approach and under that approach three generic models were developed: a basic dual FDH 

model, an improved dual slack based FDH model, and improved dual super efficiency FDH model. 

These three models are discussed in chapters 3 and chapter 4 of this thesis. The second approach is 

the virtual DMUs approach to increase discrimination, and this generic model is discussed in 

chapter 5. The third approach, which is a combination of the FDH approach and the virtual DMUs 

approach, is discussed in chapter 6.  All these models deal with existing data, so another approach 

is proposed to serve estimation efficiency for future or virtual customizable data. 



8 
 

 

  

Figure 1.1 Thesis organization flow chart 
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Chapter 2: Literature Review 
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2.1. Introduction  

This chapter aims to shed light on the DEA ranking methods. Existing methods have been 

reviewed, and, based on this review, the direction of the research has been identified. The following 

section will discuss the basic DEA model, and will show its weakness in bringing full discrimination 

assessment. This weakness raised the need in the literature to develop ranking methods. Section 2.3 

will discuss all ranking methods in the literature and categorize them into 10 categories. The first 

category, generally known as the cross-efficiency approach, is the one in which DMUs are self- and 

peer-evaluated. The second category (Section 2.3.2), known as the super-efficiency approach, is 

where the DMU under assessment is excluded in order to improve the ranking. This method was 

first introduced by Andersen and Petersen in 1993 [13]. The third category includes the 

benchmarking approaches by which DMUs are ranked according to their relative importance to 

inefficient units. The fourth category describes statistical techniques directly applied after running 

a DEA model. A small group of papers is discussed in the fifth category, where, unlike other 

categories, ranking is shifted towards inefficient units instead of efficient ones. The sixth category 

is a mixed area where multiple criteria decision-making (MCDM) analysis is applied to rank DEA 

approaches. The seventh category considers the studies where units are ranked according to the 

inefficient frontier, in contrast to the standard DEA model. The eighth group involves ranking 

methods that use one or multiple virtual DMUs. The ninth category contains methods where the 

DM plays a major role in defining the ranking criteria for all DMUs. The last category includes 

those methods that use fuzzy concepts to rank all units under evaluation. This approach could also 

be considered as a subgroup of MCDM. 
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After reviewing most of the ranking methods in the literature, a detailed discussion of the review 

with the major findings will be presented in Section 2.4. Section 2.5 provides the concluding 

remarks and summary.  

 

2.2.  Classical DEA model   

The basic efficiency measure utilized in DEA is the ratio of output to input, but this measure 

is only applicable to cases of a single input and output. In 1957, Farrell [14] implemented this basic 

concept and developed the efficiency frontier analysis. This analysis requires a group of 

observations to construct an efficient frontier. All units that lie on the efficient frontier are defined 

as “efficient units” (i.e., they have a 100% efficiency score), while all those that do not lie on the 

frontier are defined as “inefficient units.” Their locations in relation to the efficient frontier are then 

used to calculate their efficiency scores. The frontier thus “envelops” the whole data  [15]. Figure 

2.1 shows a simple example of graduate student efficiency. 

Twenty years later, Charnes et al. [1] were able to transform the envelopment analysis 

concept from its graphical form into a linear program that does not restrict the number of inputs or 

outputs. As mentioned in the introduction, their CCR model measures the efficiency of all DMUs 

without requiring prior weight for the input and output. The concept of their model relies on 

assigning virtual weights to inputs and outputs and applies linear programming to ascertain the 

maximum efficiency of the DMU under assessment, repeating this process for all DMUs. 

The linear form of the CCR model for any dataset that has n DMUs with s outputs and m 

inputs is shown below, where maximizing the weighted sum of the output is the objective function, 

as follows [1]: 



12 
 

 

Max 𝜃𝑘 = 𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘 

Subject to: (2.1) 𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘 = 1 𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘  ≤ 𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘  (𝑘 = 1… , 𝑛)                        𝑣1, 𝑣2, … , 𝑣𝑚 ≥ 0  𝑢1, 𝑢2, … , 𝑢𝑠 ≥ 0  
 

For any DMUk, the DMU is considered efficient if θk which is the efficiency score for that 

DMUk reaches a value of 1 [16]. The u’s and the v’s are the variables in the CCR models and mostly 

in all DEA models. The u’s are defined as the virtual weights assigned to each output in the data, 

while the v’s are defined as the virtual weights assigned to each input in the data. The x’s represent 

the value of the input and the  y’s represent the values of the output for each associated DMU.  

In order to illustrate the above formulations, the following example is considered, where the 

aim is to evaluate seven graduate students based on their GPA scores (first output) and number of 

publications (second output). By assuming that all students share the same level of study and have 

an equal level of learning opportunities, their inputs are considered to be equal (with a score of 1). 

The raw data of the example is shown in Table 2.1. 
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a Unity score is given to the input in order to keep the data within two dimensions and 
thus illustrate the example graphically by using the efficiency frontier analysis and 

CCR model. 

To clarify and explain the previously mentioned formulations, the CCR model is formulated 

for student A in order to compute his/her efficiency score θA as follows:  

Max. 𝜃𝐴 = 60 𝑢1 + 6 𝑢2 

Subject to: 1 𝑣1 = 1 60 𝑢1 + 6 𝑢2 − 1 𝑣1 ≤ 0 80 𝑢1 + 3 𝑢2 − 1 𝑣1 ≤ 0 90 𝑢1 + 4 𝑢2 − 1 𝑣1 ≤ 0 95 𝑢1 + 1 𝑢2 − 1 𝑣1 ≤ 0 70 𝑢1 + 2 𝑢2 − 1 𝑣1 ≤ 0 95 𝑢1 + 3 𝑢2 − 1 𝑣1 ≤ 0 75 𝑢1 + 1 𝑢2 − 1 𝑣1 ≤ 0 𝑣1 ≥ 0 𝑢1, 𝑢2 ≥ 0 

 

Table 2.1 Raw data of graduate students evaluation  

  Input  Outputs 

Student   Unitya   GPA Publications 

A  1  60 6 

B  1  80 3 

C  1  90 4 

D  1  95 1 

E  1  70 2 

F  1  95 3 

G  1  75 1 
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Solving the above linear program would only lead to the efficiency score of student A. For 

simplicity we have assumed a unified input value to all graduate students, and that led to having 

trivial constraint where the input value 1 multiplied by v1 equal to 1, which means the virtual 

weights assigned to all DMUs input will always be equal to 1. Similar linear programs should 

therefore be constructed seven times. The overall results of all DMUs are shown in Table 2.2. Since 

this example has only two changing variables (i.e., GPA and publications), an efficiency frontier 

analysis could be obtained graphically as well, as shown in Figure 2.1. 

 

 

 

 

Figure 2.1  Efficiency frontier for the 

graduate student example 

 

The efficient DMUs can be easily observed from the results of the CCR model in Table 2.2 

and the graph in Figure 2.1. Students A, C, D, and F achieve a 100% efficiency score, and all of 

these are located on the efficient frontier. However, it is clear that this evaluation lacks accuracy, 

since four out of seven students are classified as efficient with similar efficiency scores, implying 

Table 2.2 Efficiency scores of graduate 

students using the CCR model 
DMU Efficiency Score Rank 

A 1.00 1 

B 0.86 5 

C 1.00 1 

D 1.00 1 

E 0.74 7 

F 1.00 1 

G 0.79 6 
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that the DM would not be able to rank more than half of the DMUs in this example, and that 

performance demonstrates the lack of discrimination power of the conventional CCR DEA model. 

Importantly, this thesis only focuses on the ranking methods of DEA, rather than alternative 

standard DEA models. Since the CCR model proposed in 1987, many models have been formulated 

as extensions or modifications. For example, Banker et al. [17] created the widely used BCC model 

that applies a variable returns to scale. Further, the multiplicative model was developed by Charnes 

et al. [18], the additive model by Charnes et al. [19], and slack-based models by Tone [20]. While 

all these alternative models are widely applied in DEA (see [21] for more details on their features 

and applications), some can resolve the ranking issue to a certain extent, whereas others, such as 

the BCC model, worsen the ranking situation. These differing outcomes have led to a recent 

increase in the focus on developing more accurate ranking methods, as described in the next section. 

 

2.3.  DEA ranking methods review 

This review aims to shed light on major ranking methods that have been introduced to the 

DEA literature. The development of this area has grown a great deal since Adler et al. [11] reviewed 

ranking methods in 2002. Many methods have been introduced to the literature after 2002, and this 

thesis attempts to fill the gap in the literature and introduce an updated survey or literature review. 

This review discusses DEA ranking approaches and elaborates on new developed methodologies 

and models in each category that Adler et al. [11] discussed in 2002. Moreover, it brings four more 

categories that have matured over the past 14 years, and it is believed that special attention has to 

be paid to such development in the literature. All 10 categories will be discussed in detail in the 

following subsections.  
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This development of ranking methods has resulted in many ranking applications and 

empirical studies in the literature. Table 2.3 shows examples of real-world applications for each 

category discussed in this thesis.  

 

 

Table 2.3 Key applications using DEA ranking methods 
Category Reference Application Area Inputs Outputs 

Cross-efficiency 

 

Zerafat Angiz et al. 

[22] 

Banking  Rent, full-time 

equivalent personnel, 

supplies  

 

Loan, accounts, bonds 

sold, deposits 

Jahanshahloo et al. 

[23] 

Networking 

problem  

Factory location, cost of 

creating factory 

Finance, number of 

products  

Falagario et al. [24] Supplier selection  Price, execution time Post-delivery 

maintenance, 

enhancement plans 

Super-efficiency 

 

A. Esmaeilzadeh, A. 

Hadi-Vencheh [59] 

Cable TV service  Operating cost, 

manpower  

Revenue,  

viewer  

Sueyoshi [25] Agriculture Credit, insurance, 

purchasing, marketing, 

management activities, 

other operating costs  

Unified  

Benchmarking 

Torgersen et al. [26] Human resources Total number of hours 

worked per week in each 

office 

Total number of cases 

handled and followed 

up, number of cases 

handled, number of 

cases handled and 

closed 
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Statistics 

 

Friedman and 

Sinuany-Stern [27] 

Academia Department operation 

cost, faculty salaries 

Grant money, number 

of publications, number 

of grad students, 

number of credit hours 

in the department  

Wang et al. [28] Manufacturing  Operating cost, floor 

space 

Qualitative benefits, 

WIP, average number 

of jobs, average yields  

MCDM 

Jablonsky [29] Pension funds Number of customers, 

total assets, equity 

capital, total cost 

Appreciation of 

customer deposits, 

average appreciation of 

the last three years, net 

profit  

Wu et al. [30] Education Multiple aspects in : 

teaching resources, 

internationalization, 

extension education 

service, discipline and 

guidance , general 

education 

Multiple aspects in : 

faculty, teaching, 

research  

Inefficient frontier 

Wang et al. [31] Industrial Original value of fixed 

assets, current 

 assets, number of staff 

and workers  

Gross industrial output 

value 

Virtual DMU 

Azizi and Wang [32] Sports – Olympic 

Games  

Gross domestic product, 

total population of the 

country or area 

Number of gold medals 

won, number of silver 

medals won, 
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number of bronze 

medals won by each 

country 

DM interference 

Ramón et al. [33] Sports – tennis 

players’ 

performance  

Unified  Percentage of 1st serve 

points won, percentage 

of 2nd serve points 

won… etc (7 Outputs 

were included)  

Fuzzy ranking 

 

 

 

Zerafat Angiz et al. 

[34] 

Banking Rent, full-time 

equivalent personnel, 

supplies 

 

Loan applications, new 

pass-book loans, life 

insurance sales, new 

accounts, closed 

accounts, travelers 

checks sold, bonds 

sold, bonds redeemed 

 

 

 

2.3.1. Cross-efficiency category 

Cross-efficiency methods are based on the simple concept of peer evaluation alongside self-

evaluation, which means that the efficiency of each DMU is calculated n times with reference to 

the other DMUs in the dataset. This results in an (nn) cross-efficiency matrix, with the diagonal 

elements of this matrix representing the self-efficiency scores obtained by directly implementing 

the CCR model. 
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Sexton et al. [35] introduced the concept of cross-efficiency and proposed that averaged 

peer evaluation and self-efficiency should be taken into consideration in order to accurately measure 

the efficiency score. The cross-efficiency approach is considered one of the most reliable ranking 

methods because it avoids bias in the self-evaluation. Doyle and Green [36] extended this technique 

by proposing aggressive and benevolent approaches to cross-efficiency and successfully developing 

a maverick index that combines the concepts of peer evaluation and self-evaluation as follows [36]: 

𝑀𝑘 = 𝐸𝑘𝑘 − 𝑒𝑘𝑒𝑘  
(2.2) 

 

where Ekk is the self-efficiency score and ek the cross-efficiency score. Thus, the higher the maverick 

index for DMUk, the more likely it is that this DMU has a doubtable self-evaluation score. 

In 2011, Jahanshahloo et al. [23] introduced an extended method to calculate the final 

efficiency score by using a technique for order preference according to the similarity to the ideal 

solution known as TOPSIS. A six-step procedure is applied to determine the final ranking of each 

DMU, based on its distance from the ideal and negative-ideal solutions. 

Zerafat Angiz et al. [22] developed another new approach that focuses on only ranking 

DMUs. By applying the cross-ranking matrix to the cross-efficiency matrix, they directly obtain a 

ranking order for all DMUs, rather than evaluating each DMU by taking the average score of the 

matrix. However, the major shortcoming of this method is its negligence of the actual score 

efficiency, even though it ultimately reflects an accurate ranking order. Another post-cross-

efficiency analysis was proposed in 2011 by Örkcü, and Bal [37]. Their method improves accuracy 

by using goal programming techniques after obtaining the optimal weight through the cross-

efficiency matrix. 
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In general, it can be concluded that the cross-efficiency approach has received high 

accreditation in the literature in terms of its influence on DEA ranking. Nevertheless, many of the 

developed models that use this approach are considered model extensions. For example, Guo and 

Wu [38] presented a model that restricts undesirable outputs by using a “maximal balanced index” 

with optimal shadow prices. Similarly, the model to improve cross-efficiency presented by Ramón 

et al. [39] prevents DMUs with zero weights in their profiles and eliminates certain inefficient 

DMUs from the cross-efficiency matrix in order to improve the accuracy of the final optimum 

weights. Recently, Oral et al. [40] introduced a maximum resonated appreciative (MRA) model in 

which, instead of letting each DMU depreciate other DMUs in the dataset, each DMU would rank 

the other DMUs in an appreciative way. The main contribution of the MRA model is that it 

integrates the voices of the DMUs under assessment, while avoiding aggregation. The cross-

efficiency method is widely applied in the literature, and, since its introduction, the method has 

received and is still receiving high research attention. Many alternative models that deal with certain 

cases have been developed. Wu et al. [41] proposed an interesting model that improves the results 

of cross-efficiency when it is not pareto optimal. Another model that deals with data that includes 

undesirable outputs is proposed by Liu et al. [42].  

In general, this subsection concludes by saying that cross-efficiency evaluation has been 

used in various applications, e.g., efficiency evaluations of nursing homes, Sexton et al. [35]; R&D 

project selection, Oral et al. [43]; preference voting, Green et al. [44]; and others. However, as noted 

in Doyle and Green [36], the non-uniqueness of the DEA optimal weights/multipliers possibly 

reduces the usefulness of cross-efficiency. Specifically, cross-efficiency scores obtained from the 

original DEA are generally not unique, and depend on which of the alternate optimal solutions to 

the DEA linear programs is used. Moreover, the cross-efficiency method does not help the DM to 
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critically optimize the optimal weights during the evaluation. Further discussion on the pros and 

cons of cross-efficiency can be found in Zhu [45]. 

 

2.3.2. Super-efficiency category 

Andersen and Petersen [13], the originators of the super-efficiency (SF) method, adjusted 

the CCR model by excluding the DMU being tested from the set of constraints, which allows any 

efficient DMU to achieve a score greater than 1. The new model thus becomes [13]:  Max 𝜃𝑘 = 𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘 

Subject to: (2.3) 

𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘 = 1 

𝑢1𝑦1𝑗 + 𝑢2𝑦2𝑗 + …+ 𝑢𝑠𝑦𝑠𝑗  ≤ 𝑣1𝑥1𝑗 + 𝑣2𝑥2𝑗 + …+ 𝑣𝑚𝑥𝑚𝑗   (𝑗 = 1… , 𝑛 & 𝑗 ≠ 𝑘)  
𝑣1, 𝑣2, … , 𝑣𝑚 ≥ 0  
𝑢1, 𝑢2, … , 𝑢𝑠 ≥ 0  

Similar to the CCR model, the efficiency score is represented by θk and the x’s and the y’s 

represent values of the inputs and the outputs respectively associated for each DMU. The u’s and 

the v’s are the variables in the SF model. The u’s are defined as the virtual weights assigned to each 

output in the data, while the v’s are defined as the virtual weights assigned to each input in the data. 

The main difference in the SF model is in the constraints set, where 𝑗 ≠ 𝑘 for any DMUk under 

assessment to allow its efficiency score to reach a higher value than 1.  

The super-efficiency model measures the distance between efficient units and the frontier 

after excluding it, which means the most efficient unit is the one that can reduce its outputs without 
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becoming inefficient. Having the ability to obtain efficiency scores greater than 1 allowed Andersen 

and Petersen [13] to overcome the common shortcoming of the CCR model, namely, its inability to 

rank efficient DMUs when they all obtain a unity score. However, the super-efficiency model 

allows specialized units to achieve a very high score, a limitation that Sueyoshi [25] addressed by 

introducing the DEA adjusted index number (AIN) into the model. The benefit of the AIN is that it 

extends the efficiency score of efficient DMUs to a range between 100% and 200%, while the 

inefficient units’ scores are measured in the range of 0 to 100%. In this model, the 100% score 

serves as a benchmarking point for the evaluation. Model (2.4) shows the AIN formula [25]:  

𝐴𝐼𝑁 = 1 + { 𝛿𝑎∗ − 𝑚𝑖𝑛𝑎∈𝐸𝛿𝑎∗𝑚𝑎𝑥𝑎∈𝐸𝛿𝑎∗ − 𝑚𝑖𝑛𝑎∈𝐸𝛿𝑎∗} (2.4) 

 

Another major drawback of the super-efficiency model is its tendency to return infeasible 

results. This issue was addressed by Thrall [46] in 1996 and later by Cooper, Seiford, and Zhu [16], 

who discussed the conditions under which infeasibility might occur. Chen [48] also studied this 

tendency and found that when super-efficiency is returned with infeasible results, that means it was 

the highest super-efficiency to that DMU because there is no upper bound for the score. Chen [48] 

thus proposed a new method that requires using both the input-oriented and the output-oriented 

super-efficiency models to describe the type of infeasibility when it occurs. In his model, he 

described the infeasibility results as either very high unlimited efficiency or as an input-saving or 

output surplus for that DMU which returned an infeasible result.   

Cook et al. [49] proposed a modified super-efficiency model in which a super-efficiency 

score for efficient DMUs can be obtained even when feasible solutions do not exist. Moreover, their 

model returns efficiency scores similar to the original ones when feasibility is not considered an 
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issue. Their model is also able to switch all extreme points that cause infeasibility into non-extreme 

projections by making only a few minor changes to the original super-efficiency model in terms of 

the virtual weights variables.  

The infeasibility problem has encouraged many researchers to modify the super-efficiency 

model, such as the works presented by Amirteimoori et al. [50], Jahanshahloo et al. [51], Gholam 

Abri et al. [52], Du and Chen [53], and Pourmahmoud et al. [54]. Another model that has received 

good attention in the literature is the MAJ model that was developed by Mahriban et al. [55]. This 

model overcomes the infeasibility issue of the Anderson and Peterson [13] model plus the 

sensitivity of their model to small variations in data when the DMUs have smaller values as inputs 

or outputs. In the papers referred to [51, 56, 57], Jahanshahloo et al. proposed some different models 

as alternative developed versions of the MAJ and AP models. 

With a similar goal of overcoming the infeasibility of the super-efficiency model, Aldamak 

et al. [58] proposed a different method of calculating efficiency when the convexity assumption is 

relaxed by using the free disposal hull (FDH) approach. Another approach to enhance the super-

efficiency model is the work of Esmaeilzadeh, and Hadi-Vencheh [59], where a two-stage model is 

proposed in order to reduce the computational complexity and achieve better ranking.    

This body of research, suggests that despite the shortcomings of the super-efficiency 

method, it is commonly used in DEA applications, especially for detecting outliers. Scholars debate 

as to what extent the super-efficiency method should be used in data ranking, but it has been proved 

through simulation experiments by Banker and Chang [60] that the super-efficiency approach 

returns unsatisfactory results when it is used for measuring the efficiency scores of units under 

assessment. 
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2.3.3. Benchmarking category 

The benchmarking method examines the ranking importance of efficient units compared 

with inefficient ones; in other words, it assesses how frequent efficient units are used as a reference 

to inefficient units. In this category, Torgersen et al. [26] proposed a two-phase method through 

which DMs can benchmark efficient units according to their level of importance. First, the model 

applies the additive model to identify the slack value for all efficient units. For instance, let 𝑉 = {𝑖 ∈ 𝑁|𝑆𝑖 = 0} 
where V is defined as the set of all efficient units that have slack values equal to zero. After 

identifying V in the second phase, the following model is applied to all DMUs [26]: 1𝐸2𝑖 = 𝑀𝑎𝑥 ∅ 

Subject to: (2.5) ∑𝜆𝑖𝑗𝑦𝑘𝑗 −  𝜙𝑗∈𝑉 𝑦𝑘𝑖 = 𝑆𝑘𝑖𝑦  

𝑥𝑚𝑖 − ∑𝜆𝑖𝑗𝑦𝑚𝑗𝑗∈𝑉 = 𝑆𝑚𝑖𝑥  

∑𝜆𝑖𝑗 = 1𝑗∈𝑉  

𝑆𝑚𝑖𝑥  , 𝑆𝑘𝑖𝑦  , 𝜆𝑖𝑗  ≥ 0 and 𝑘 ∈ 𝑦 ,𝑚 ∈ 𝑥 , 𝑖 ∈ 𝑉  

Similar to previous models, ∅  represents the efficiency score and the x’s and the y’s 

represent the values of the inputs and the outputs respectively associated for each DMU. The radial 

measure E2i in this model is obtained by solving the above model, and the outcome shows the ratio 

of the maximum output when maintaining the same amount of inputs. Sinuany-Stern et al. [61] also 

applied the benchmarking concept, but in a different way. Their simple method involves ranking 
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efficient DMUs based on how frequently they are used to refer to inefficient DMUs. However, this 

method lacks accuracy, since different DMUs often obtain the same rank. 

Another benchmarking method, this time introduced by Jahanshahloo et al. [62], is based 

on changing the reference dataset by removing the efficient DMU and measuring how it affects 

both the frontier line and inefficient units. This method is applied in two stages. First, the DEA 

model is run in order to identify efficient and inefficient DMUs. Second, the scores of inefficient 

units are recalculated after excluding one of the efficient DMUs, and so on. So, the more the DMU 

influences the score of inefficient units, the stronger it is. The new rank of efficient units is then 

calculated by applying the following formula [62]: 

Ω𝑏 = ∑ 𝛿𝑎,𝑏𝑎∈𝑗𝑛𝑛  
(2.6) 

 

where b is the evaluated efficient DMU, jn is the set of inefficient units, and 𝑛 is its number. Because 

this method eliminates the efficiency of the unit, it improves the accuracy of the ranking. 

In 2009, Lu and Lo [63] introduced a different approach, termed the “interactive 

benchmarking model.” They proposed fixing one unit as the benchmark and pairing all other DMUs 

with it. According to this method, the efficiency score is then calculated with reference to the fixed 

unit. The process is repeated until all DMUs in the dataset serve as the fixed unit, and the final score 

of each DMU is computed by averaging all scores associated with that DMU. 

 

2.3.4. Statistics and common weights category   

Traditional statistical approaches cannot be applied directly to DEA because of the 

differences in the characteristics of the data used for carrying out each method. While DEA tests 
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frontier efficiency or the frontier line according to the optimized summation of weighted outputs to 

the summation of the weighted inputs, classical statistics are directed to examining the average 

tendencies of the data. Nevertheless, some approaches combine these two methods by using 

statistics to better rank DEA-efficient and DEA-inefficient DMUs. 

For instance, Friedman and Sinuany-Stern [27] utilized canonical correlation analysis 

(CCA) in order to rank the DEA results on a predetermined scale, and fitted a different vector of 

weight so that every DMU achieved through DEA into one set of weights was determined by the 

CCA. 

By using the CCA method, they defined a new scaling ratio T as [27]:  

𝑇𝑗 = 𝑊𝑗𝑍𝑗 = ∑ 𝑈𝑟 𝑦𝑟𝑗𝑠𝑟=1∑ 𝑉𝑖 𝑥𝑖𝑗𝑚𝑖=1   (2.7) 

 

where W is the linear combination of the outputs and Z is the linear combination of the inputs. By 

obtaining T, their method proposed utilizing the largest eigenvalue of the CCA and applying it to 

the DEA results. 

The same authors [64] proposed another multi-stage approach that also utilizes a statistical 

methodology to discriminate optimal efficient and inefficient units. In the first stage, the results of 

the DEA model are classified into efficient and inefficient groups. In the second stage, the 

discriminant analysis of ratios is applied to these two groups in order to obtain the common input 

and output weights. In the third stage, a new efficiency score is generated for each DMU, based on 

the composite ratio of outputs to that of inputs. Similar to the CCR model, the x’s and the y’s 

represent values of the inputs and the outputs respectively associated for each DMU. The U’s are 
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defined as the virtual weights assigned to each output in the data, while the V’s are defined as the 

virtual weights assigned to each input in the data [64]: 

𝑇𝑗 = ∑ 𝑈𝑟 𝑦𝑟𝑗𝑠𝑟=1∑ 𝑉𝑖 𝑥𝑖𝑗𝑚𝑖=1  𝑗 = 1, … , 𝑛  (2.8) 

 

Accordingly, the unit that has the highest score is ranked as 1, and the lowest score receives 

the rank n. The main advantage of this approach is that it ranks both efficient and inefficient DMUs; 

moreover, this scale can also be validated by using non-parametric statistical tests. 

The idea of finding common weights and applying them to the results of the DEA analysis 

for each DMU has attracted many researchers since the release of the complicated models of 

Friedman and Sinuany-Stern [27]. Hashimoto and Wu [65], for instance, developed an approach 

that combines the DEA results, and compromises in order to achieve a common weight applicable 

to all DMUs. Similarly, Kao [66] developed a different approach by using the same tool, while Liu 

and Hsuan Peng [67] proposed a slightly different method that only aimed to rank efficient DMUs, 

but they also applied the common weight that best supports the optimization of group efficiency. 

Recently, Wang et al. [28] criticized most existing methods for being too complicated, hard 

to apply, or resulting in infeasible solutions. They proposed a new approach based on regression 

analysis in order to seek a set of common weights for ranking DMU efficiency. Their method aims 

to minimize the fitting error by computing the most favorable weights for each DMU. The model 

works by minimizing the error between targeted efficiency θj
* (j=1,…, n) and actual DEA 

efficiency θj. It is hence most desirable that the subtraction of one efficiency from the other equals 

zero. The proposed model is as follows [28]: 

𝑀𝑖𝑛 𝑍 =  ∑ {𝜃𝑗∗ − ∑ 𝑈𝑟 𝑦𝑟𝑗𝑠𝑟=1∑ 𝑉𝑖 𝑥𝑖𝑗𝑚𝑖=1 }2𝑛𝑗=1   (2.9) 
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Subject to: {𝑈𝑟 ≥ 0 , 𝑟 = 1, … , 𝑠𝑉𝑖 ≥ 0 , 𝑖 = 1,… ,𝑚 

In some cases, researchers proposed a ranking method without changing the original DEA 

model. For example, Alirzaee and Afshairan [68] proposed a post-analysis method that only used 

the balance index as a tool to reach a complete ranking. A modified version of their model is 

introduced later to the literature by Wu et al. [69], where the maximal balance index is used instead. 

Another approach that is also considered as a post-analysis model is the model of Saati et al. [70]. 

In this model they introduced a two-step model using ideal DMU and, based on that, a new set of 

weights would be determined by the decision maker for the evaluation in the second step. The 

reliance on decision-maker judgment has been considered as a criticism by some researchers of the 

methods of this category, while, of course, it is debated by other scholars, who praise this 

characteristic. Lotfi et al. [71] proposed a different model that assures consistency and equitable 

weights allocation. With a similar goal of minimizing computational complexity, Hatami-Marbini 

et al. [72] introduced a new DEA model that calculates the reduced amount of input and output for 

each DMU in order to improve the efficiency evaluation of all DMUs. 

 

2.3.5. Inefficient DMUs category 

Most existing methods do not attempt to rank inefficient DMUs because the standard DEA 

score for inefficient units is sufficient for ordering them according to their individual scores. For 

example, Bardhan et al. [73] addressed this issue by introducing a method of ranking inefficient 

DMUs. Specifically, they ranked DMUs based on the so-called measure of efficiency dominancy, 

where DMU values depend on their input and output values. This flexible model can then be applied 
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to rank inefficient DMUs alongside efficient ones by using the so-called measure of inefficiency 

dominance, which is computed for DMU0 based on the following equation [73]: 

0 ≤ 1 − ∑ 𝑆𝑖+∗𝑚𝑖=1 𝑥𝑖𝑜 ⁄ + ∑ 𝑆𝑟−∗𝑠𝑟=1 𝑦𝑟𝑘 ⁄𝑚+𝑠  ≤ 1  
(2.10) 

 

It is important to mention that some such methods have suggested reversing the efficiency 

frontier in order to use the inefficient frontier to rank DMUs. These methods can thus be used to 

rank inefficient DMUs, as discussed in Section 3.2.7. 

 

2.3.6. MCDM category 

The models presented in the previous sections are generally considered to be single-level 

models that deal with single-level situations. However, a subgroup of DEA-related papers has 

focused on applying this analytical technique to situations that require multiple levels such as 

networking and supply chain assessment [74]. This subfield of the literature has used MCDM to 

develop DEA models that are applicable in multiple-level situations, including research works that 

have applied the MCDM concept in order to better rank DMUs in DEA standard models. 

Cook and Kress [75] described how DEA could be used to aggregate preferential votes. 

They argued that this problem could be conceptualized as one of maximizing the intensity of votes, 

given the ordinal nature of placements 1 to n, and offered an algorithm for aggregating votes fairly. 

The same authors later proposed a more generalized version of this DEA ranking approach [76], 

arguing that DEA is the optimal way in which to determine maximum ranking positions, given 

ordinal rank positions and weights. These two articles by Cook and Kress [75, 76] thus put forward 

a strong case for using DEA as a specific approach to MCDM when dealing with ordinal data. 
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Nonetheless, these two papers did not examine how to represent ordinal data when 

employing DEA models for MCDM. This problem was addressed, rather, in the work of Cook et 

al. [77], who presented a means of imposing both upper and lower bounds on the worth vectors of 

ranking positions, giving rise to a cone ratio DEA model that can be used whenever ordinal data 

are modeled. However, as Cook et al. [49] conceded, “Issues involving multiple ordinal factors and 

the relative importance and/or fuzziness aspects pertaining to such factors” are not addressed in the 

cone ratio DEA model. Given that real-world business problems typically involve more than one 

ordinal factor, in addition to some fuzziness around the relative importance of such factors, the early 

DEA work presented by Cook and colleagues [49] remains of limited value for overcoming the 

complex operational DEA-related problems that businesses often face. 

That aside, this research work laid the foundation for applying MCDM to DEA. In 1995, 

Troutt [78] used these approaches to suggest a means of estimating a parameter vector for x 

activities to be ranked, ordinarily based on expert estimates. According to Troutt’s approach, the 

search for a mathematically ideal point of maximization or minimization in the DEA model is 

replaced by a means of optimizing expert estimates. One of the advantages of this method is that it 

takes advantage of human knowledge in operational contexts. Cook et al. [79] also addressed some 

of the problems they themselves had earlier identified by proposing a model in which DEA could 

be applied to both ranked and non-ranked ordinal data and in which the selection of a lower bound 

on factors was optimized, thereby updating the DEA model to be more useful in operational 

environments characterized by qualitative information. 

In 1997, Li and Reeves [80] extended this research stream further still in order to render the 

DEA model useful in complex environments. These authors explained that the weight distribution 

problem (i.e., that such distributions do not reflect real-life operating conditions) alone was enough 
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to render many DEA-based forms of MCDM useless in real-world settings, given that DEA models 

often over- or underestimate DMUs, based on their weights in single outputs or inputs. Li and 

Reeves [80] thus presented a new DEA model designed to address these shortcomings and tested it 

against numerous datasets in order to illustrate its superiority compared with past DEA models. 

Similarly, in the model proposed by Sinuany-Stern et al. [81], the weights of both inputs and outputs 

could be calculated more precisely without leading to unrealistic weight distributions. 

The work of Sinuany-Stern et al. [81] on DEA models in 2000 was carried out by using the 

analytic hierarchy process (AHP) approach, which was further developed by Jablonsky [29], who 

demonstrated that this approach could complement the use of DEA in MCDM. Jablonsky [29] 

concluded that the analytic hierarchy process approach is superior to DEA in a number of aspects, 

including the utilization of categorical inputs and sensitivity analysis, and that the only drawbacks 

are the greater time spent preparing pairwise comparison matrixes and carrying out the 

optimization. Despite Jablonsky’s conclusion, however, DEA has remained a popular form of 

MCDM, with even Jablonsky’s later work emphasizing the ongoing usefulness of DEA models 

[82]. A comprehensive case study of AHP on ranking universities is presented in the work of Wu 

et al. [30]. 

In the same vein, an improved three-stage ranking method that used the weighted sum 

approach was introduced by Lotfi et al. [83]. In the first stage, these authors ranked all DMUs based 

on an optimistic/pessimistic classification. Based on these ranking results, a secondary goal was 

defined and an average rank obtained. Finally, in the third stage, they applied the MCDM approach 

in order to ascertain a group rank by using the weighted sum method. Another approach that used 

Cook and Kress’s work [75] as a foundation is developed by Toloo et al. [84], by which they switch 

the association rule of efficiency by considering only the output data of efficient DMUs. Similar 
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concepts have been applied by Ramón et al [39]. In summary, although the practical application of 

most of the proposed methods in the MCDM category is complicated, in certain situations such as 

a supply chain analysis, MCDM may be the only method that is able to solve multiple-level data. 

 

2.3.7. Inefficient frontier category (Pessimistic frontier) 

Yamada et al. [85] were the first authors to propose a pessimistic way in which to evaluate 

DMUs, which they termed inverted DEA (IDEA). The concept of IDEA is to invert the CCR model 

and optimize the maximum input-to-output ratio. The proposed model is as follows [85]: Max 𝜃 =  𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘 

Subject to: (2.11) 𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 +⋯+ 𝑢𝑠𝑦𝑠𝑘 = 1 𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 +⋯+ 𝑣𝑚𝑥𝑚𝑘 − 𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 +⋯+ 𝑢𝑠𝑦𝑠𝑘 ≤ 0  
 (𝑗 = 1… , 𝑛) 𝑣1, 𝑣2, … , 𝑣𝑚 ≥ 0  𝑢1, 𝑢2, … , 𝑢𝑠 ≥ 0  

Similar to previous models,  𝜃  represents the efficiency score, and the x’s and the y’s 

represent the values of the inputs and the outputs respectively associated for each DMU, while the 

u’s are defined as the virtual weights assigned to each output in the data, while the v’s are defined 

as the virtual weights assigned to each input in the data. 

 

IDEA creates an inefficient frontier by which any unit not located on the frontier is 

considered efficient, and efficiency scores are assigned accordingly. Entani et al. [86] tested this 

proposition by using the standard DEA model and found an interesting shortcoming when applying 
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both DEA and IDEA, namely, that in any dataset, while there are two efficient DMUs under DEA, 

they are inefficient under IDEA, as shown in Figure 2.2. 

 

 

Figure 2.2 Efficiency and inefficiency frontiers  

 
Figure 2.2 can be considered as the foundation of all the models presented in this thesis, 

because it shows the biasness of a single frontier when it is applied alone to the evaluation. This 

problem led Entani et al. [86] to develop a new model with interval efficiency that consists of 

optimistic DEA and pessimistic IDEA viewpoints, which, combined, can calculate a better interval 

efficiency and thus a superior ranking approach. Further, Jahanshahloo and Afzalinejad [88] 

introduced a method that compared all DMUs against a fully inefficient frontier. Because this 

method excels in highlighting the worst performers, its use is recommended in critical situations 

where fully inefficient units are the main research targets. 

In 2007, Wang et al. [31] supported the findings of Entani et al. [86] and concluded that 

using only the pessimistic or the optimistic method in any approach leads to biased results, 

suggesting that both approaches should always be considered together. Their proposed approach 

consists of three main steps: first, calculate the efficiency score of each DMU by using the optimistic 
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approach (CCR model); second, calculate the efficiency score of each DMU by using the 

pessimistic approach; and third, take the geometric average of both scores to use as the final value 

for ranking purposes, which thus improves the discrimination power of the model. Building on the 

same argument, Azizi [87] introduced a model that uses both pessimistic and optimistic points of 

view to calculate interval efficiency, instead of taking the average of the scores. The advantage of 

Azizi’s model over that of Wang et al. [31] is that this interval model is able to identify inefficient 

units as well. With a similar methodology of using optimistic and pessimistic approaches, Aldamak 

et al. [58] proposed a detailed study on using dual frontiers without convexity. In this paper, the 

optimistic and pessimistic frontiers transform to “staircase” shapes caused by applying the FDH 

model to both perspectives. This model can be practical for analysts when the convexity assumption 

of DEA models needs to be relaxed, especially in the elimination process.    

   

2.3.8. Virtual DMUs category 

Introducing a virtual DMU is a new technique in the DEA literature that still requires further 

research in order to confirm the validity and flexibility of these proposed models. Wang and Luo 

[89] first introduced this concept in 2006 when they proposed two alternative DMUs, namely, an 

ideal decision-making unit (IDMU) and an anti-ideal decision-making unit (ADMU). The IDMU 

approach uses the lowest input in the data and assumes the maximum output, whereas an ADMU 

is a DMU that uses the maximum input to produce the minimum output of data. The method 

proposes that DEA be applied twice for both approaches and that the scores of both models be 

recorded in addition to the scores from the original DEA model. Indeed, Wang and Luo [89] claimed 

that accurate results could be derived by combining both measurements using the relative closeness 

method. They suggested the following index for ranking all DMUs [89]: 
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𝑅𝐶𝑗 = Φ𝑗∗ − Φ𝐴𝐷𝑀𝑈∗  (Φ𝑗∗ − Φ𝐴𝐷𝑀𝑈∗ ) − (θ𝐼𝐷𝑀𝑈∗ − θ𝑗∗) (2.12) 

 

where Φj
* and Φ*

ADMU are the worst possible scores from DMUj and ADMU, respectively, and θj
* 

and θ*
IDMU are the best possible scores from DMUj and IDMU, respectively. This method thus 

allows researchers to distinguish between DMUs according to their overall performance. 

Wang and Yang [90] also introduced a method similar to that presented by Entani et al. [86], 

based on the concept of virtual ADMUs. These authors measured the efficiency of all DMUs by 

calculating the worst and best performance of each DMU and computing the intervals that 

determined their efficiencies. They then used the Hurwicz criterion approach to rank each DMU, 

based on these interval values. This model is referred to as a bounded DEA model because the 

efficiency of the DMU in question is bounded between upper and lower bounds, which are then 

combined to determine the efficiencies. However, Azizi and Wang [32] proved that the Wang and 

Yang model is not capable of processing data with zero value in the output. Accordingly, an 

enhanced bounded model is developed in their research paper. Similar to Yang and Wang [90], 

Zheng [91] also introduced virtual IDMUs and ADMUs to a model in which ranking is computed 

by taking the square root of the score of each DMU with the best virtual DMU, multiplied by the 

score of that DMU with the worst virtual DMU. 

The virtual DMU category might also be considered as the most flexible of all the methods 

examined in this thesis, owing to its many variations, based on the ability to change the number and 

features of those virtual DMUs introduced to the data. For example, Sun [92] proposed two virtual 

DMUs and a common weight vector in order to rank the remaining units in the data, while Shetty 

and Pakkala’s [93] method combined the virtual DMU approach with benchmarking. This method 
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is simpler and more accurate because it only measures efficiency scores based on one virtual DMU. 

Specifically, the inputs and outputs of that DMU are calculated by averaging all the other inputs 

and outputs to produce an inefficient DMU (as long as there is at least one in the original dataset). 

The procedure starts by running the new dataset after deleting one efficient unit at a time and 

observing the resulting effect on the virtual DMU. Efficient units are then ranked according to how 

they influence the efficiency score of the virtual DMU. 

Based on the same concept introduced in the previous section by Wang and Chen [31], 

Aldamak and Zolfaghari [94] assessed that a direct use of the pessimistic approach would result in 

biased treatment of the data. So, a new method is proposed using a DEA index number with the 

pessimistic approach, with an introduction to IDMU and ADMU to the data in order to generate a 

higher envelopment level and produce better discrimination between units under assessment. 

 

2.3.9. DM interference category 

In this category, the DM “interferes” in the measurement of the efficiencies of the data under 

assessment, which could vary, according to the nature of the problem and the DM’s preferences. In 

this category, Wang et al. [95] proposed a model that allows the DM to impose weight restrictions 

on DMUs. The model suggests that, after normalizing the data and applying the standard CCR 

model, DMs can impose restriction weights on the following linear programming model [95]: 

𝑀𝑎𝑥 𝜃0 = ∑ 𝑢𝑟𝑦𝑟0𝑠𝑟=1∑ 𝑣𝑖𝑥𝑖0𝑚𝑖=1  

Subject to: (2.13) 

∑𝑣𝑖𝑚
𝑖=1 = 1 
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∑ 𝑢𝑟𝑦𝑟𝑗𝑠𝑟=1∑ 𝑣𝑖𝑥𝑖𝑗𝑚𝑖=1  ≤ 1 

𝑢𝑟 ≥  𝜔 , 𝑟 = 1 , … , 𝑠 𝑣𝑖 ≥  𝜔 , 𝑖 = 1 , … ,𝑚 

 

Similar to the CCR model, 𝜃0 represents the efficiency score for DMUo and the x’s and the 

y’s represent the values of the inputs and the outputs respectively associated for each DMU, while 

the u’s are defined as the virtual weights assigned to each output in the data, while the v’s are defined 

as the virtual weights assigned to each input in the data. The new model differs from the original 

CCR model by ω, which is the minimum weight restriction for either the inputs or outputs, and the 

fact that DMs are free to assign the weight. In order to validate this condition, it is, however, 

necessary to add the weight constraints, which require that the sum of all weights equals zero, 

otherwise, the problem could be easily rescaled, resulting in no value for the new weight restriction 

ω. The model thereby shows the ability to differentiate between all ranked DMUs. 

In cases where the DM is only concerned about the input variable of the data, Toloo [96] 

proposed a DEA approach without explicit inputs (DEA-WEI) where the most efficient DMU with 

pure output dataset is found. Recently, Toloo and Kresta [97] proposed the opposite model (DEA-

WEO), where the most efficient DMU is calculated without explicit outputs.   

As mentioned earlier, DM interference is widely open to the nature of the data and to the 

interest of the ranking approach. Primarily, the DM manipulates the weight sets in order to achieve 

the required ranking solution. Some methods use the DEA profiles of DMU in order to create new 

sets of weight that can be used in ranking approaches separately. Ramón et al. [33] developed a 

model that uses DEA profiles by minimizing the deviation between profiles. 
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2.3.10. Fuzzy approach category 

The fuzzy concept is rarely used for DEA outside the MCDM umbrella. One of the authors 

that has employed this technique, Wu [98] is notable for constructing a fuzzy preference relation 

after applying the standard DEA model, by pair-wising the efficiency scores. Thereafter, a multi-

stage row-wise summation technique is used to rank all DMUs. More recently, other scholars have 

applied the fuzzy concept in order to rank DMUs in the DEA context. Zerafat Angiz et al. [34], for 

instance, proposed converting the output weight of the DEA model into a fuzzy number so that the 

resulting six-step model would be capable of ranking all efficient units without facing the 

infeasibility problem that arises through the use of earlier models. However, while the fuzzy concept 

has been used in DEA for dealing with data variation and variable coefficients, its implementation 

in DEA ranking is limited because of its inability to deal with accurate data. This concept is thus 

favored in DEA applications where data are inaccurate and only an estimated ranking is required 

by DMs [99]. 

Another approach under the fuzzy umbrella is an approach that combines the methods 

discussed in Section 3.8, of using virtual DMUs with fuzzy data. Hatami-Marbini et al. [100] 

proposed a framework for ideal-seeking fuzzy DEA. The models introduce ideal and anti-ideal 

DMUs to the data, and use a reference point. The ranking of the DMUs under assessment is 

determined, based on the distance from these reference points. In the same direction, another model 

is proposed by Hatami-Marbini [101] that uses a similar method, but the overall ranking is 

determined by calculating the closeness coefficient (CC) between data points under assessment and 

the two virtual DMUs.   

Liu also introduced a two-stage fuzzy method [102], where a nonlinear program is formed 

to obtain the efficiency scores and rank all DMUs accordingly. This recent method is useful when 
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the membership function of the fuzzy models is unknown. Another model by Wen et al. [103] 

incorporates a simulation approach and genetic algorithm in order to rank the proposed fuzzy DEA 

model.  

It is worth mentioning that under the fuzzy category, many DEA models have been 

developed within the concept of ranking, but it is widely considered that the fuzzy technique could 

be combined with DEA as a post-analysis to classical DEA model [104]. In other cases, the fuzzy 

approach can also be used as a cultivating tool for other enhanced DEA models, as in the work of 

Hatami-Marbini et al. [101] when they applied fuzzy theory to develop a cross-efficiency model to 

solve sourcing problems in a supply chain application. 

 

2.4.  Discussion and literature contribution 

Publications and research work in the field of DEA have grown substantially since its 

introduction in 1978, resulting in major advancements in its methodologies, models, and real-world 

applications (see [74]). Within this development, a subfield of research has focused on developing 

the discrimination power of DEA by improving its capability to better rank all DMUs in any dataset 

under study. This literature analyzed these developments and classified the most relevant DEA 

ranking methodologies into 10 general categories. 

The first category includes methods based on cross-efficiency matrixes, where both self- 

and peer evaluations are applied to achieve a balanced ranking. Two main advantages of the cross-

evaluation method are that (i) it provides a ranking order for DMUs and (ii) it drops unrealistic 

weight schemes without asking the decision makers to yield a set of weight preferences (e.g., 

Anderson et al. [106]). 
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The second group of ranking methods utilizes the super-efficiency concept, where the DMU 

under assessment is excluded from the linear program of the DEA, thereby allowing it to achieve a 

score greater than 100%. Super-efficiency methods are broadly used in DEA because of their ability 

to detect outlying DMUs and provide sensitivity analysis. The main shortcoming of super-

efficiency models is the infeasibility issue for certain DMUs, particularly under the assumption of 

VRS, as discussed in the work of Cooper et al. [16], and Thrall [46]. In addition, the existing zero 

data may be problematic in the super-efficiency models. In this regard, Zhu [107] argued that the 

super-efficiency model under the assumption of CRS (constant returns to scale) is infeasible when 

an efficient DMU has zero inputs. Cooper et al. [16] looked into the infeasibility problem that occurs 

in different super-efficiency models in order to define the necessary and sufficient conditions for 

the infeasibility of these models. Though Lovell and Rouse [108] developed a user-defined scaling 

factor to make the VRS super-efficiency model feasible, Cook et al. [49] showed that Lovell and 

Rouse’s [108] approach may have infeasible solutions. Chen  [109] considered the input and output 

super-efficiency scores at the same time to treat the infeasibility that occurs in the VRS super-

efficiency model. In line with the findings of Chen [109] and Cook et al. [49], Lee et al. [110] 

showed that the infeasibility may be observed in inefficient performance. As discussed by Lee and 

Zhu [111], an identical problem associated with the presence of zero data can be observed in Cook 

et al. [49] and Lee et al. [110]. In a very recent study, Pourmahmoud et al. [54] showed that the 

RDM super-efficiency model becomes feasible when all range of possible improvements are strictly 

positive.  

The third group of methodologies is based on benchmarking all DMUs according to their 

usefulness, compared with the other units in the dataset. This method is also widely used because 

it is direct and simple in its application. 



41 
 

The methods in the fourth category are based on post-statistical analysis, in which a common 

weight is found and then all DMUs are ranked by using this value as the reference. In this category, 

decision-maker involvement is high, and multiple works have been proposed in the literature in 

order to sustain the criteria that decision makers use, without being biased. The following category 

discusses a methodology that ranks inefficient DMUs; while only one method was discussed, 

similar concepts were described in more depth in Section 2.3.7. The sixth category involves 

complex methods that utilize MCDM modeling in order to rank all efficient DMUs. Of the many 

MCDM papers in the DEA context, however, few have shifted towards examining the 

discrimination power of DEA models. 

The seventh category observes approaches that rank DMUs by using the inefficient frontier 

as the reference, rather than the efficiency frontier. Under this approach, all inefficient DMUs are 

excluded from the ranking process. Among all categories, this approach shows a different 

perspective in terms of developing overall unbiased evaluation.  

 The eighth category discusses methods that introduce single or multiple virtual DMUs to 

the dataset. Each method in this category designs a virtual DMU in a way that best suits the 

methodology to rank all DMUs. The virtual DMU approach, although only recently introduced, 

continues to grow, with the addition of varied models in the literature. 

The ninth category touches on papers that have proposed ranking approaches that allow the 

DM to apply certain restrictions to the data. Finally, the last category includes papers that use the 

fuzzy approach to generate a ranking. The fuzzy concept is not widely applied for ranking DMUs 

because of its inability to provide an accurate assessment. Hatami-Marbini et al. [112] provided an 

excellent fuzzy DEA review by classifying the present methods in the literature. Although the α-
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level based approach is one of the best and widely used groups, it is not computationally 

efficient and cannot be straightforwardly applied in practice. 

 In summary, Table 2.4 presents a general guide towards choosing the best fitting 

methodology when a ranking method is needed for certain DEA applications. Moreover, 

practitioners should always look into the resources available before choosing which method to 

apply for any ranking evaluation. Each category or approach discussed above is unique in term of 

resource requirements, which may include type and size of data, computational resources, 

techniques required, special situations, and the decision maker’s preferences. Another aspect that 

analysts should consider when choosing a ranking method is the calculation requirements for each 

category. In this regard, analysts should try to answer questions such as: What are the weights 

restrictions? How many constraints and models does the problem have? How many variables are in 

each model? Answering these questions will also help in determining which ranking method should 

be used.  
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Table 2.4 Features of the main ranking methods, along with their main advantages and disadvantages 

 

  

    

Introduction 

of a new 

concept   

Ranking 

efficient 

DMUs   

 

Reference 

weights   Advantages of the category   Disadvantages of the category 

            
Cross-efficiency category            

Sexton et al. [35]  ×  ×   ×  
Unbiased for self-evaluation 

Accurate ranking 

 

Neglects actual score Doyle and Green [36]  ×  ×   ×   

Zerafat Angiz et al. [22]  ×  ×      

            
Super-efficiency category            

Andersen and Petersen [13]   ×  ×     
Detects outliers 

Efficiency score greater than 100% 

 

Occasional infeasible results Sueyoshi [25]  ×  ×      

Chen [48]  ×  ×      

            
Benchmarking category            

Torgersen et al. [26]  ×  ×     

Simple and direct application 

 

 Sinuany-Stern et al. [61]  ×  ×      

Jahanshahloo et al. [62]  ×  ×   ×   

            
Statistics category            

Friedman and Sinuany-Stern [27]  ×     ×  

Full ranking 

Detects fitting errors  

 

Complex application 

Occasional infeasible results 

Sinuany-Stern and Friedman [64]   ×     ×   

Hashimoto and Wu [65]  ×     ×   

Liu and Hsuan Peng [67]  ×     ×   

Wang et al. [28]   ×     ×   

            
Inefficient DMUs category             

Bardhan et al. [73]   ×         Restricts ranking to inefficient units 
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MCDM category            

Troutt [78]  ×       

Full ranking 

Responsive to the DM’s preferences 

 

Complex and stretched methodology  
Li and Reeves [80]  ×     ×   

Sinuany-Stern et al. [81]  ×        

Jablonsky [82]  ×  ×   ×   

            
Inefficient frontier category             

Yamada et al. [85]  ×       Pessimistic ranking  

Detects worst units 

Useful in elimination process 

Reduces bias   

 
Changes the ranking order  

Dual calculation for every model and 

longer algorithm implied  

Entani et al. [86]  ×        

Jahanshahloo and Afzalinejad [88]  ×        

Wang et al. [31]   ×        

            
Virtual DMU category            

Wang and Luo [89]  ×       
Flexibility  

Full ranking in most models 

 
Changes the reference set in the 

original dataset  
Wang and Yang [90]  ×        

Zheng [91]  ×  ×      

            
DM interference category            

Wang et al. [95]  ×     ×  Responsive to the DM  Inconsistency  

            
Fuzzy concept category             

Wu [98]  ×     ×  Useful with inaccurate data 

Vague inputs and outputs 

 
Occasional infeasible results 

Zerafat Angiz et al. [34]   ×              

 



45 
 

This literature review can be considered as an attempt to fill the gap in the literature of DEA 

ranking methods. The literature development between 2002 until the time of publishing this article 

was very intensive. The main conclusion raised from developing 10 categories is that none of the 

proposed DEA ranking category is optimum for every evaluation assessment. At the same time, 

some methods have the advantage of a simple process and the provision of accurate results, while 

others reach similar results by using more complex procedures. One frequently raises the question: 

which DEA ranking method should one use? The answer to this question often depends upon the 

application being considered. Moreover, the fit of the characteristics of the data under assessment 

with the DM’s preferences could be the main factor in determining a fit method that might be used 

to conduct a DMUs evaluation in the DEA context. 

This literature review discusses different situations, including the available information and 

objectives sought to be achieved for each category, which may help practitioners apply an 

appropriate DEA ranking category. In brief, this review with its classifications of ranking methods 

should aid researchers in advancing their work by:  

 improving the discrimination power of DEA and ranking DMUs under evaluation  

 developing similar ranking models discussed in the review for other types of DEA such 

as network DEA (See Färe and Grosskopf [113]) or the FDH model, which is the focus 

of this thesis  

 allowing applications of DEA ranking methods for real decision-making problems such 

as multi-stage supply chains 

 making a comparison between different DEA ranking categories using statistical 

techniques such as Spearman’s rank correlation coefficient, to observe how well the 

relationship between two methods works  
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 developing a methodology to appropriately account for the issues of ranking of fuzzy 

efficiencies.  

 

2.5.  Summary and conclusion 

In conclusion, a major finding of this review is that the absence of universal assessment 

criteria makes it impossible to evaluate all methods presented. Each method could be better than 

others according to the DM’s preferences and evaluation objectives, which depend on the nature of 

the evaluation. Indeed, no ranking method was found to be either a universal or a superior method 

for ranking the efficiency of DEA models, and there remains considerable room for additions to the 

literature, since many tools have not yet been applied. As a general observation, it can be said that 

many of the methods were presented some time ago have been well developed, and the literature is 

saturated with discussions about them. On the other hand, some methods are considered fairly new 

and not yet properly examined and investigated, though they yield very good and accurate rankings. 

One of these approaches, as previously discussed, is the pessimistic frontier approach. The major 

advantage of this approach is its ability to bring full ranking to any dataset when its incorporated 

with standard efficiency frontier. Furthermore, its unique characteristic of avoiding biasness by 

incorporating both optimistic and pessimistic approaches is unlike all other approaches, which 

mainly only consider the optimistic models.  This approach can be considered as a foundation 

approach to all new models developed in this thesis or the general framework of the thesis, as shown 

in the remaining chapters. Furthermore, this thesis adopted the virtual DMUs approach from the 

literature and some models developed in this thesis are also developed on that basis.  

This review has shed light on almost all available DEA ranking methods in the literature, 

and it should help any researcher or practitioner to build a foundation and comprehensive 
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understanding of DEA ranking methods and their development. It is hoped that the taxonomy and 

detailed review provided in this chapter will help users to decide on the direction of their work in 

terms of either DEA application or research investigation. 
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Chapter 3: New Optimistic and Pessimistic 

DEA/FDH Models   
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3.1.  Introduction  

The aim of frontier analysis is to construct the empirical analogue of the production 

function by the use of the production possibility set (PPS), also the so-called technology, whose 

frontier is used to evaluate firms [114]. DEA, a well-known non-parametric method in frontier 

analysis for measuring the relative efficiency between DMUs, was introduced more than 40 years 

ago when Charnes, Cooper, and Rhodes [1] presented their so-called CCR model for CRS, through 

which they were able to construct the PPS, based on mathematical programming techniques. The 

main idea behind the original DEA models is that an empirical best practice frontier is first 

constructed by enveloping the observed data through a minimal spanning hull, and then the 

efficiency measure is determined based on radial projection to the production frontier. DEA has 

since attracted the attention of many researchers because of its unique ability to measure the 

efficiency of multiple-input and multiple-output DMUs without assigning prior weight to the input 

and output, resulting in the proposal of a wide range of DEA models [74].  

A remarkable DEA model developed in the literature is the free disposal hull (FDH) model 

that is based on an exceptionally powerful line of reasoning. Deprins et al. [115] were the first to 

propose an FDH model with a non-convex technology, and FDH was further developed by Tulkens 

[116]. FDH is different from the DEA family in that it requires the minimal satisfaction on the 

assumptions for creating the “staircase” shape of the FDH frontier production. That is, it does not 

require convexity and/or proportionality assumptions. Although fewer studies have been 

conducted on the FDH model than on classical DEA, FDH is considered a more justifiable 

orientation from the practical and theoretical views than the hypothesized convex assumption in 

DEA [118, 119].  
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Another specific characteristic of DEA models, so-called optimism, is to seek the most 

desirable input and output weights of a particular DMU, with the aim of radially projecting on the 

efficiency production frontier, making each unit appear in its most favorable light. Considerable 

research has been conducted regarding this characteristic of DEA. However, many DEA 

researchers have argued that using a pessimistic perspective in addition to the optimistic approach 

is important to render an equitable evaluation. Pessimistic DEA simply evaluates DMUs by 

constructing the inefficiency production frontier based on the least desirable weights to achieve 

the full inefficiency scores. An extensive body of literature exists regarding the incorporation of 

the pessimistic and optimistic approaches to achieve an unbiased evaluation.  

The remainder of this chapter is organized as follows. The next subsection presents a 

preliminary discussion of the major related research studies that incorporate optimistic and 

pessimistic approaches. In subsection 3.3, the axiomatic foundation of the optimistic DEA model 

is presented to develop the estimate formulation of the directional distance function from the input 

and output orientations. Subsection 3.4 discusses the pessimistic directional distance function for 

both the input- and output-oriented models. In subsection 3.5, the optimistic and pessimistic FDH 

models are developed for input- and output-oriented cases, and the models are extended to include 

slack-based models and super-efficiency models to rank the efficient units. 

 

3.2.  State of the art on pessimistic and optimistic DEA  

There has been a series of research studies focusing on the development of classical DEA 

models while incorporating the pessimistic approach to achieve a better evaluation of the DMU 

under assessment. The main finding from this series of papers is that using only optimistic or only 

pessimistic DEA models is biased because there are two efficient DMUs under the optimistic DEA, 
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whereas they are inefficient under the pessimistic DEA, as shown in Figure 3.1. Since the dual 

frontiers approach is the main framework of the all models developed in this thesis, in this 

subsection a closer attention is paid to the main dual models in the literature and all extended 

models. Yamada et al.[119] were the first authors to propose a pessimistic method to evaluate 

DMUs, which they termed inverted DEA (IDEA). All research work that incorporates optimistic 

DEA with pessimistic DEA can be categorized into two categories. The first category is called 

interval efficiency, where the efficiency score of each DMU in the dataset is calculated as an 

interval between the optimistic and pessimistic frontiers. There are more studies devoted to this 

category than to the other one. The second category includes different approaches that assimilate 

both optimistic and pessimistic measures by directly applying some mathematical or statistical 

methods, such as averaging, virtual DMUs, or cross-efficiency, with the aim of combining both 

measures.  
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The following paragraphs review the articles and research work related to the first category, 

namely, interval efficiency between optimistic and pessimistic DEA.    

Doyle et al. [120], and Entani et al. [86] were among the first to combine the inverted or 

pessimistic DEA with the conventional optimistic DEA. Their research resulted in an efficiency 

score that is obtained based on an efficiency interval in which the lower bound is the pessimistic 

score and the upper bound is the optimistic score. Entani et al. [86] constructed an interval model 

to calculate the efficiency, and these intervals are obtained from both optimistic and pessimistic 

scores. The model of Entani et al. can be considered the foundation model for the efficiency 

interval approach, where the final efficiency score for any DMU is denoted as an interval of the 

lower and upper limit efficiencies. Their model was initially proposed for crisp data and was 

 

 

Figure 3.1 Dual DEA frontiers 
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extended to consider interval data and fuzzy data. A major shortfall is that it works perfectly only 

with two-dimensional data, as the model uses variable frontiers for each DMU under evaluation. 

Entani and Tanka [121] tried to improve upon this model by adjusting the input and output of the 

data to make the upper bound of the efficiency interval equal 1 and the lower bound as large as 

possible to achieve the optimal evaluation. To overcome the shortfall of Entani et al. [86], Wang 

and Yang [90] introduced a method founded on the concept of virtual DMU called anti-ideal DMU 

(ADMU), which can be defined as a DMU that uses the maximum input value to produce the 

minimum output value. In their model, the efficiencies of all DMUs are obtained by calculating 

the worst and best performances of each DMU, and the interval efficiencies are calculated. Then, 

they used the Hurwicz criterion approach to rank each DMU, based on these interval values. This 

model is referred to as a bounded DEA model because the efficiency of the DMU in question is 

bounded between upper and lower bounds, which are then combined to determine the efficiency. 

The advantage of this method is that it incorporates most of the input and the output data when 

evaluating performance; however, it lacks feasibility when there is a zero value for any output in 

the data because the ADMU will obtain a zero value in its output. In the same direction, Hatami-

Marbini et al. [122] proposed the fuzzy version of Wang and Yang’s [90] model to obtain the 

bounded fuzzy efficiency scores using a four-step framework.  

Wang and Yi [123] introduced an IDMU which consumes the minimum input and produces 

the maximum output, to determine the lower bound of the interval efficiency of optimistic and 

pessimistic scores. After obtaining the efficiency intervals, a Hurwicz criterion approach is 

incorporated into their model to achieve full evaluation and ranking. Wang and Luo [89] proposed 

an approach that evaluates efficiency using both the IDMU and ADMU. Wu [124] highlighted a 

problem in the previous model of Wang and Luo [89], namely, that a negative ideal point cannot 
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be computed. A revised model has been proposed, based on the previous model and incorporated 

with the TOPSIS approach to calculate the overall efficiency. Chen [125] also highlighted a scaling 

problem with the model of Wang and Luo [89], where optimistic scores are limited to no more 

than one, whereas the pessimistic scores are limited to no less than one. Chen proposed a rescaled 

model that claimed to be superior to the models of Wang and Luo [89], and Wu [124].  

A significant research effort was undertaken after it was proven that the Wang and Yang 

[90] model is not capable of processing data with a zero value in the output. Azizi and Wang [32], 

and Azizi [126] developed general bounded models that overcome this limitation and measure the 

efficiencies of DMUs in the presence of each output and with the presence of zero values in the 

output. Similar to the previous approach, Azizi and Jahed [127] proposed an adjusted interval 

model as an extension of Entani et al. [86] that addresses data with zeros in each input and 

overcomes the feasibility issue of the model of Wang et al. [123]. Azizi and Ajirlu [128] developed 

an alternative to the model of Entani et al. called the bounded DEA model for crisp data. In this 

model, the IDMU and ADMU are introduced as virtual DMUs, and the model is developed 

accordingly. The advantage of this model is that it can identify all DMUs that are pessimistically 

inefficient. Moreover, the model requires fewer computational loops than Entani’s model. Their 

proposed model was proven to be invalid by Chen [129] because it faces the same issue of not 

being able to determine the lower bound when there are zeros in the data. 

Chen [129] critiqued most models in the literature for having infeasibility because most 

interval models encounter the problem that the lower bound can be greater than the upper bound, 

and, in these cases, the efficiency measure is not feasible. Thus, Chen’s model has three main 

advantages. First, the model eliminates any unreachability of the efficiency. Second, it can identify 

all DMUs as efficient or inefficient. Third, both the efficient and inefficient frontiers remain 



55 
 

untouched. Additionally, the computational requirements of the model are lower. In this paper, 

reliance is made on the critiques of Chen [129] of the models in the literature and presents a model 

that exhibits all the advantages of Chen’s model. Jahanshahloo, et al. [130] proposed a ranking 

DEA model for crisp and interval data. Their procedure starts with obtaining the ideal points for 

efficient DMUs by applying the interval DEA model (the model of Entani et al.). Next, they 

introduce a virtual DMU called the special DMU that is similar to the anti-ideal DMU, which has 

the worst performance measure. Then, the total distance between the ideal points of all DMUs and 

the special DMU are calculated; the closest DMU is considered the best or most efficient, and all 

DMUs are ranked accordingly. In contrast to virtual DMU approaches, Azizi [87] introduced the 

bounded DEA model that is similar to the previous one but does not use virtual DMUs, leading to 

results similar to those of the Entani et al. interval models. Azizi et al. [131] also presented two 

models to obtain the upper and lower bounds of the efficiency scores when the input/output data 

are imprecise and are given in the form of an interval or ordinal relationship. Jahed et al. [132] 

presented a model that considers uncertain data or fuzzy data. Their approach develops two fuzzy 

interval DEA models, one based on the pessimistic frontier and the other based on the optimistic 

frontier. Both measures are combined by a quadratic average to obtain a final efficiency interval 

for all DMUs.  

As noted above, the second category of research work in the direction of optimistic and 

pessimistic approaches includes miscellaneous methodologies that combine both approaches via 

statistical or mathematical approaches. It is understood that Wang et al. [31] proposed the first 

paper in this category by the direct application of the geometric average between the optimistic 

and pessimistic scores to calculate the final efficiency value for ranking purposes. Amirteimoori 

[133] proposed super-efficiency models for both the optimistic and pessimistic approaches. 
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Another proposed model that used cross-efficiency with both optimistic and pessimistic DEAs 

after introducing ideal DMUs and anti-ideal DMUs is that of Wang et al. [134]. In their paper, they 

developed four cross-efficiency models, where the first aims to minimize the distance between 

DMUk and ADMU, the second aims to maximize the distance between DMUk and IDMU, the third 

maximizes the distance between the IDMU and ADMU, and the last maximizes the relative 

closeness of DMUk. Sun et al. [135] argued that using multiple weights for both approaches leads 

to a biased comparison between DMUs. Thus, they proposed two common weight models: one 

based on the optimistic view and the other based on the pessimistic view, without combining them, 

and left the decision on which model to use to the decision-maker’s preference.  

Other models in this category are models that address imprecise data. Hatami-Marbini et 

al. [136] and [101] were the first to adapt the pessimistic optimistic frontiers to address imprecise 

data. Hatami-Marbini et al. [136] introduced the IDMU and ADMU as virtual DMUs and 

developed a four-stage fuzzy DEA model that incorporates TOPSIS to rank and evaluate all DMUs 

in the dataset. Another imprecise data model is that of Azizi et al. [137], which is considered a 

slack-based model for optimistic and pessimistic approaches that addresses imprecise data. Both 

models are combined with geometric values similar to the model of Wang et al. [31], with the only 

difference being that they use the slack-based model instead of classical DEA models. In this 

category, the work of Paradi et al. [138], Johnson and McGinnis [139], and Horta and Camanho 

[140] is also noted. 

In summary, this preliminaries section shows that incorporating optimistic and pessimistic 

DEAs leads to a better evaluation of DMUs and better discrimination power. However, a gap was 

found in the literature, that is, the lack of discussion on the non-convex frontier from the optimistic 

and pessimistic perspectives. According to the DEA literature on the double optimistic and 



57 
 

pessimistic frontiers, none of the existing models accommodate non-convex frontiers. As 

discussed by Cherchye et al. [141], and Agrell and Tind [142], non-convex frontiers are considered 

an important technology that may be closer to the real-life situation, where the convexity 

assumption can be relaxed and no hypothetical frontiers need to be constructed. Moreover, 

conventional DEA leads to the indivisibility of input and output, and in many cases, the convexity 

axiom may be broken. More discussion and empirical evidence can be found in the work of Farrell 

[143], Deprins et al. [115], Tulkens [116] and Kuosmanen [144].  

This study contributes to the literature by providing a number of models that incorporate 

optimistic and pessimistic assessments without a convexity assumption, as discussed in the 

following sections of this chapter. The thesis proposes an interval DEA model with double 

frontiers without the convexity assumption, by constructing optimistic and pessimistic FDH 

models to overcome the shortfall of optimism and the convexity of conventional DEA. 

 

3.3.  Axiomatic foundation in DEA (optimistic DEA) 

DEA, developed by Charnes et al. [1], is a data-driven frontier analysis technique for 

estimating a convex hull and measuring the radial distance between the frontier and each 

observation, called a DMU. 

Assume that the efficiency of n observed DMUs is evaluated based on m inputs and s 

outputs. Each DMUj where j=1,2,…,n is characterized by an input vector 𝑋𝑗 ∈ ℝ𝑚+  and an output 

vector 𝑌𝑗 ∈ ℝ𝑠+. The production possibility set (PPS) T is defined as 

T≡{(X,Y) | Y can be produced by X} (3.1) 
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Due to the unknownness of T in practice, the empirical PPS, denoted by 𝑇, can be expressed 

using the following axioms: (A1) no free lunch, (A2) boundedness, (A3) closedness, (A4) free 

disposability of both inputs and outputs, and (A5) convexity (see Färe et al. [145]) for a detailed 

explanation of the axioms). The empirical PPS 𝑇 can be defined by means of n production units 

(𝑋𝑗 , 𝑌𝑗) j=1,2,…,n as the following set of linear inequalities[145]: 

𝑇 ≡ {(X, Y)|∑Xjλj ≤ X;j ∑Yjλj ≥ Y; λj ≥ 0j } 

(3.2) 

With reference to 𝑇, the directional distance function can be defined as [145]: DT(X, Y; gx, gy) = 𝑠𝑢𝑝θ {θ|( X + θgx, Y + θgy) ∈ T} (3.3) 

where (𝑔𝑥, 𝑔𝑦) ∈ ℝ𝑚+𝑠+  is a pre-partitioned and arbitrary input-output direction. In line with the 

general directional distance function, Chambers et al. [146], and Chambers et al. [147] developed 

a measure of distance to the production frontier, where (−𝑋𝑜, 𝑌𝑜) is chosen for (𝑔𝑥, 𝑔𝑦). For a 

given PPS 𝑇, the directional distance function 𝐷𝑇 can be formulated as [147]: DT(Xo, Yo; gx, gy) = 𝑠𝑢𝑝θ {θ|( Xo − θXo, Yo + θYo) ∈ T} (3.4) 

𝐷𝑇 is used to simultaneously minimize the inputs and maximize the outputs of a given DMU. 

Based on the aforesaid axioms, strong disposability and VRS assumptions, the directional distance 

function (3.4) leads to the linear programming model (3.5) for calculating the directional distance 

function value of a DMUo under evaluation [147]:  
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DT(Xo, Yo; gx, gy) = 

max {θ|∑λjXj ≤ Xo − θXo;j ∑λjYj ≥ Yo + θYo;j ∑λj = 1; λj ≥j 0} 
(3.5) 

Geographically, distance function measures the distance between the observation (𝑋𝑜, 𝑌𝑜) 
and the frontier estimated by 𝑇 under the input and output orientations in the production space. 

The factor 𝜃 in model (3.5) is called the Nerlove-Luenberger measure of technical inefficiency, 

and (1 − 𝜃) represents the technical efficiency of DMUo.  

The Shephard input and output distance functions can be expressed as follows [148]: Din(Xo, Yo) = 𝑠𝑢𝑝θ {θ|( Xo/θ, Yo) ∈ T} Dout(Xo, Yo) = 𝑖𝑛𝑓θ {θ|( Xo, Yo/θ) ∈ T} (3.6) 

 

If the input direction in (3.4), i.e., 𝑔𝑥 = 0, is not used, the directional and Shephard output 

distance functions are connected as 𝐷𝑇(𝑋𝑜, 𝑌𝑜 , 0, 𝑔𝑦) =  (1/𝐷𝑜𝑢𝑡(𝑋𝑜 , 𝑌𝑜)) − 1 . Similarly, the 

directional and Shephard input distance functions are linked as 𝐷𝑇(𝑋𝑜, 𝑌𝑜 , 𝑔𝑥, 0) =  1 −(1/𝐷𝑖𝑛(𝑋𝑜, 𝑌𝑜)). In other words, the Shephard input and output distance functions are reciprocal 

to the Farrell measures of input and output technical efficiency, which can be empirically estimated 

as [148]:  

1/Din(Xo, Yo) = Foin = min {θ|∑λjXj ≤ θXo;j ∑λjYj ≥ Yo;j λj ∈ φ(B)} 

 

1/Dout(Xo, Yo) = Foout = max {θ|∑λjXj ≤ Xo;j ∑λjYj ≥ θYo;j λj ∈ φ(B)} 

(3.7) 
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where 𝜆𝑗 ∈ 𝜑(𝐵) indicates the type of returns to scale (RTS) assumption and the shape of the 

envelopment. (See Banker and Thrall [150] for a detailed discussion RTS.) The above models 

evaluate the radial efficiency using a given PPS, which is estimated by observations and axioms 

of convexity, free disposability and RTS. In this regard, one of the following assumptions can be 

included to define constant RTS (CRS), decreasing RTS (DRS), variable RTS (VRS) and 

increasing RTS (IRS) models (see Charnes et al. [1] and Bogetoft [150]): 

𝜑(𝐶𝑅𝑆) = {𝜆𝑗 ∈ ℝ: 𝜆𝑗 ≥ 0} 
𝜑(𝐷𝑅𝑆) = {𝜆𝑗 ∈ ℝ: 𝜆𝑗 ≥ 0;∑𝜆𝑗 ≤ 1𝑗 } 

𝜑(𝑉𝑅𝑆) = {𝜆𝑗 ∈ ℝ: 𝜆𝑗 ≥ 0;∑𝜆𝑗 = 1𝑗 } 

𝜑(𝐼𝑅𝑆) = {𝜆𝑗 ∈ ℝ: 𝜆𝑗 ≥ 0;∑𝜆𝑗 ≥ 1𝑗 } 

𝜑(𝐹𝐷𝐻) = {𝜆𝑗 ∈ ℝ:∑𝜆𝑗 = 1𝑗 ; 𝜆𝑗 = {0,1}} 

If a DMUo under evaluation is located on the frontier, i.e., 𝐹𝑜𝑖𝑛 = 1 (𝐹𝑜𝑜𝑢𝑡 = 1), it is said 

to be efficient; otherwise, it is called inefficient. In brief, all efficient DMUs construct the “efficient 

frontier.” The value of 𝐹𝑜𝑜𝑢𝑡 (𝐹𝑜𝑖𝑛) gauges the degree to which the outputs (inputs) of the DMUo 

can be scaled up (down) pro rata, while preserving the PPS. The projected point for the output 

analysis is (𝑋𝑜 , 𝐹𝑜𝑜𝑢𝑡𝑌𝑜), where 𝐹𝑜𝑜𝑢𝑡 ≥ 1, whereas the projected point for the input analysis is (𝐹𝑜𝑖𝑛𝑋𝑜, 𝑌𝑜), where 0 ≤ 𝐹𝑜𝑖𝑛 ≤ 1. 
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3.4.  Pessimistic DEA 

One can seek an inefficient frontier from observations with the aim of indicating the 

inefficient observations to obtain an insightful DEA analysis. From the output viewpoint, the 

inefficient frontier can be represented as a convex hull derived from the minimum output level, 

given an input level for which output levels less than the frontier value cannot be produced. 

Similarly, from the input viewpoint, the inefficient frontier is a convex hull defined by the 

maximum input level, given an output level for which input levels greater than the frontier value 

cannot be used. In other words, the most inefficient observations representing the worst possible 

performance construct the inefficient frontier.  

The empirical PPS estimating the inefficient frontier, denoted by �̿�, can be defined by n 

observations (𝑋𝑗, 𝑌𝑗) j=1,2,…,n as follows: 

T̿ ≡ {(X, Y)|∑Xjλj ≥ X;j ∑Yjλj ≤ Y; λj ∈ φ(B) j } (3.8) 

With respect to �̿�, the reciprocal Shephard input and output distance functions or the Farrell 

measures of input and output technical efficiency can be expressed as follows: 

1/D̿in(Xo, Yo) = F̿oin = max {θ|∑λjXj ≥ θXo;j ∑λjYj ≤ Yo;j λj ∈ φ(B) } 

 

1/D̿out(Xo, Yo) = F̿oout = min {θ|∑λjXj ≥ Xo;j ∑λjYj ≤ θYo;j λj ∈ φ(B) } 

(3.9) 

The value of �̿�𝑜𝑜𝑢𝑡 (�̿�𝑜𝑖𝑛) gauges the degree to which the outputs (inputs) of DMUo can be 

scaled up (down) pro rata toward the inefficient frontier, while remaining in the PPS. The projected 

point for the output perspective, as (𝑋𝑜, �̿�𝑜𝑜𝑢𝑡𝑌𝑜), indicates the point located on the inefficient 
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frontier, where 0 ≤ �̿�𝑜𝑜𝑢𝑡 ≤ 1 represents the distance between DMUo and the inefficient frontier. 

Analogously, the projected point for the input analysis is (�̿�𝑜𝑖𝑛𝑋𝑜, 𝑌𝑜), in which �̿�𝑜𝑖𝑛 ≥ 1 measures 

the distance between DMUo and the inefficient frontier. If a DMUo under evaluation is located on 

the inefficient frontier, i.e., �̿�𝑜𝑖𝑛 = 1 (�̿�𝑜𝑜𝑢𝑡 = 1), it is said to be inefficient; otherwise, it is called 

not inefficient.  

The difference is graphically illustrated between efficient and inefficient frontiers 

constructed from 10 observations, denoted as A, B,…,J, where each observed unit produces two 

outputs, using one input that has the same value for all units, as shown in Table 3.1 The dataset 

was originally used in Entani et al. [86]. The dual frontiers are depicted in Figure 3.2. The 

conventional CRS-DEA with an optimistic viewpoint results in the piecewise line AEJ as an 

efficient frontier, where DMUs A, E and J lie on this frontier and DMUs A, B, F and J construct 

an inefficient frontier.  

Table 3.1 Input and output data for 10 DMUs illustrative example 

DMU Inputa Output 1 Output 2 

A 1 1 8 

B 1 2 3 

C 1 2 6 

D 1 3 3 

E 1 3 7 

F 1 4 2 

G 1 4 5 

H 1 5 2 

I 1 6 2 

J 1 7 1 

a Unity score is given to the input in order to keep the data within two dimensions  
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3.5.  Optimistic and pessimistic FDH 

In this section, attention is drawn to the FDH model of Tulkens [116], which constructs a 

non-convex hull imposing strong disposability assumptions. The FDH model is a remarkable DEA 

model that differs from the other DEA models by requiring minimal satisfaction on the DEA 

assumptions where convexity is relaxed. The FDH frontier creates a “staircase” shape production 

set that does not require convexity and/or proportionality assumptions. In this regard, this section 

proposes an interval FDH for measuring the bounded efficiency, where the upper bound is obtained 

from the optimistic perspective and the lower bound is obtained from the pessimistic perspective.  

Mathematically, convexity assumption means for any production possibility set (PPS) T, 

if there are two points (X1, Y1) ∈ T  and (X2, Y2) ∈ T , and for any weight 0 ≤  𝜆 ≤ 1, the 

 

 

Figure 3.2 Dual FDH frontier vs CRS frontier 
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weighted sum {(1 − 𝜆)(X1, Y1)  +  𝜆 (X2, Y2)} ∈ T . That means any points between the points 

can be considered as a part of the feasible PPS. For further explanation on convexity assumption, 

see the illustrative example presented in Figure 3.2. We can say that the efficiency CRS frontier 

(blue lines) and the inefficiency CRS frontier (red lines) are convex, and any points between the 

lines of the plotted DMUs belong to the feasible PPS. For instance, since DMUs E and J are 

connected through the frontier line, then any point located on the line EJ is also a feasible point.  

Although DEA is an estimator based on the assumption that the true production set is 

convex, in some real-life situations, the true production set may not be convex. The FDH is the 

most used non-convex DEA model in the literature.  

Hence, FDH measures the efficiency of a given observation to the frontier of the free 

disposal hull of the set of observations. As a more general version of the DEA estimator, the FDH 

model relaxes the convexity while preserving strong disposability and considering the VRS 

assumption [151]. In other words, dispensing with convexity leads to frontiers of a “staircase” 

shape that have a lower rate of convergence than conventional DEA.  

The FDH input and output efficiency scores for a given observation (𝑋𝑜, 𝑌𝑜)  can be 

expressed as [151]:  Foin−FDH(Xo, Yo)  = inf {θ|(θXo, Yo) ∈ TFDH } Foout−FDH(Xo, Yo)  = sup {θ|(Xo, θYo) ∈ TFDH } (3.10) 

where 𝑇𝐹𝐷𝐻 = {(𝑋, 𝑌)| ∑ 𝜆𝑗𝑋𝑗 ≤ 𝑋𝑜;𝑗 ∑ 𝜆𝑗𝑌𝑗 ≥ 𝑌𝑜;𝑗 ∑ 𝜆𝑗 = 1𝑗 ; 𝜆𝑗 = {0,1} } . The distance 

between the frontier and observation (𝑋𝑜, 𝑌𝑜) is measured in terms of (3.10) in the input and output 

spaces. Thus, the efficiency score of DMUo can be measured by solving the following programs:  

Foin−FDH(Xo, Yo)  = min {θ|∑λjXj ≤ θXo;j ∑λjYj ≥ Yo;j ∑λj = 1j ; λj = {0,1} } (3.11) 
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Foout−FDH(Xo, Yo)  = max{θ|∑λjXj ≤ Xo;j ∑λjYj ≥ θYo;j ∑λj = 1j ; λj = {0,1}} 

 

The above programs are the integer programming models due to the integral variables 𝜆𝑗. 
Apart from the integral constraints, the FDH program (3.11) is identical to the VRS-DEA model. 

Thus, 𝐹𝑜𝐹𝐷𝐻 ⊆ 𝐹𝑜𝑉𝑅𝑆 and the FDH efficiency estimate is higher than the VRS efficiency estimate. 

By solving (3.10), the convexity constraint ∑ 𝜆𝑗 = 1𝑗  takes one intensity variable 𝜆𝑗 with a value 

of 1.  

The proposed model 3.11 is presented in compact format to maintain consistency with the 

format used in the FDH literature, but also it can be presented in an expanded format as:  𝐹𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  = 𝑚𝑖𝑛 𝜃  

                               ∑ 𝜆𝑗𝑥𝑖𝑗𝑛𝑗=1 ≤ 𝜃 𝑥𝑖𝑜 ;     𝑖 = 1,2, … ,𝑚, 
                               ∑ 𝜆𝑗𝑦𝑟𝑗𝑛𝑗=1 ≥ 𝑦𝑟𝑜 ;    𝑟 = 1,2, … , 𝑠,    
                               ∑ 𝜆𝑗 = 1𝑗 ; 
                               𝜆𝑗 = {0,1}  ;         𝑗 = 1,2, … , 𝑛. 

 
(3.11b) 𝐹𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) = 𝑚𝑎𝑥 𝜃  

                       ∑ 𝜆𝑗𝑥𝑖𝑗𝑛𝑗=1 ≤ 𝑥𝑖𝑜 ;     𝑖 = 1,2, … ,𝑚 

                       ∑ 𝜆𝑗𝑦𝑟𝑗𝑛𝑗=1 ≥ 𝜃 𝑦𝑟𝑜 ;    𝑟 = 1,2, … , 𝑠,    
                       ∑ 𝜆𝑗 = 1𝑗 ; 
                       𝜆𝑗 = {0,1}  ;         𝑗 = 1,2, … , 𝑛. 
 

where n is the number of DMUs in the dataset, and m and s are the number of inputs and 

outputs, respectively. And 𝜃 represents the efficiency score and the x’s and the y’s represent the 

values of the inputs and the outputs respectively associated for each DMU.This representation can 

be applied to all models presented in chapters 3 and 4.   
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In this chapter, over and above the non-convex efficient frontier, which analyzes the 

performance of the DMUs from the optimistic viewpoint, an inefficient non-convex frontier is 

indicated from the observations to represent the worst possible performance. The empirical PPS 

estimating the non-convex inefficient frontier �̿�𝐹𝐷𝐻 can be expressed by n observations (𝑋𝑗, 𝑌𝑗) 
j=1,2,…,n as follows: 

T̿FDH = {(X, Y)|∑λjXj ≥ Xo;j ∑λjYj ≤ Yo;j ∑λj = 1j ; λj = {0,1} } (3.12) 

The inequality constraints defined in �̿�𝐹𝐷𝐻 are contrary to 𝑇𝐹𝐷𝐻. 

From the output space, the inefficient frontier can be considered a non-convex hull derived 

from the minimum output level, given a fixed level of input for which output levels less than the 

frontier value cannot be produced; analogously, from the input space, the inefficient frontier is a 

non-convex hull obtained from the maximum input level, given a fixed level of output for which 

input levels greater than the frontier value cannot be consumed. The associated measurements with 

respect to the non-convex PPS �̿�𝐹𝐷𝐻 from the input and output perspectives are computed as: F̿oin−FDH(Xo, Yo)  = sup {θ|(θXo, Yo) ∈ T̿FDH } F̿oout−FDH(Xo, Yo)  = inf {θ|(Xo, θYo) ∈ T̿FDH } (3.13) 

and equivalently, the following: 

F̿oin−FDH(Xo, Yo)  = max {θ|∑λjXj ≥ θXo;j ∑λjYj ≤ Yo;j ∑λj = 1j ; λj = {0,1} } 

F̿oout−FDH(Xo, Yo)  = min {θ|∑λjXj ≥ Xo;j ∑λjYj ≤ θYo;j ∑λj = 1j ; λj = {0,1} } 

(3.14) 

where �̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻 and �̿�𝑜𝑖𝑛−𝐹𝐷𝐻 measure the extent to which the levels of outputs and inputs 

for a given DMUo can be increased and decreased proportionally with respect to the inefficient 
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frontier, while remaining in the PPS. Finally, if a DMUo under assessment lies on the inefficient 

frontier, i.e., �̿�𝑜𝑖𝑛−𝐹𝐷𝐻 = 1 (�̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻 = 1), then it is called inefficient; otherwise, it is called not 

inefficient. 

Integer programming problems, such as models (3.11) and (3.14), are intrinsically more 

difficult and time-consuming to solve than linear programming problems, and there is a lack of 

duality and simplex algorithms to assist in solving them. Reliance can be had on an equivalent 

FDH linear program introduced by Agrell and Tind [142] to address the computational complexity 

for large problems. The proposed model 3.11 is not linear, and that is what causes the complexity 

in calculating the efficiency score. To transform this model to a linear program, we need to replace 

the λj = {0,1}  by a linear constraint. By applying the Agrell and Tind [142] model, we replace the λj = {0,1} constraint by λj ≥ 0 but the efficiency score θ will be calculated through a summation 

of the individual set of θj while the virtual input and output constraints remain constant for every 

individual θ (mathematical proof of equivalency between the two models is provided in Agrell and 

Tind [142]).   

In doing so, the upper limit of the interval efficiency of a DMUo in terms of the input and 

output spaces can be solved by the following linear programs: 

Foin−FDH(Xo, Yo)  = min {∑θjj |λjXj ≤ θjXo; λjYj ≥ λjYo;∑λj = 1j ; λj ≥ 0 } 

Foout−FDH(Xo, Yo)  = max {∑θjj |λjXj ≤ λjXo; λjYj ≥ θjYo;∑λj = 1j ; λj ≥ 0 } 

(3.15) 

 

Similarly, the lower limit of the interval efficiency of a DMUo in terms of the input and 

output spaces presented in model 3.14 can be solved by the following linear programs: 
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F̿oin−FDH(Xo, Yo)  = max {∑θjj |λjXj ≥ θjXo; λjYj ≤ λjYo;∑λj = 1j ; λj ≥ 0 } 

F̿oout−FDH(Xo, Yo)  = min {∑θjj |λjXj ≥ λjXo; λjYj ≤ θjYo;∑λj = 1j ; λj ≥ 0 } 

(3.16) 

 

The earlier example in Section 3.4 is used to illustrate the above step of the proposed 

method. The FDH efficient frontier from the optimistic viewpoint is constructed by DMUs A, E, 

G, F, H, I and J, whereas the FDH inefficient frontier from the pessimistic viewpoint is built by 

DMUs A, C, B, D, F, H, I and J, as shown in Figure 3.2. The results from models (3.11) and (3.14) 

or models (3.15) and (3.16) are also reported in Table 3.2.  

 

Table 3.2 Illustrative example results obtained for dual FDH model 

DMU Input Output 1 Output 2 
𝐹𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) 

model (3.11), (3.15) 

�̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) 
model (3.14), (3.16) 

A 1 1 8 1 1 

B 1 2 3 1.6667 1 

C 1 2 6 1.6667 1 

D 1 3 3 1.3333 1 

E 1 3 7 1 0.6667 

F 1 4 2 1 1 

G 1 4 5 1 0.6 

H 1 5 2 1 1 

I 1 6 2 1 1 

J 1 7 1 1 1 
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3.6.  Summary and conclusion 

In this chapter, new DEA-FDH models from optimistic and pessimistic perspectives have 

been developed. Previous sections described the efficient and inefficient frontiers in FDH models 

to formulate boundary efficiency representations for the input- and output-oriented cases. These 

models presented in chapter 3 are very important to the user who needs to relax the convexity 

assumption of conventional DEA. As this study is conducted in a ranking development context, 

after developing the dual FDH models, it was realized that these models suffer from weak 

discrimination power.  In the following chapter of this thesis, new improved optimistic and 

pessimistic models will be developed in order to increase the ranking abilities of the dual FDH 

model. 
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Chapter 4: Improved Optimistic and 

Pessimistic FDH Models: An Integrated 

Approach 
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4.1. Introduction 

In the previous chapter of this thesis, optimistic and pessimistic FDH models have been 

proposed. These models may experience a lack of sufficient discrimination power. To overcome 

the weak discrimination power, integrated models are proposed and discussed in this chapter. Two 

improved versions of both approaches are developed. The first version formulates the models in 

the presence of the slack variables, and a detailed discussion is provided in Section 4.2. In the 

second improved version, FDH super-efficiency models are proposed in Section 4.3 and can be 

referred to as 1st FDH-SF integration. These super-efficiency models become infeasible. Thus, 

modified models without the infeasibility problem are discussed in Section 4.4 and can be referred 

to as 2nd FDH-SF integration. The chapter concludes with a comprehensive empirical study to 

illustrate the applicability of the proposed models. 

 

4.2.  Slack-based FDH dual frontiers  

In order to develop slack-based models that help to distinguish between efficient DMUs a 

slack-based models are considered. A non-Archimedean infinitesimal constant, ε, is introduced in 

models (3.15) and (3.16), and that leads to strongly efficient solutions for the input- and output-

oriented cases. In the recent work of Podinovski et al. [152] a theoretic proof shows that the non-

Archimedean constant that is commonly used in the literature can also be replaced by a very small 

infinite value of epsilon for computational simplicity. Our models are developed using the non-

Archimedean constant multiplied by the virtual weights of the slack variable as formulated below: 
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Foin−FDH(Xo, Yo)
= min {∑θj + ε(j 1sj+ + 1sj−)|λjXj + sj− = θjXo; λjYj − sj+
= λjYo;∑λj = 1j ; λj ≥ 0 } 

Foout−FDH(Xo, Yo)  
= max {∑θjj + ε(1sj+ + 1sj−)|λjXj + sj− = λjXo; λjYj − sj+
= θjYo;∑λj = 1j ; λj ≥ 0 } 

(4.1) 

 F̿oin−FDH(Xo, Yo)  
= max {∑θjj + ε(1sj+ + 1sj−)|λjXj − sj− = θjXo; λjYj + sj+
= λjYo;∑λj = 1j ; λj ≥ 0} 

F̿oout−FDH(Xo, Yo)  
= min {∑θjj + ε(1sj+ + 1sj−)|λjXj − sj− = λjXo; λjYj + sj+
= θjYo;∑λj = 1j ; λj ≥ 0 } 

 

(4.2) 

 

where 𝑠𝑗+ and 𝑠𝑗− are slack variables. According to the efficiency score and the optimal solutions 

obtained from models (4.1), three definitions can be introduced as follows: 
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Definition 1: If 𝐹𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) = 1  or 𝐹𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) = 1 and zero-slack ( 𝑠𝑗+ =𝑠𝑗− = 0), DMUo is called strongly FDH-efficient, implying that this unit is located on the strong 

efficient frontier.  

Definition 2: If 𝐹𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) = 1 or 𝐹𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) = 1 and has at least one non-

zero slack variable (𝑠𝑗+ ≠ 0 and/or 𝑠𝑗− ≠ 0), DMUo is called weakly FDH-efficient, implying that 

this unit is located on the weak efficient frontier.  

Definition 3: If 𝐹𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) < 1  or 𝐹𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) > 1,  DMUo is called FDH-

inefficient, implying that this unit is not located on the efficient frontier.  

Similarly, according to the efficiency score and the optimal solutions derived from models 

(4.2), three definitions can be introduced as follows: 

Definition 4: If �̿�𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) = 1  or �̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) = 1 and zero-slack ( 𝑠𝑗+ =𝑠𝑗− = 0), DMUo is called strongly FDH-inefficient, implying that this unit is located on the strong 

inefficient frontier.  

Definition 5: If �̿�𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) = 1 or �̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) = 1 and has at least one non-

zero slack variable (𝑠𝑗+ ≠ 0 and/or 𝑠𝑗− ≠ 0), DMUo is called weakly FDH-inefficient, implying 

that this unit is located on the weak inefficient frontier.  

Definition 6: If �̿�𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) > 1 or �̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) < 1, DMUo is called not-FDH-

inefficient, implying that this unit is not located on the inefficient frontier.  

Table 4.1 shows the calculation of SB-FDH models for the same numerical example 

discussed in chapter 3. According to Table 4.1 and Figure 3.2, when considering the “staircase” 

shape of the efficient FDH frontier, DMUs A, E, G, I and J are classified as strongly FDH-efficient 

because their efficiency scores are equal to 1 and there is zero slack (Definition 1); DMUs F and 

H are classified as weakly FDH-efficient because there is a non-zero-slack, even with 100% 
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efficiency (Definition 2); and DMUs B, C and D are classified as FDH-inefficient because the 

efficiency does not equal 1 (Definition 3). Further, when considering the “staircase” shape of the 

inefficient FDH frontier, DMUs A, B, C and D, H, I and J are classified as strongly FDH-inefficient 

because �̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) = 1 and there is zero slack (Definition 4), whereas DMUs E and G are 

classified as non-FDH-inefficient because �̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) ≠ 1 . As can be observed in this 

example, many of the observations belong to strongly FDH-efficient and strongly FDH-inefficient 

classifications with weak discrimination power. This problem in FDH stems from two reasons: (i) 

linear combinations of external observations are excluded when constructing the frontier that leads 

to the closest envelope to the data, and (ii) the radial efficiency of each DMU is based on that of 

other DMUs. Thereby, a relatively large number of DMUs normally lie on the efficient and 

inefficient FDH frontiers. 

 

Table 4.1 Input and output data for 10 DMUs with the results of SB models (4.1) and (4.2) 

DMU Input Output 1 Output 2 
𝐹𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) 

Model (3.11), (3.15) 

Slacks �̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) 
Model (3.14), (3.16) 

Slacks 𝑠𝐺(1)+  𝑠𝐺(2)+  𝑠𝐺(1)+  𝑠𝐺(2)+  

A 1 1 8 1.00 0.00 0.00 1.00 0.00 0.00 

B 1 2 3 1.67 0.67 0.00 1.00 0.00 0.00 

C 1 2 6 1.67 0.67 0.00 1.00 0.00 0.00 

D 1 3 3 1.33 0.00 1.00 1.00 0.00 0.00 

E 1 3 7 1.00 0.00 0.00 0.67 0.00 1.67 

F 1 4 2 1.00 0.00 3.00 1.00 0.00 0.00 

G 1 4 5 1.00 0.00 0.00 0.60 0.00 0.40 

H 1 5 2 1.00 1.00 0.00 1.00 0.00 0.00 

I 1 6 2 1.00 0.00 0.00 1.00 0.00 0.00 

J 1 7 1 1.00 0.00 0.00 1.00 0.00 0.00 
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4.3.  Dual super-efficiency models  

In this section, it is sought to discriminate further between the FDH-efficient and FDH-

inefficient DMUs. To do so, newly improved FDH models are proposed that incorporate the super-

efficiency method proposed by Andersen and Petersen [13] into the models previously proposed 

in this thesis. In this regard, Van Puyenbroeck [118] proposed a modified FDH method using a 

super-efficiency procedure for ranking units that lie on the efficient FDH frontier. In line with the 

concept of super-efficiency, the following formulations can be expressed by excluding the 

evaluated unit DMUo from the PPS when focusing on the efficient FDH frontiers (4.3): SFoin−FDH(Xo, Yo)  
= min {∑θj + ε(j≠o 1sj+ + 1sj−)|λjXj + sj− = θjXo(∀j ≠ o); λjYj − sj+
= λjYo(∀j ≠ o);∑λj = 1j≠o ; λj ≥ 0(∀j ≠ o) } 

SFoout−FDH(Xo, Yo)  
= max {∑θjj≠o + ε(1sj+ + 1sj−)|λjXj + sj− = λjXo(∀j ≠ o); λjYj − sj+
= θjYo(∀j ≠ o);∑λj = 1j≠o ; λj ≥ 0(∀j ≠ o) } 

(4.3) 

 

In the above formulations, 𝑆𝐹𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) ≥ 1 and 𝑆𝐹𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) ≤ 1 if the units 

are classified as strongly (weakly) FDH-efficient, whereas 𝑆𝐹𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  and 𝑆𝐹𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  remain unchanged when 𝐹𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) < 1  and 𝐹𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) > 1 

with respect to models (4.1) (i.e., FDH-inefficient DMUs). As a result, the input- and output 
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oriented FDH models (4.3) improve the discrimination power by differentiating between FDH-

efficient DMUs.  

Similarly, it is possible to increase the discrimination power between FDH-inefficient 

DMUs by the following formulations when focusing on the inefficient FDH frontiers (4.4): SF̿̿ ̿oin−FDH(Xo, Yo)  
= max {∑θjj≠o + ε(1sj+ + 1sj−)|λjXj − sj− = θjXo(∀j ≠ o); λjYj + sj+
= λjYo(∀j ≠ o);∑λj = 1j≠o ; λj ≥ 0(∀j ≠ o)} 

SF̿̿ ̿oout−FDH(Xo, Yo)  
= min {∑θjj≠o + ε(1sj+ + 1sj−)|λjXj − sj− = λjXo(∀j ≠ o); λjYj + sj+
= θjYo(∀j ≠ o);∑λj = 1j≠o ; λj ≥ 0(∀j ≠ o) } 

(4.4) 

 

In the above formulations, 𝑆𝐹̿̿̿̿𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) ≤ 1 and 𝑆𝐹̿̿̿̿𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜)  ≥ 1 if the units 

are classified as strongly (weakly) FDH-inefficient, whereas 𝑆𝐹̿̿̿̿𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) 𝑆𝐹̿̿̿̿𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) remain unchanged when �̿�𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) > 1  and �̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) < 1 

with respect to models (4.2) (i.e., non-FDH-inefficient DMUs).  

The super-efficiency model under the VRS assumption may be infeasible when there are 

some efficient DMUs under evaluation. A number of studies have attempted to resolve the 

infeasibility problem of the super-efficiency model (see, e.g., Lovell [108]; Lee and Zhu, [111]; 

Lee et al. [110]; Pourmahmoud et al.  [153]). In the next section, models are developed to address 

the infeasibility problem of the super-efficiency measure in models (4.3) and (4.4). 
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4.4.  Dual super-efficiency FDH models without infeasibility  

In this regard, the concept introduced by Lee et al. [110] and Cook et al. [49] is considered. 

For the simplicity and understandability of the extension, models (3.11) and (3.14) can be 

considered without adding the slacks and the linearization versions.  

Firstly focusing on the optimistic DEA models (3.11), in the initial stage, the following 

model is solved to identify potential output surpluses in the efficient DMUo against the frontier 

constructed by the remaining DMUs [110]: Loin−FDH(Xo, Yo) 
= min {∑βrr |∑λjYj ≥ (1 − βr)Yo;j≠o ∑λj = 1j≠o ; λj = {0,1}(∀j ≠ o); βr ≥ 0 } (4.5) 

where 𝛽𝑟∗ , r=1,…,s are the optimal solutions. The input-oriented model (3.11) (or the input-

oriented model (4.3)) is feasible if and only if 𝛽𝑟∗ = 0 for all outputs in model (4.5). The input-

oriented FDH super-efficiency model from the optimistic viewpoint is then formulated as follows: SFoin−FDH(Xo, Yo) 
= min {θ|∑λjXj ≤ θXo;j≠o ∑λjYj ≥ (1 − βr∗)Yo;j≠o ∑λj = 1j≠o ; λj = {0,1}(∀j ≠ o) } 

(4.6) 

 

Next, the input-oriented FDH super-efficiency score from the optimistic viewpoint can be 

defined as: 
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θ̃ = {∑ ( yroyro − βr∗yro)r∈R |R| + θ∗, if R ≠ ∅θ∗,                                         if R = ∅  (4.7) 

 

where 𝑹 = {𝒓|𝜷𝒓∗ > 0}1. According to model (4.5), 𝜽∗ is the optimal solution of model (4.6) and 

|R| is the cardinality of set R. Equation (4.7) shows that the super-efficiency score of (4.6) equals 

the input-oriented FDH model (4.3) when 𝜷𝒓∗ = 𝟎 for all outputs. 

Analogously, the following model can be solved to obtain potential input savings in the 

efficient DMUo against the frontier constructed by the remaining DMUs [110]: Loout−FDH(Xo, Yo) 
= min {∑βii |∑λjXj ≤ (1 + βi)Xo;j≠o ∑λj = 1j≠o ; λj = {0,1}(∀j ≠ o); βi ≥ 0 } 

(4.8) 

 

where 𝛽𝑖∗, i=1,…,m are the optimal solutions. The output-oriented model (4.3) is feasible if and 

only if 𝛽𝑖∗ = 0 for all inputs in model (4.7). The output-oriented FDH super-efficiency model from 

the optimistic viewpoint can be expressed as follows: SFoout−FDH(Xo, Yo) 
= max {θ|∑λjXj ≤ (1 + βi∗)Xo;j≠o ∑λjYj ≥ θYo;j≠o ∑λj = 1j≠o ; λj = {0,1}(∀j ≠ o) } 

(4.9) 

In the same manner, the output-oriented FDH super-efficiency score, denoted by �̃�, from 

the optimistic viewpoint is defined as: 
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1θ̃ = {  
  ∑ (xio + βi∗xioxio )i∈I |I| + 1θ∗ , if I ≠ ∅1θ∗ ,                                         if I = ∅ (4.10) 

 

where 𝐼 = {𝑖|𝛽𝑖∗ > 0} according to model (4.8), where 𝜽∗ is the optimal solution of model (4.9) 

and |I| is the cardinality of set I. 

To address the infeasibility issue, the pessimistic DEA models (3.14) are now focused on. 

In this manner, the input-oriented FDH super-efficiency model from the pessimistic viewpoint is 

established as SF̿̿ ̿oin−FDH(Xo, Yo) 
= max {θ|∑λjXj ≥ θXo;j ∑λjYj ≤ (1 + βr∗)Yo;j≠o ∑λj = 1j≠o ; λj = {0,1}(∀j ≠ o) } (4.11) 

where 𝛽𝑟∗, r=1,…,s are the optimal solutions of the following model: L̿oin−FDH(Xo, Yo) 
= min {∑βrr |∑λjYj ≤ (1 + βr)Yo;j≠o ;∑λj = 1j≠o ; λj = {0,1}(∀j ≠ o); βr ≥ 0} 

(4.12) 

The input-oriented model (4.4) is feasible if and only if 𝛽𝑟∗ = 0 for all outputs in model 

(4.5). The input-oriented FDH super-efficiency score can be defined from the pessimistic 

viewpoint as: 

1θ̃ = {∑ (yro + βr∗yroyro )r∈R |R| + 1θ∗ , if R ≠ ∅θ∗,                                         if R = ∅  (4.13) 

where 𝑅 = {𝑟|𝛽𝑟∗ > 0}  according to model (4.12), where 𝜃∗  is the optimal solution of model  
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(4.12) and |R| is the cardinality of set R.  

Regarding the output-oriented FDH super-efficiency model, the following model is 

proposed, which can be solved for DMUo: SF̿̿ ̿oout−FDH(Xo, Yo) 
= min {θ|∑λjXj ≥ (1 − βi∗)Xo;j≠o ∑λjYj ≤ θYo;j≠o ∑λj = 1j≠o ; λj = {0,1}(∀j ≠ o) } 

(4.14) 

where 𝛽𝑖∗, i=1,…,m are the optimal solutions of the following model: 

 L̿oout−FDH(Xo, Yo) 
= min {∑βii |∑λjXj ≥ (1 − βi)Xo;j≠o ∑λj = 1j≠o ; λj = {0,1}(∀j ≠ o); βi ≥ 0 } 

(4.15) 

 

The output-oriented model (4.4) is feasible if and only if 𝛽𝑖∗ = 0 for all inputs in model 

(4.7).  

From the optimistic viewpoint, the output-oriented FDH super-efficiency score, denoted 

by �̃�, can be defined as  

θ̃ = {∑ ( xioxio − βi∗xio)i∈I |I| + θ∗, if I ≠ ∅θ∗,                                         if I = ∅  (4.16) 

where 𝐼 = {𝑖|𝛽𝑖∗ > 0}, according to model (4.15), where 𝜃∗ is the optimal solution of model (4.14) 

and |I| is the cardinality of set I. 

4.5.  Empirical illustration 

This case study considers the performance of 15 cities in the US. The dataset is taken from 



81 
 

Chen [129] and was also used by Chen [48], where each city has three inputs: (I1) high-end housing 

price (1,000 US$), (I2) lower-end monthly housing rental (US$), and (I3) number of violent 

crimes, and three outputs: (O1) median household income (US$), (O2) number of individuals with 

a bachelor’s degree (million), and (O3) number of doctors (thousand). The objective of this study 

is to use these interrelated inputs and outputs factors to evaluate the quality of living in the 15 US 

cities listed. The input-output dataset is shown in Table 4.2. First, the performance evaluation of 

the input- and output-oriented FDH models (4.1) from the optimistic viewpoint is studied, as 

reported in the second and third columns of Table 4.3.  

Table 4.2 Input and output data of 15 cities (DMUs) 

DMU City 

Input 1 

Housing 

price 

Input 2 

Rental 

price 

Input 3 

Violent 

crimes 

Output 1 

Household 

income 

Output 2 

Bachelor’s 

degree 

Output 3 

Doctors 

  

1 Seattle 586 581 1193.06 46928 0.6534 9.878 

2 Denver 475 558 1131.64 42879 0.5529 5.301 

3 Philadelphia 201 600 3468 43576 1.135 18.2 

4 Minneapolis 299 609 1340.55 45673 0.729 7.209 

5 Raleigh 318 613 634.7 40990 0.319 4.94 

6 St Louis 265 558 657.5 39079 0.515 8.5 

7 Cincinnati 467 580 882.4 38455 0.3184 4.48 

8 Washington 583 625 3286.7 54291 1.7158 15.41 

9 Pittsburgh 347 535 917.04 34534 0.4512 8.784 

10 Dallas 296 650 3714.3 41984 1.2195 8.82 

11 Atlanta 600 740 2963.1 43249 0.9205 7.805 

12 Baltimore 575 775 3240.75 43291 0.5825 10.05 

13 Boston 351 888 2197.12 46444 1.04 18.208 

14 Milwaukee 283 727 778.35 41841 0.321 4.665 

15 Nashville 431 695 1245.75 40221 0.2365 3.575 
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Table 4.3 Results for the input- and output-oriented FHDs from optimistic and pessimistic 

viewpoints 

DMU 

Optimistic 

input-oriented 

model (4.1)  

Optimistic 

output-oriented 

model (4.1) 

Pessimistic input-

oriented model 

(4.2)  

Pessimistic output-

oriented model 

(4.2) 

1 1 1 1 1 

2 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 

5 1 1 1.133 0.981 

6 1 1 1.039 0.984 

7 0.962 1.016 1 1 

8 1 1 1 1 

9 1 1 1 1 

10 1 1 1 1 

11 1 1 1 1 

12 1 1 1 1 

13 1 1 1 1 

14 1 1 1 1 

15 0.882 1.019 1 1 

 

Apart from Cincinnati and Nashville (DMUs 7 and 15), all the cities are classified as FDH-

efficient, implying that there is no discrimination in 87% of the cities. Then, the performance of 

the cities from the pessimistic viewpoint is evaluated to provide further insight. In doing so, the 

input- and output-oriented FDH models (4.2) are solved to assess the cities in terms of the 

inefficient FDH frontiers, as presented in the fourth and fifth columns of Table 4.3. The results for 

Raleigh and St. Louis (DMUs 5 and 6) indicate that they can be considered as non-FDH-inefficient, 

whereas the remaining cities are FDH-inefficient with a weak discrimination. Models (4.1) and 

(4.2) indicate that the DMUs {1, 2, 3, 4, 8, 9, 10, 11, 12, 13, and 14} are simultaneously located 

on the efficient and inefficient frontiers. To improve the discrimination power, the super-efficiency 
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measures are obtained by dint of models (4.3) and (4.4). The second and third columns of Table 

4.4 show the super-efficiency measures of the DMUs from the optimistic viewpoint, and the fourth 

and fifth columns show the super-efficiency measures of the DMUs from the pessimistic 

viewpoint.  

 

Table 4.4 Results of the super-efficiency measures 

DMU 

Optimistic input-

oriented model 

(4.3) 

Optimistic output-

oriented model 

(4.3) 

Pessimistic input-

oriented model 

(4.4) 

Pessimistic 

output-oriented 

model  (4.4) 

1 2.756 0.789 0.811 1.411 

2 1.185 0.911 0.908 1.668 

3 Infeasible Infeasible 0.935 1.075 

4 1.639 0.707 0.930 1.264 

5 1.783 Infeasible 1.134 0.981 

6 2.212 Infeasible 1.040 0.984 

7 0.962 1.016 Infeasible 2.209 

8 Infeasible 0.427 0.987 Infeasible 

9 1.690 Infeasible Infeasible 1.165 

10 1.971 0.931 0.336 Infeasible 

11 1.110 0.793 0.421 Infeasible 

12 1.015 0.846 0.385 Infeasible 

13 Infeasible 0.469 0.873 Infeasible 

14 1.679 0.934 0.956 2.159 

15 0.882 1.019 Infeasible 2.818 

 

As expected and discussed in Section 4.2, the infeasibility issue occurs in a number of 

units. There are three, four, three, and five infeasibility cases for the input- and output-oriented 

models (4.3) and (4.4), respectively, as shown in Table 4.4. The infeasibility in the case of the 
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VRS super-efficiency is central to the DEA literature and has been the topic of considerable 

discussion in the conventional DEA models, as discussed in chapter 2. To address the infeasibility 

problem from the optimistic perspective, models (4.5) and (4.6) are applied for the input 

orientation, and models (4.8) and (4.9) for the output orientation. The results are reported in Table 

4.5.  

Table 4.5 Results of the modified super-efficiency measures from the optimistic viewpoint 

 

DMU 

Input-oriented Output-oriented 

Model (4.5) 
Model (4.6) Rank 

 Model (4.8) 
Model (4.9) Rank β1 β2 β3  β1 β2 β3 

1 0 0 0 2.7548 2  0 0 0 0.7882 8 

2 0 0 0 1.1846 11  0 0 0 0.9114 11 

3 0 0.0837 0 
1.7463 

(2.8376) 
1 

 
0.3184 0 0 

0.4537 

(0.2839) 
1 

4 0 0 0 1.639 10  0 0 0 0.7064 7 

5 0 0 0 1.783 7 
 

0 0 0.0359 
0.9534 

(0.4968) 
5 

6 0 0 0 2.2113 5 
 

0.2 0.0986 0 
0.5812 

(0.3889) 
2 

7 0 0 0 0.9621 14  0 0 0 1.0162 14 

8 0.1974 0.3385 0 
1.0552 

(2.4340) 
4 

 
0 0 0 0.4249 3 

9 0 0 0 1.6888 8 
 

0 0.043 0 
0.9677 

(0.5024) 
6 

10 0 0 0 1.9696 6  0 0 0 0.9307 12 

11 0 0 0 1.1092 12  0 0 0 0.7920 9 

12 0 0 0 1.0142 13  0 0 0 0.8458 10 

13 0.0618 0 0.0004 
1.5784 

(2.6115) 
3 

 
0 0 0 0.4668 4 

14 0 0 0 1.6784 9  0 0 0 0.934 13 

15 0 0 0 0.882 15  0 0 0 1.0191 15 
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A positive value of 𝛽 indicates infeasibility, and a 𝛽 of zero guarantees feasibility. For 

example, when evaluating DMU 1, model (4.5) or model (4.8) yields a zero value for all 𝛽s that 

guarantee the feasibility of the input- or output-oriented model (4.3), whereas when evaluating 

DMU 3, the input-oriented model (4.3) is infeasible due to 𝛽2 = 0.0837 in model (4.5). The 

modified input-and output-oriented FDH super-efficiency score in the infeasibility cases is re-

calculated using Equations (4.7) and (4.10), respectively, as shown in the parentheses in Table 4.5. 

An explanation of the calculation process of Equations (4.7) for DMU 3 is as follows. First, set R 

is defined as R = {𝑂2|𝛽2∗ > 0}, which indicates that 𝑅 ≠ ∅. Second, the following formulation is 

considered: 

 

( 𝐲(𝐨𝟐)𝐃𝐌𝐔𝟑𝐲(𝐨𝟐)𝐃𝐌𝐔𝟑−𝛃(𝐨𝟐)∗ 𝐲(𝐨𝟐)𝐃𝐌𝐔𝟑)|𝟏| + θ(o2)∗ =
( 𝟏.𝟏𝟑𝟓𝟏.𝟏𝟑𝟓−(𝟎,𝟎𝟖𝟑𝟕)(𝟏.𝟑𝟓))|𝟏| + 1.7463 = 2.8376 

 

Therefore, the modified FDH super-efficiency score for DMU 3 is 2.8376, in lieu of 

1.7463. Finally, the complete ranking of the cities can be provided, based on the super-efficiency 

measures for the input and output orientations from the optimistic perspective, as presented in 

Table 4.5. This leads to a strong discrimination power compared to the earlier results from model 

(4.1) in both the input and output orientations. Accordingly, DMU 3 is the most superior city, 

whereas DMU 15 is the most inferior city in both the input and output orientations. DMUs 7 and 

15 (Cincinnati and Nashville, respectively), which are inefficient FDH cities in terms of model 

(4.1), occupy the two last positions in the ranking order in Table 4.5. Similarly, for the inefficient 

frontier (pessimistic perspective), models (4.11) and (4.12) are applied for the input orientation 

and models (4.14) and (4.15) for the output orientation to improve the discrimination power. The 

results and ranking orders are shown in Table 4.6. 
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Table 4.6 Results of the modified super-efficiency measures from the pessimistic viewpoint 

 

DMU 

Input-oriented Output-oriented 

Model  (4.12) Model 

(4.11) 
Rank 

 Model (4.15) Model 

(4.14) 
Rank β1 β2 β3  β1 β2 β3 

1 0 0 0 0.8106 9  0 0 0 1.4088 6 

2 0 0 0 0.9074 7  0 0 0 1.6649 7 

3 0 0 0 0.9345 5  0 0 0 1.0744 3 

4 0 0 0 0.9293 6  0 0 0 1.2627 5 

5 0 0 0 1.1338 1  0 0 0 0.9812 1 

6 0 0 0 1.0394 2  0 0 0 0.9840 2 

7 0.0459 0 0 
0.92290 

(0.4696) 
11 

 
0 0 0 2.2049 11 

8 0 0 0 0.9860 3 
 

0.0137 0 0.014 
0.7974 

(1.8114) 
8 

9 0.1135 0 0 
0.96220 

(0.4645) 
12 

 
0 0 0 1.1647 4 

10 0 0 0 0.3354 15 
 

0 0 0.1275 
1.1395 

(2.2856) 
12 

11 0 0 0 0.4204 13 
 

0.0417 0 0 
1.2876 

(2.3311) 
13 

12 0 0 0 0.3844 14 
 

0 0.0452 0.0857 
1.5803 

(2.6508) 
14 

13 0 0 0 0.8727 8 
 

0 0.1273 0 
0.9321 

(2.0780) 
9 

14 0 0 0 0.9560 4  0 0 0 2.1543 10 

15 0 0.3463 0.2531 
0.7083 

(0.4735) 
10 

 
0 0 0 2.8112 15 

 

  

The positive value of 𝛽 in Table 4.6 shows the infeasibility problem for the DMU under 

evaluation, while 𝛽 = 0 for all the corresponding factors provides the feasibility condition. Model 

(4.12) is feasible for all cities, but when 𝛽 ≠ 0, the super-efficiency measure must be modified 
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using Equations (4.14) and (4.16), as reported in the parentheses in Table 4.6. As noted above, 

DMUs 5 and 6 are classified as non-FDH-inefficient (see Table 4.3), and their ranks of 1st and 2nd 

cannot demonstrate the goodness of performance. In other words, the purpose of the pessimistic 

perspective is to seek the DMUs that lie on the inefficient frontier (pessimistic perspective), and, 

due to the high number of FDH-inefficient units, the super-efficiency score is used to find the 

worst cities. According to the input and output orientations, DMUs 7, 9, 10, 11, 12 and 15 are the 

six worst cities with respect to the pessimistic viewpoint.  

Next, the method presented here is compared with the results of four existing methods in 

the literature. Wang et al. [123] proposed a pair of limited DEA models using the pessimistic 

efficiency for an ideal DMU as an upper limit and an efficiency of unity as a lower limit, to obtain 

the interval efficiencies. Wang and Yang [90] formulated a pair of limited DEA models using the 

optimistic efficiency of an anti-ideal DMU as the lower limit and an efficiency of unity as the 

upper limit to attain an interval efficiency. Azizi and Ajirlu [128] considered an efficiency of unity 

as an upper limit and the ratio of the optimistic efficiency of an anti-ideal DMU versus the 

pessimistic efficiency of an ideal DMU as a lower limit to measure the interval efficiency. To 

provide the ranking order of the DMUs, the midpoint of the interval efficiency for four methods is 

considered, as presented in Table 4.7. 

In order to compare the results of this study, it was decided to use the Spearman rank 

correlation model. It is a statistical model used for the ranking of two variables in order to assess 

how good the relationship between these variables is, and it can be described as using a monotonic 

function. To this end, the utilization of Spearman's rank correlation method is shown in Table 4.8. 

The Spearman correlation values presented in Table 4.8 indicate the correlation between two 
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different methods; the closer the correlation value to 1, the stronger the correlation between the 

ranking evaluations of represented approaches.  

 It should be noted that these results are based on the FDH, whereas the four remaining 

methods are based on the CRS assumption. Consequently, the association between the techniques 

would be considered as statistically significant.  
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Table 4.7 Comparison of the results obtained from the four methods in the literature 

DMU Wang and Yang (2007) Azizi and Ajirlu (2010) Wang et al. (2008) Chen (2014) 

 Efficiency score Rank Efficiency score Rank Efficiency score Rank Efficiency score Rank 

1 0.784 4 0.635 6 1.553 4 0.512 6 

2 0.779 5 0.630 7 1.539 5 0.501 9 

3 0.769 7 0.638 5 1.510 7 0.513 5 

4 0.821 1 0.669 1 1.615 1 0.516 1 

5 0.775 6 0.649 4 1.515 6 0.514 4 

6 0.807 3 0.661 2 1.585 3 0.515 2 

7 0.698 11 0.574 12 1.378 11 0.458 12 

8 0.809 2 0.657 3 1.602 2 0.515 3 

9 0.753 8 0.626 9 1.471 8 0.492 10 

10 0.685 12 0.579 11 1.338 12 0.466 11 

11 0.596 14 0.481 14 1.173 14 0.365 14 

12 0.584 15 0.468 15 1.150 15 0.353 15 

13 0.717 10 0.627 8 1.381 10 0.512 7 

14 0.725 9 0.625 10 1.391 9 0.509 8 

15 0.630 13 0.515 13 1.238 13 0.399 13 
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Table 4.8 Spearman’s rank correlation  

 
Model 

(4.6) 

Model 

(4.9) 

Model 

(4.11) 

Model 

(4.14) 

Wang and 

Yang (2007) 

Azizi and 

Ajirlu (2010) 

Wang et al. 

(2008) 
Chen (2014) 

Model (4.6) 1 0.76 0.539 0.736 0.514 0.614 0.514 0.646 

Model (4.9)  1 0.539 0.736 0.561 0.703 0.561 0.696 

Model (4.11)   1 0.689 0.732 0.793 0.732 0.828 

Model (4.14)    1 0.775 0.842 0.775 0.804 

Wang and Yang (2007)     1 0.953 1 0.918 

Azizi and Ajirlu (2010)      1 0.953 0.982 

Wang et al. (2008)       1 0.918 

Chen (2014)        1 
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4.6.  Summary and conclusion 

 After proposing the fundamental optimistic and pessimistic FDH models in chapter 3, it 

was noticed that these models lack strong discrimination power between DMUs. Thus, slack-based 

FDH models and super-efficiency FDH models were developed from both optimistic and 

pessimistic perspectives to overcome the discrimination power issue in chapter 4. 

To improve the discrimination power, the models were formulated in the presence of the 

slacks to enable the evaluator to classify the DMUs into different groups. Furthermore, an 

optimistic super-efficiency FDH model and pessimistic super-efficiency FDH model were 

developed to achieve better discrimination between DMUs. Although these models yielded full 

discrimination, infeasibility may occur in some cases. To deal with the infeasibility problem, the 

FDH super-efficiency models related to the optimistic and pessimistic FDH were modified in both 

input and output orientations. Chapter 4 also presented a numerical example to elucidate the details 

of the proposed models as well as to compare final ranking results with four other existing models 

in the literature. By using Spearman's rank correlation method, a strong statistical correlation was 

identified between the models presented in this study and the models in the literature. 
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Chapter 5: Optimistic and Pessimistic DEA 

Model with Virtual DMUs  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

5.1. Introduction 

In this chapter of the study, the focus is shifted to the eighth category of the DEA ranking 

method, which is the virtual DMU category discussed in Section 2.3.8. This approach is considered 

a post-analysis approach and will be used to improve the optimistic and pessimistic models that 

were discussed in chapter 3.  

This chapter will present an improved optimistic and pessimistic methodology that 

incorporates the virtual DMU approach. The model presented in this chapter differs from other 

models in the literature by providing an unbiased evaluation when virtual DMUs are applied in the 

assessment process.  

 

5.2.  Improved optimistic and pessimistic methods using virtual DMUs  

 This section suggests a new method for ranking that combines both the optimistic and 

pessimistic approaches, with the introduction of virtual units to the data. The method is discussed 

in detail in the following subsections. Also, an illustrative example will follow in Section 5.3 to 

show how the new model is able to reach full ranking. 

5.2.1. Optimistic model with superstar virtual DMU 

The standard DEA model is considered as an optimistic approach to rank all DMUs based 

on using the efficient frontier, so all units located on the efficiency frontier will be considered as 

efficient DMUs or optimistically efficient DMUs. Model (5.1) shows the basic linear CCR 

program, where 𝜃𝑘is the efficiency score of DMUk under assessment [1]:   
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max 𝜃𝑘 = 𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘  

Subject to: 𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘 = 1 𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘  ≤ 𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘     (𝑘 = 1,… , 𝑛)                        𝑣1, 𝑣2, … , 𝑣𝑚 ≥ 0  𝑢1, 𝑢2, … , 𝑢𝑠 ≥ 0 

(5.1) 

 

In model (5.1), the x’s and the y’s represent the values of the inputs and the outputs 

respectively associated for each DMU while the u’s are defined as the virtual weights assigned to 

each output in the data, and the v’s are defined as the virtual weights assigned to each input in the 

data. So for any DMUk , the DMU could be considered to be efficient if θk was able to obtain a 

value of 1 [16]. The CCR model is also known as the optimistic model, or best relative efficiency 

model.  

Based on the CCR model, the score of all efficient DMUs will be equal to 1. In order to 

limit the ability of achieving a full score to only very efficient DMUs and for better envelopment 

to the dataset under assessment, it is proposed to introduce a superstar virtual unit, noted as 

DMUsuper. The super DMU is defined as a DMU that has the best output from all units in the 

dataset, and has the minimum input from all units in the dataset. 

So if there are n units to be evaluated in the dataset with m inputs and s outputs, then the 

value index for the input and output of that super virtual DMU that does not belong to the existing 

data is as follows:  𝑋𝑖,𝑠𝑢𝑝𝑒𝑟 = 𝑀𝑖𝑛 (  𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … . , 𝑥𝑖𝑛)    𝑖 = (1, 2, … ,𝑚) 𝑌𝑟,𝑠𝑢𝑝𝑒𝑟 = 𝑀𝑎𝑥 (  𝑦𝑟1, 𝑦𝑟2, 𝑦𝑟3, … . , 𝑦𝑟𝑛)  𝑟 = (1, 2, … , 𝑠) (5.2) 
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After the introduction of the super DMU, the optimistic model to compute the efficiency 

score of any DMUk will be exactly like model (5.1), except that k = 1, … , n+1.The major 

advantage of introducing the virtual superstar DMU is that super DMU will help in eliminating 

more DMUs from the efficiency frontier, which means better discrimination power. According to 

Entani et al. [86], any approach that considers only the optimistic approach to evaluate the dataset 

will be considered biased. Therefore, a pessimistic approach is introduced and included in the 

model.  

 

5.2.2. Pessimistic model with worst virtual DMU 

The optimistic approach of DEA is an approach that measures the efficiency of any DMU 

within a range between 0 and 1. The conventional CCR model is an example of the optimistic 

approach, where all units are trying to optimize the maximum score of 1. On the other hand, the 

pessimistic approach is an approach that focuses on creating an inefficient frontier, and ranks all 

DMUs according to that frontier. A minimization program is set and the inefficient DMUs will 

achieve the score of 1. The fractional program of the pessimistic approach is similar to the 

optimistic model, except that it is a minimization problem, and all constraints should be greater or 

equal to 1. So for any DMUk, the fractional pessimistic model will be as follows [85]: 

𝑀𝑖𝑛 𝜃𝑘∗ = 𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘  𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘  subject to:  𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘  𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘  ≥ 1      (𝑘 = 1… , 𝑛) 𝑣1, 𝑣2, … , 𝑣𝑚 ≥ 0  𝑢1, 𝑢2, … , 𝑢𝑠 ≥ 0   
 

(5.3) 
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In this proposal, it is suggested introducing the worst virtual DMU, DMUworst, which is 

defined as a DMU that has the maximum inputs from all units in the dataset and has the 

minimum outputs from all units in the dataset.  

So if there are n units to be evaluated in the dataset, with m inputs and s outputs, then the 

value index for the input and output of that worst virtual DMU that does not belong to the current 

dataset is as follows: 𝑋𝑖,𝑤𝑜𝑟𝑠𝑡 = 𝑀𝑎𝑥 (  𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … . , 𝑥𝑖𝑛)  𝑖 = (1, 2, … ,𝑚) 𝑌𝑟,𝑤𝑜𝑟𝑠𝑡 = 𝑀𝑖𝑛 (  𝑦𝑟1, 𝑦𝑟2, 𝑦𝑟3, … . , 𝑦𝑟𝑛) 𝑟 = (1, 2, … , 𝑠) 
(5.4) 

Thus, for any DMUk, the efficiency score with the worst DMU under the pessimistic 

approach can be calculated as follows:  𝑀𝑖𝑛 𝜃𝑘∗ = 𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘 

Subject to: 𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘 = 1  𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘  ≥ 𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘   (𝑘 = 1,… , 𝑛 + 1)                        𝑣1, 𝑣2, … , 𝑣𝑚 ≥ 0   𝑢1, 𝑢2, … , 𝑢𝑠 ≥ 0   
(5.5) 

 

As mentioned, the pessimistic approach assigns a score of 1 to all inefficient units that are 

located on the inefficiency line. However, it is important to note that the pessimistic approach has 

no restriction on the efficiency scores achieved by the efficient units, and all DMUs are ranked in 

descending order from the top score to 1. 
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5.2.3. Combining optimistic and pessimistic approaches 

Both proposed models in subsections 5.2.1 and 5.2.2 will yield better ranking power for 

the DEA standard model, because the introduction of the virtual DMUs will prevent many DMUs 

from achieving the full efficiency score, as these virtual DMUs will change the frontier lines and 

allow more envelopment to all units in the data under assessment. But, as proved by Entani et al. 

[86], it is biased to use one model over the other one, even though using both models brings better 

discrimination power.  

Therefore, combining both models is an important step to reach an unbiased evaluation, 

and one way to combine both pessimistic and optimistic approaches is to take the geometric 

average of both scores. Detailed theorem and proof of this were provided in the work of Wang et 

al. [31], who suggested using the geometric average between the pessimistic and optimistic scores 

of each DMU and ranking all DMUs, accordingly. This chapter critiques the direct use of the 

pessimistic approach because the pessimistic approach could yield high scores of efficient units, 

while their optimistic scores are limited to only 1. In this model, it is suggested to use the DEA 

index number (AIN) to rescale the scores of all efficient units under the pessimistic approach. The 

AIN will restrict the scores of units under the pessimistic approach to 1-2. This index was used for 

the same purpose in the super-efficiency method by Sueyoshi [25]. The AIN index should be 

applied to the pessimistic approach as follows:  

𝐴𝐼𝑁𝑘 = 1 + { 𝜃𝑘∗− 𝑚𝑖𝑛 𝜃𝑘∗𝑚𝑎𝑥 𝜃𝑘∗− 𝑚𝑖𝑛 𝜃𝑘∗}      𝑤ℎ𝑒𝑟𝑒, 𝑘 = 1,… , 𝑛 (5.6) 

So, applying the optimistic approach with the super-virtual DMU is considered as a first 

stage in this model. Applying the pessimistic approach with the worst virtual DMU, and 

rescaling the results by using the AIN index, is the second stage. The final score for DMUk is 
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calculated by using the arithmetic average of both scores, and it will range between 0.5 and 1.5. 

The final score can be calculated as follows:  

𝜃𝑘𝑓𝑖𝑛𝑎𝑙 = 𝜃𝑘∗ + 𝜃𝑘 2  (5.7) 

 

We believe that the new proposed method provides better ranking for two reasons. First, 

by introducing the super and worst virtual DMUs, the model envelops more data with a distinctive 

score for every DMU. In other words, a limited number of DMUs will achieve equal scores under 

either the optimistic or the pessimistic approach. Second, the previous models in the literature that 

combined the pessimistic and optimistic approaches directly, without adjusting the pessimistic 

scores, could be biased, because the optimistic approach is limited to 1 or less, while there is no 

limitation on the pessimistic scores. 

 

5.3.  Illustrative example 

In order to illustrate the above formulations with the new proposed model, the example 

discussed in chapter 2 is considered, of evaluating eight graduate students according to their GPA 

and their number of publications. The GPA will be considered as the first output and the number 

of publications will be considered as the second output. With the assumption that all students are 

at exactly the same level of study and have equal capability, each student will have one input with 

a score of 1. The raw data of the example are shown in Table 2.1. 

After applying the three steps, all the results of the CCR model, the Wang et al. model, and 

the new proposed model are shown in Table 5.1.  The CCR models displaying its lack of 

discrimination is shown in the 2nd and 3rd columns. Columns 4-8 show the first two steps of the 



99 
 

proposed model. The last four columns compare the final score of the proposed model with the 

efficiency scores of the Wang et al. [31] model.     

 

Table 5.1 Comparison results of the proposed model with CCR and Wang et al. model 

  
Original CCR 

model 

 Optimistic 

with DMUsuper  

(𝜽𝒌) 

 Pessimistic 

with DMUworst  

(𝜽𝒌∗ ) 

 
Wang et al. 

model 

 Proposed new 

model 

(𝜽𝒌𝒇𝒊𝒏𝒂𝒍 )       

Student    Score Rank   Score Rank   Score Rank    Score Rank   Score Rank 

A  1.00 1   1.00 1   1.00 6   1.00 4   1.00 5 

B  0.86 5  0.84 5  1.57 3  1.04 3  1.21 3 

C  1.00 1  0.95 4  1.86 2  1.19 2  1.40 2 

D  1.00 1  1.00 1  1.00 6  1.00 4  1.00 5 

E  0.74 7  0.74 7  1.29 4  0.88 7  1.01 4 

F  1.00 1  1.00 1  2.00 1  1.21 1  1.50 1 

G  0.79 6  0.79 6  1.00 6  0.89 6  0.89 8 

H   0.68 8   0.68 8   1.14 5   0.83 8   0.91 7 

 

 

It is observed from the table that the final score brought better discrimination between all 

DMUs in data except for students A and D. These two students are the outlier units in the data, 

and both are observed as efficient under the optimistic approach, with a score of 1, and at the same 

time, both are considered inefficient, with a score of 1 under the pessimistic approach. This 

behavior is very common in any dataset that has joint DMUs that connect both frontiers, and will 

be a score of 1 in this model. Figure 5.1 shows the location of the students on efficient and 

inefficient frontiers. The dashed lines show the original efficiency and inefficiency frontiers, while 

the dotted lines show the new frontiers with virtual super and worst DMUs. Similar to Chapter 4, 

the correlation between the proposed model and the model of Wang et al. [31] is shownthrough 

Spearman’s correlation index. After applying the index formula, we found that 81% of the times 
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our models can match the ranking of Wang et al. [31] which is considered a fairly strong 

correlation.  

 

 

 

In the student example, more than one DMU achieved similar scores under pessimistic and 

optimistic approaches. This equality between DMUs was caused by using two-dimensional data. 

In order to show the discrimination power of the proposed model, another example of multiple 

inputs and multiple outputs is provided. In this example 12 bank branches are considered for 

evaluation based on three outputs which are all monetary gains for each branch: (O1) Interest per 

saving, (O2) Interest per loan, and (O3) Non-interest income, while the inputs are mixed between 

labor force (I1) and operating cost (I2) for each branch. This example shows the advantage of DEA 

ranking since different schemes with different criteria can be used and considered without weights 

 

 

Figure 5.1 New optimistic and pessimistic frontiers for graduate students’ 
example 
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assignment in the evaluation process. The raw data of 12 bank branches are provided in Table 5.2 

for detailed clarification [154]. Table 5.4 shows the results of the original CCR model, which has 

three full efficient DMUs, while the model proposed provides a complete full ranking of all DMUs. 

Moreover, this example shows that the ranking of all efficient DMUs under the geometric average 

method depends entirely on the ranking scheme of the pessimistic approach. 
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Table 5.2 Raw data for bank branches evaluation 
 Input  Output 

Branch Employees 
Operating 

cost 
 

Interest 

earned per 

saving 

Interest 

earned per 

loan 

Non-

interest 

income 

1 20 829,326  4,449,202 4,786,608 1,000,188 

2 7 342,554  1,020,605 1,686,859 307,375 

3 7 262,008  861,443 1,516,144 426,604 

4 11 301,114  4,022,446 6,491,851 1,152,494 

5 9 244,918  400,783 654,434 407,243 

6 6 326,759  3,056,784 1,994,946 1,055,240 

7 7 269,277  1,634,220 2,291,636 1,083,105 

8 6 288,521  1,232,645 1,788,427 1,001,151 

9 4 165,573  445,955 904,764 462,190 

10 6 218,150  536,914 1,036,494 545,877 

11 3 132,788  229,635 387,528 160,227 

12 23 924,037   4,879,496 8,471,185 470,160 

 

Table 5.3 Comparison results of the proposed model with CCR and Wang et al. [154] 

Branch  

 
Original CCR 

model 

 Optimistic 

with DMUsuper  

(𝜽𝒌) 

 Pessimistic 

with DMUworst  

(𝜽𝒌∗ ) 

 
Wang et al. 

approach  

 Proposed new 

approach 

(𝜽𝒌𝒇𝒊𝒏𝒂𝒍 )      

  Score Rank   Score Rank   Score Rank    Score Rank   Score Rank 

1  0.512 8   0.146 9   1.239 9   0.780 9   0.693 8 

2  0.413 11  0.114 12  1.133 10  0.642 11  0.624 11 

3  0.456 9  0.188 8  1.346 7  0.790 7  0.767 7 

4  1.000 1  0.441 3  1.721 4  1.733 4  1.081 4 

5  0.413 10  0.192 7  1.082 11  0.643 10  0.637 10 

6  1.000 1  0.458 2  2.000 1  1.992 1  1.229 1 

7  1.000 1  0.463 1  1.982 2  1.884 3  1.223 2 

8  0.997 4  0.434 4  1.878 3  1.930 2  1.156 3 

9  0.729 5  0.322 5  1.471 5  1.095 5  0.896 5 

10  0.622 7  0.288 6  1.359 6  0.967 6  0.824 6 

11  0.342 12  0.139 11  1.240 8  0.585 12  0.689 9 

12   0.624 6   0.144 10   1.000 12   0.790 8   0.572 12 
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5.4.  Summary and conclusion  

In this chapter, a new dual frontiers model has been developed. The model uses virtual 

DMUs integrated with optimistic and pessimistic approaches. The integration was achieved by 

rescaling the pessimistic scores using the DEA index (AIN) and combining both approaches with 

the arithmetic average. The new method yielded better discrimination power because the added 

super and worst virtual DMUs adjust the frontier lines, allowing them to envelop more data. This 

wider envelopment by itself leads to better ranking power. The main point that has been raised in 

this chapter is that other models in the DEA literature use the pessimistic approach to avoid bias 

in the evaluation when the optimistic approach is solely applied, but at the same time, these 

methods tend to be biased toward the pessimistic approach when it is combined with the optimistic 

one. The new proposed method in this chapter differs from other methods in the literature by 

equalizing the weight assigned to both optimistic and pessimistic approaches, by preventing the 

pessimistic approach from reaching a high score in comparison to the optimistic approach, by 

applying the DEA index.  
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Chapter 6: Optimistic and Pessimistic FDH 

Model with Virtual DMUs 
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6.1.  Introduction 

This chapter can be considered as an extended topic of chapter 5. It proposes a new 

optimistic and pessimistic model using virtual DMUs, but with a relaxed convexity assumption. 

In Section 6.2, new optimistic and pessimistic FDH models are developed with the incorporation 

of virtual DMUs. It is worth mentioning that the virtual DMU approach is a fairly new approach 

in the literature, but very powerful in terms of bringing better discrimination between DMUs in 

the dataset. For that reason, it is used as a tool to develop or to extend the optimistic and pessimistic 

models presented in this dissertation. 

 

This chapter discusses virtual DMU FDH models from both optimistic and pessimistic 

perspectives. Each prospective output and input-oriented model is presented, in order to deliver a 

comprehensive study. Section 6.3 shows the applicability of the proposed model, shown in an 

empirical illustration with application data borrowed from the literature, comparing the new results 

of the proposed models with other models in the literature.  

 

6.2.  Improved optimistic and pessimistic FDH models using virtual DMUs  

This section refers to the FDH model of Tulkens [155], which creates a non-convex hull 

that imposes strong disposability assumptions. To this end, this section proposes an interval FDH 

for measuring the bounded efficiency, where the upper bound is obtained from the optimistic 

perspective and the lower bound is obtained from the pessimistic perspective. A three-step 

framework is proposed for the use of optimistic and pessimistic FDH models. The first step is 

based on the performance evaluation model proposed in this thesis, and the second step 

incorporates both optimistic and pessimistic models to create an interval measure based on both 
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approaches to enlarge the envelopment of both frontiers by introducing virtual DMUs. Finally, the 

upper and lower bounds for each DMU are combined to acquire the overall score required for 

providing a complete ranking order. 

In the following subsections, steps 1, 2 and 3 of the proposed method are presented in 

detail, followed by detailed empirical examples for illustration and literature comparison purposes. 

 

6.2.1. Optimistic and pessimistic FDH (Step1) 

Although DEA is an estimator based on the assumption that the true production set is 

convex, the true production set may not be convex in some real-life situations. There are very few 

models that relax the convexity assumption, and the FDH is the most used non-convex DEA model 

in the existing literature. As a more general version of the DEA estimator, the FDH model relaxes 

the convexity while preserving strong disposability and considering the VRS assumption [151]. 

As a result, abolishing convexity leads to frontiers that have “staircase” shapes with much lower 

rates of convergence than conventional DEA. As discussed in chapter 3, the FDH input and output 

efficiency scores for a given observation (𝑋𝑜, 𝑌𝑜) can be expressed as [151]: 𝐹𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  = 𝑖𝑛𝑓 {𝜃|(𝜃𝑋𝑜, 𝑌𝑜) ∈ 𝑇𝐹𝐷𝐻 } 𝐹𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  = 𝑠𝑢𝑝 {𝜃|(𝑋𝑜 , 𝜃𝑌𝑜) ∈ 𝑇𝐹𝐷𝐻 } (6.1) 

 

where 𝑇𝐹𝐷𝐻 = {(𝑋, 𝑌)| ∑ 𝜆𝑗𝑋𝑗 ≤ 𝑋𝑜;𝑗 ∑ 𝜆𝑗𝑌𝑗 ≥ 𝑌𝑜;𝑗 ∑ 𝜆𝑗 = 1𝑗 ; 𝜆𝑗 = {0,1} }  and the 

distance between the frontier and observation (𝑋𝑜 , 𝑌𝑜) is measured in terms of Equation (6.1) in 

the input and output spaces. Thus, the efficiency score of DMUo is determined by calculating the 

factor 𝜃 from either the input or output orientation as follows:  
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𝐹𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  = 𝑚𝑖𝑛 𝜃  

                               ∑ 𝜆𝑗𝑥𝑖𝑗𝑛𝑗=1 ≤ 𝜃 𝑥𝑖𝑜 ;     𝑖 = 1,2, … ,𝑚, 
                               ∑ 𝜆𝑗𝑦𝑟𝑗𝑛𝑗=1 ≥ 𝑦𝑟𝑜 ;    𝑟 = 1,2, … , 𝑠,    
                               ∑ 𝜆𝑗 = 1𝑗 ; 
                               𝜆𝑗 = {0,1}  ;         𝑗 = 1,2, … , 𝑛. 

 

 

(6.2) 

𝐹𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) = 𝑚𝑎𝑥 𝜃  

                       ∑ 𝜆𝑗𝑥𝑖𝑗𝑛𝑗=1 ≤ 𝑥𝑖𝑜 ;     𝑖 = 1,2, … ,𝑚 

                       ∑ 𝜆𝑗𝑦𝑟𝑗𝑛𝑗=1 ≥ 𝜃 𝑦𝑟𝑜 ;    𝑟 = 1,2, … , 𝑠,    
                       ∑ 𝜆𝑗 = 1𝑗 ; 
                       𝜆𝑗 = {0,1}  ;         𝑗 = 1,2, … , 𝑛. 
 

(6.3) 

The above programs are integer programming models resulting from integral variables 𝜆𝑗. 
It is worth mentioning that FDH programs (6.2) and (6.3) are identical to the VRS-DEA model, 

thus, 𝐹𝑜𝐹𝐷𝐻 ⊆ 𝐹𝑜𝑉𝑅𝑆  means that the FDH efficiency estimate is higher than the VRS efficiency 

estimate. By solving both programs (6.2) and (6.3), the convexity constraint ∑ 𝜆𝑗 = 1𝑗  requires 

one intensity variable 𝜆𝑗 with a value of 1.  

This method seeks a comprehensive measure that integrates both optimistic and pessimistic 

viewpoints. Therefore, an inefficient non-convex frontier from the observations is indicated, to 

represent the worst possible performance. The empirical PPS estimating the non-convex inefficient 

frontier �̿�𝐹𝐷𝐻  can be expressed in a manner contrary to 𝑇𝐹𝐷𝐻  by flipping the inequality 

constraints. Thus, for any n observations (𝑋𝑗, 𝑌𝑗) j=1,2,…,n, �̿�𝐹𝐷𝐻 can be represented as follows: 

�̿�𝐹𝐷𝐻 = {(𝑋, 𝑌)|∑𝜆𝑗𝑋𝑗 ≥ 𝑋𝑜;𝑗 ∑𝜆𝑗𝑌𝑗 ≤ 𝑌𝑜;𝑗 ∑𝜆𝑗 = 1𝑗 ; 𝜆𝑗 = {0,1} } (6.4) 
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In other words, in any output PPS, the inefficient frontier can be considered to be a non-

convex hull derived from the minimum output level, given a fixed input level for which output 

levels less than the frontier value cannot be produced. Similarly, from the input space, the 

inefficient frontier is a non-convex hull obtained from the maximum input level, given a fixed 

output level for which input levels greater than the frontier value cannot be consumed. Thus, 

similar to Equation (6.1), the non-convex PPS �̿�𝐹𝐷𝐻 from the input and output perspectives can be 

defined as [151]: �̿�𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜)  = 𝑠𝑢𝑝 {𝜃: (𝜃𝑋𝑜 , 𝑌𝑜) ∈ �̿�𝐹𝐷𝐻 }  �̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  = 𝑖𝑛𝑓 {𝜃: (𝑋𝑜, 𝜃𝑌𝑜) ∈ �̿�𝐹𝐷𝐻 }  

(6.5) 

Based on model (6.5), equivalently: �̿�𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) = 𝑚𝑎𝑥 𝜃 

                                   ∑ 𝜆𝑗𝑥𝑖𝑗𝑛𝑗=1 ≥ 𝜃 𝑥𝑖𝑜 ;     𝑖 = 1,2, … ,𝑚, 
                               ∑ 𝜆𝑗𝑦𝑟𝑗𝑛𝑗=1 ≤ 𝑦𝑟𝑜 ;    𝑟 = 1,2, … , 𝑠,    
                               ∑ 𝜆𝑗 = 1𝑗 ; 
                               𝜆𝑗 = {0,1}  ;         𝑗 = 1,2, … , 𝑛. 
 

(6.6) 

�̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) = 𝑚𝑖𝑛 𝜃     
                                ∑ 𝜆𝑗𝑥𝑖𝑗𝑛𝑗=1 ≥  𝑥𝑖𝑜 ;     𝑖 = 1,2, … ,𝑚, 

   ∑ 𝜆𝑗𝑦𝑟𝑗𝑛𝑗=1 ≤ 𝜃 𝑦𝑟𝑜 ;    𝑟 = 1,2, … , 𝑠,    
                                ∑ 𝜆𝑗 = 1𝑗 ; 
                                𝜆𝑗 = {0,1}  ;         𝑗 = 1,2, … , 𝑛. 
 

 (6.7) 

The primary functions of �̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻 and �̿�𝑜𝑖𝑛−𝐹𝐷𝐻 in the previous model are to measure the 

extent to which the levels of outputs and inputs for any given DMUo can be increased and 

decreased proportionally with the inefficient frontier while remaining in the PPS. Similar to the 
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optimistic approach, if a DMUo under assessment lies on the inefficient frontier, where �̿�𝑜𝑖𝑛−𝐹𝐷𝐻 =1 (�̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻 = 1), then it is inefficient; otherwise, it is not inefficient. 

In general, integer programming problems are more difficult and time consuming to solve 

than linear programming problems, due to a lack of duality and simplex algorithms. To solve 

models (6.2), (6.3), (6.6), and, (6.7), the equivalent FDH linear program introduced by Agrell and 

Tind [105] must be relied on to address the computational complexity of large problems. In doing 

so, the upper limit of the interval efficiency of DMUo, in terms of the input and output spaces, can 

be solved using the following linear programs: 

𝐹𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  = 𝑚𝑖𝑛  ∑𝜃𝑗𝑛
𝑗=1  

                                𝜆𝑗𝑥𝑖𝑗 ≤ 𝜃𝑗  𝑥𝑖𝑜 ;     𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛, 
                                𝜆𝑗𝑦𝑟𝑗 ≥ 𝜆𝑗𝑦𝑟𝑜 ;    𝑟 = 1,2, … , 𝑠; 𝑗 = 1,2, … , 𝑛,    
                                ∑ 𝜆𝑗 = 1𝑗 ; 
                                𝜆𝑗 ≥ 0  ;         𝑗 = 1,2, … , 𝑛. 
 

(6.8) 

𝐹𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) = 𝑚𝑎𝑥∑ 𝜃𝑗𝑛𝑗=1   

   𝜆𝑗𝑥𝑖𝑗 ≤ 𝜆𝑗𝑥𝑖𝑜 ;     𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛, 
     𝜆𝑗𝑦𝑟𝑗 ≥ 𝜃𝑗   𝑦𝑟𝑜 ;    𝑟 = 1,2, … , 𝑠, ; 𝑗 = 1,2, … , 𝑛,    

                            ∑ 𝜆𝑗 = 1𝑗 ; 
                            𝜆𝑗 ≥ 0  ;         𝑗 = 1,2, … , 𝑛. 
 

(6.9) 

Similarly, the lower limit of the interval efficiency of DMUo in terms of the input and 

output spaces can be solved using the following linear programs: 

�̿�𝑜𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) = 𝑚𝑎𝑥  ∑𝜃𝑗𝑛
𝑗=1  

                                    𝜆𝑗𝑥𝑖𝑗 ≥ 𝜃𝑗  𝑥𝑖𝑜 ;     𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛, (6.10) 
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                                 𝜆𝑗𝑦𝑟𝑗 ≤ 𝜆𝑗𝑦𝑟𝑜 ;    𝑟 = 1,2, … , 𝑠; 𝑗 = 1,2, … , 𝑛,    
                                ∑ 𝜆𝑗 = 1𝑗 ; 
                                 𝜆𝑗 ≥ 0  ;         𝑗 = 1,2, … , 𝑛. �̿�𝑜𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) = 𝑚𝑖𝑛∑ 𝜃𝑗𝑛𝑗=1   

   𝜆𝑗𝑥𝑖𝑗 ≥ 𝜆𝑗𝑥𝑖𝑜 ;     𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛, 
     𝜆𝑗𝑦𝑟𝑗 ≤ 𝜃𝑗  𝑦𝑟𝑜 ;    𝑟 = 1,2, … , 𝑠; 𝑗 = 1,2, … , 𝑛,    

                                   ∑ 𝜆𝑗 = 1𝑗 ; 
                                 𝜆𝑗 ≥ 0  ;         𝑗 = 1,2, … , 𝑛. 
 

(6.11) 

The above models are the foundation for the methodology used; it is understood that the 

pessimistic FDH models (6.10) and (6.11) have not been introduced in the existing literature. In 

chapter 3 of this thesis, a different representation was introduced, and in this chapter a liner 

representation is used. To illustrate the difference between conventional DEA and FDH efficient 

and inefficient frontiers, 10 sales associates who produce two outputs per hour are used: the 

number of customers served and the number of items sold. Each sales associate is denoted as 

 

 

Figure 6.1 Optimistic and pessimistic frontiers in CRS and 

FDH sales associates’ example 
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DMU1, DMU2,…,DMU10, and their outputs are [1,8], [2,3], [2,6], [3,3], [4,7], [4,2], [5,5], [5,2], 

[7,2] and [8,1], respectively, as shown in Figure 6.1. 

 

A conventional CRS DEA with an optimistic viewpoint results in a piecewise line that 

connects DMU1, DMU5, DMU7, DMU9, and DMU10 as an efficient frontier, while DMU1, DMU2, 

DMU6, and DMU10 construct an inefficient frontier.  

From the output orientation perspective, solving both models (6.16) and (6.18) results in 

FDH efficiency scores from optimistic and pessimistic approaches. Due to the “staircase” shape 

of efficiency, more DMUs are efficient and obtain a 100% efficiency score from the FDH 

optimistic perspective. As shown in Figure 6.1, DMU1, DMU5, DMU7, DMU8, DMU9, and DMU10 

all lie on the efficient FDH frontier. Similarly, from the pessimistic perspective, more DMUs lie 

on the inefficient frontier and are considered fully inefficient, with a score of 1. In the example 

used, DMU1, DMU2, DMU3, DMU4, DMU6, DMU8, DMU9, and DMU10 are all located on the 

inefficient FDH frontier. Therefore, in the second step, virtual DMUs are introduced to reshape 

the frontiers from both perspectives to improve the discrimination power and to supply a better 

ranking order.   

 

6.2.2.  Reshaping the FDH frontiers using virtual DMUs (Step2) 

After developing models (6.8), (6.9), (6.10) and (6.11), the lack of discrimination power 

between the DMUs being assessed is highlighted. In many cases, the decision maker is looking for 

a full ranking to make crucial decisions such as allocating resources to the top DMUs or merging 

the very inefficient DMUs with very efficient DMUs. Thus, to limit the ability of achieving a full 

score to only very efficient DMUs and to better envelop the dataset under assessment, a super 
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virtual DMU is proposed, denoted as DMUsuper. This super DMU is defined as a DMU that consists 

of the maximal output and minimal input of all units. 

If n DMUs with m inputs and s outputs are evaluated, then the input and output values of 

the super DMU can be defined as follows:  

 𝑋𝑖,𝑠𝑢𝑝𝑒𝑟 = 𝑀𝑖𝑛 (  𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … . , 𝑥𝑖𝑛),    𝑖 = (1, 2, … ,𝑚)       𝑌𝑟,𝑠𝑢𝑝𝑒𝑟 = 𝑀𝑎𝑥 (  𝑦𝑟1, 𝑦𝑟2, 𝑦𝑟3, … . , 𝑦𝑟𝑛), 𝑟 = (1, 2, … , 𝑠) (6.12) 

 

In general, the introduction of DMUsuper enables the elimination of more DMUs from the 

efficiency frontier and moves them to the PPS, thus improving the discrimination power. The super 

DMU acts as an additional observation for the dataset. The upper efficiency bound of DMUs in 

the presence of DMUsuper can be computed using models (6.13) and (6.14) from both input and 

output orientations: 

𝐹𝑠𝑢𝑝𝑒𝑟𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  = 𝑚𝑖𝑛 ∑𝜃𝑗𝑛
𝑗=1   

                                 𝜆𝑗𝑥𝑖𝑗 ≤ 𝜃𝑗  𝑥𝑖,𝑠𝑢𝑝𝑒𝑟 ;     𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛, 𝑛 + 1, 
                                 𝜆𝑗𝑦𝑟𝑗 ≥ 𝜆𝑗𝑦𝑟,𝑠𝑢𝑝𝑒𝑟 ;    𝑟 = 1,2, … , 𝑠, 𝑗 = 1,2, … , 𝑛, 𝑛 + 1,    
                                 ∑ 𝜆𝑗 = 1𝑗 ; 
                                 𝜆𝑗 ≥ 0  ;         𝑗 = 1,2, … , 𝑛, 𝑛 + 1. 
 

(6.13) 

𝐹𝑆𝑢𝑝𝑒𝑟𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜)  = 𝑚𝑎𝑥∑𝜃𝑗𝑛
𝑗=1  

 𝜆𝑗𝑥𝑖𝑗 ≤ 𝜆𝑗𝑥𝑖,𝑠𝑢𝑝𝑒𝑟 ;     𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛, 𝑛 + 1, 
    𝜆𝑗𝑦𝑟𝑗 ≥ 𝜃𝑗  𝑦𝑟,𝑠𝑢𝑝𝑒𝑟 ;    𝑟 = 1,2, … , 𝑠; 𝑗 = 1,2, … , 𝑛, 𝑛 + 1,   

                                 ∑ 𝜆𝑗 = 1𝑗 ; 
                                 𝜆𝑗 ≥ 0  ;         𝑗 = 1,2, … , 𝑛, 𝑛 + 1. 

(6.14) 
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 𝐹𝑠𝑢𝑝𝑒𝑟𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  and 𝐹𝑆𝑢𝑝𝑒𝑟𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  represent the input- and output-oriented models 

from the optimistic standpoint, respectively. An alternative virtual DMU called the worst DMU is 

then introduced, denoted by DMUworst; its input and output are computed as: 𝑋𝑖,𝑤𝑜𝑟𝑠𝑡 = 𝑀𝑎𝑥 (  𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … . , 𝑥𝑖𝑛), 𝑖 = (1, 2, … ,𝑚) 𝑌𝑟,𝑤𝑜𝑟𝑠𝑡 = 𝑀𝑖𝑛 (  𝑦𝑟1, 𝑦𝑟2, 𝑦𝑟3, … . , 𝑦𝑟𝑛), 𝑟 = (1, 2, … , 𝑠) (6.15) 

 

Similarly, the lower limit of efficiency of the DMUs in the presence of DMUworst can be 

obtained using the following equations:   

�̿�𝑊𝑜𝑟𝑠𝑡𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜)  = 𝑚𝑎𝑥  ∑𝜃𝑗𝑛
𝑗=1  

                                   𝜆𝑗𝑥𝑖𝑗 ≥ 𝜃𝑗  𝑥𝑖,𝑤𝑜𝑟𝑠𝑡 ;     𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛, 𝑛 + 1, 
                                   𝜆𝑗𝑦𝑟𝑗 ≤ 𝜆𝑗𝑦𝑟,𝑤𝑜𝑟𝑠𝑡 ;    𝑟 = 1,2, … , 𝑠; 𝑗 = 1,2, … , 𝑛, 𝑛 + 1,    
                                  ∑ 𝜆𝑗 = 1𝑗 ; 
                                 𝜆𝑗 ≥ 0  ;         𝑗 = 1,2, … , 𝑛, 𝑛 + 1. 
 

(6.16) 

�̿�𝑊𝑜𝑟𝑠𝑡𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜)  = 𝑚𝑖𝑛∑ 𝜃𝑗𝑛𝑗=1   

    𝜆𝑗𝑥𝑖𝑗 ≥ 𝜆𝑗𝑥𝑖,𝑤𝑜𝑟𝑠𝑡 ;     𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛, 𝑛 + 1, 
      𝜆𝑗𝑦𝑟𝑗 ≤ 𝜃𝑗  𝑦𝑟,𝑤𝑜𝑟𝑠𝑡 ;    𝑟 = 1,2, … , 𝑠; 𝑗 = 1,2, … , 𝑛, 𝑛 + 1,   

                                  ∑ 𝜆𝑗 = 1𝑗 ; 
                                  𝜆𝑗 ≥ 0  ;         𝑗 = 1,2, … , 𝑛, 𝑛 + 1. (6.17) 

 𝐹𝑤𝑜𝑟𝑠𝑡𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  and 𝐹𝑤𝑜𝑟𝑠𝑡𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  represent the input- and output-oriented 

models, respectively. The consequence of this step in the earlier example is to create a rectangular 

shape for PPS, using the optimistic and pessimistic frontiers (see Figure 6.2). 
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6.2.3.  Interval model of optimistic and pessimistic FDH (Step 3) 

When considering both frontiers for the overall evaluation results in two different measures 

for optimistic and pessimistic approaches, both measures are considered from input and output 

perspectives. One measurement is bounded between 0 and 1, while the other is greater than or 

equal to 1 and has no upper bound. In other words, the input-oriented FDH scores vary in a range 

between 0 and 1 from the optimistic perspective, whereas the pessimistic perspective scores are 

greater than or equal to 1. In contrast, in the output-oriented FDH models, the pessimistic 

perspective is bounded between 0 and 1, whereas the efficiency from the optimistic perspective is 

greater than or equal to 1.  

 

Figure 6.2 New optimistic and pessimistic FDH frontiers 
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We use the adjusted DEA index number (AIN) proposed by Sueyoshi [156] to address the 

above intricacies. For the input-oriented model, the final score of any DMUk under evaluation in 

the proposed FDH model is calculated as follows:  

 

𝜃𝑘𝑖𝑛𝑝𝑢𝑡 = 𝜃𝑘+1+( �̅�𝑘 − min𝑘 (�̅�𝑘)max𝑘 (�̅�𝑘)− min𝑘 (�̅�𝑘)) 2  ,            𝑘 = 1, … , 𝑛 (6.18) 

where 𝜃𝑘 and �̅�𝑘 are obtained from 𝐹𝑠𝑢𝑝𝑒𝑟𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜) in model (6.13) and �̿�𝑊𝑜𝑟𝑠𝑡𝑖𝑛−𝐹𝐷𝐻(𝑋𝑜, 𝑌𝑜)  
in model (6.16), respectively. 

However, the final score of any DMUk under evaluation in the proposed FDH model under 

the output-oriented model is calculated as follows:  

 

𝜃𝑘𝑜𝑢𝑡𝑝𝑢𝑡 = �̿�𝑘+1+(  𝜃𝑘− 𝑚𝑖𝑛  𝜃𝑘𝑚𝑎𝑥 𝜃𝑘− 𝑚𝑖𝑛 𝜃𝑘 ) 2   ,           𝑘 = 1,… , 𝑛 (6.19) 

where 𝜃𝑘  and �̿�𝑘  are obtained from 𝐹𝑠𝑢𝑝𝑒𝑟𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜) in model (6.14) and �̿�𝑊𝑜𝑟𝑠𝑡𝑜𝑢𝑡−𝐹𝐷𝐻(𝑋𝑜 , 𝑌𝑜)  in model (6.17), respectively. 

 

6.3.  Empirical illustration and results comparison 

Using the previous example of the sales associates, the optimistic and pessimistic FDH 

models were applied to the data. The results of the output-oriented optimistic and pessimistic FDH 

models are shown in the fourth and fifth columns of Table 6.1. The results show a lack of 

discrimination power between most DMUs in the dataset, as most are located on the efficiency 

frontiers, as shown in Figure 6.1. After applying the proposed models, as explained in step 2, the 
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sixth and seventh columns show good discrimination from enlarging the envelopment process, and 

a full ranking and discrimination is achieved.     
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Table 6.1 Sales associates example – data and model comparison 

Sales 

Associates 
Input 

Output 1 

(Customers 

served) 

Output 2 

(Sales 

made) 

Results of the 

optimistic output-

oriented FDH  

(Model 6.9) 

Results of the 

pessimistic output-

oriented FDH  

(Model 6.11) 

Optimistic output-

oriented model 

with DMUsuper 

(Model 6.14) 

Pessimistic output-

oriented model with 

DMUworst 

(Model 6.17) 

DMU1 1 1 8 1.00 1.00 1.00 1.00 

DMU2 1 2 3 2.00 1.00 2.67 0.50 

DMU3 1 2 6 1.17 1.00 1.33 0.50 

DMU4 1 3 3 1.67 1.00 2.67 0.33 

DMU5 1 4 7 1.00 0.50 1.14 0.25 

DMU6 1 4 2 1.25 1.00 2.00 0.50 

DMU7 1 5 5 1.00 0.60 1.60 0.20 

DMU8 1 5 2 1.00 1.00 1.60 0.50 

DMU9 1 7 2 1.00 1.00 1.14 0.50 

DMU10 1 8 1 1.00 1.00 1.00 1.00 
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To illustrate a comprehensive explanation of the methodology and to compare the results 

with other models in the existing literature, the performance of 31 Chinese provinces is considered. 

The dataset is taken from the study by Wang et al. [157], where each province has three inputs and 

one output. Inputs 1 and 2 are the original value of fixed assets and current assets measured in 100 

million RMB (Chinese currency), and Input 3 is the number of staff and workers at the end of the 

year, measured in 10,000 persons. The only output is the gross industrial output value measured 

in 100 million RMB. The input and output data are shown in Table 6.2.   

As shown in Table 6.3, only four DMUs achieved efficiency scores that were less than 

100% under the optimistic approach, and only five DMUs were not efficient under the pessimistic 

approach. To resolve this issue of discrimination power, the model is applied to the dataset, and 

strong or full discrimination was achieved, as shown in Table 6.4 for the input-oriented FDH model 

and in Table 6.5 for the output-oriented FDH model.  
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Table 6.2 Input and output data of 31 DMUs – Wang et al. [157] 

DMU City 
Input 1 
Fixed 
assets 

Input 2 

Current assets 

Input 3 
# Staff and 

workers 

Output 1 

Gross industrial 

DMU1 Beijing 2402.79 2005.63 113.13 2565.38 

DMU2 Tianjing 2488.6 1787.41 120.19 2606.38 

DMU3 Hebei 3532.84 2000.19 269.75 3426.05 

DMU4 Liaoning 5372.79 3155.9 295.18 4249.46 

DMU5 Shanghai 5373.06 4370.38 204.94 6204.52 

DMU6 Jiangsu 6181.57 5499.34 518.19 10452.87 

DMU7 Zhejiang 3753.68 3377.81 323.22 6603.65 

DMU8 Fujiang 2032.18 1401.27 155.55 2616.12 

DMU9 Shandong 6297.37 4076.79 522.37 8311.53 

DMU10 Guangdong 8005.77 6891.49 572.79 12480.93 

DMU11 Gunagxi 1296.41 684.22 91.25 1003.24 

DMU12 Hainan 264.43 156.7 12 202.87 

DMU13 Shanxi* 2170.68 1221.05 183.56 1216.86 

DMU14 Neimenggu 1385.74 603.7 85.34 748.97 

DMU15 Jilin 1833.04 1291.93 134.85 1679.91 

DMU16 Heilongjiang 3233.51 1567.07 195.17 2460.88 

DMU17 Anhui 1880.95 1212.57 162.61 1661.44 

DMU18 Jiangxi 1154.45 730.33 108.85 932.21 

DMU19 Henan 3447.01 2216.51 345.2 3494.96 

DMU20 Hubei 2989.31 1941.97 230.36 3064.43 

DMU21 Hunan 1947.23 1107.19 166.71 1627.94 

DMU22 Chongqing 1151.58 865.97 90.79 962.32 

DMU23 Sichanuang 2917.04 1845.51 208 2076.96 

DMU24 Guizhou 913.15 676.07 68.34 631.64 

DMU25 Yunnnan 1409.92 812.81 77.07 1063.36 

DMU26 Tibet 59.58 25.62 2.92 16.43 

DMU27 Shanxi* 1730.35 1084.49 124.98 1184.58 

DMU28 Gansu 1165.68 713.65 91.25 840.58 

DMU29 Qunghai 505.81 223.06 15.87 196.08 

DMU30 Ningxia 362.21 212.73 22.41 239.11 

DMU31 Sinkiang 1387.56 578.79 46.52 852.01 

   * DMU13 and DMU27 are different provinces with similar English names. 
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Table 6.3 Results for the input- and output-oriented dual FDH models 

DMU 

Optimistic input-

oriented model 

(6.8) 

Optimistic output-

oriented model (6.9) 

Pessimistic input-

oriented model 

(6.10) 

Pessimistic output-

oriented model 

(6.11) 

DMU1 1 1 1 1 

DMU2 1 1 1.0326 0.7969 

DMU3 1 1 1 1 

DMU4 1 1 1 1 

DMU5 1 1 1 1 

DMU6 1 1 1 1 

DMU7 1 1 1 1 

DMU8 1 1 1.3171 0.794 

DMU9 1 1 1 1 

DMU10 1 1 1 1 

DMU11 1 1 1 1 

DMU12 1 1 1.3225 0.9666 

DMU13 0.9082 1.3654 1 1 

DMU14 1 1 1 1 

DMU15 1 1 1 1 

DMU16 0.8943 1.0632 1 1 

DMU17 1 1 1.0071 0.7324 

DMU18 1 1 1 1 

DMU19 1 1 1 1 

DMU20 1 1 1 1 

DMU21 1 1 1.1011 0.7475 

DMU22 1 1 1 1 

DMU23 0.7594 1.2597 1 1 

DMU24 1 1 1 1 

DMU25 1 1 1 1 

DMU26 1 1 1 1 

DMU27 1 1 1 1 

DMU28 1 1 1 1 

DMU29 0.7562 1.0347 1 1 

DMU30 1 1 1 1 

DMU31 1 1 1 1 
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Table 6.4 Results of the proposed input-oriented model compared with the Wang et al. [157] model 

DMU 

Input-oriented 

Wang et al. model Rank Optimistic  

model (6.13) 

Pessimistic  

model (6.16) 

Pessimistic 

AIN 

Final score 

model (6.18) 
Rank 

DMU1 0.027 3.332 1.017 0.522 13 1.295 12 

DMU2 0.025 3.217 1.017 0.521 12 1.421 7 

DMU3 0.018 2.124 1.008 0.513 8 1.377 8 

DMU4 0.012 1.491 1.004 0.508 4 1.210 14 

DMU5 0.015 1.491 1.004 0.509 5 1.488 6 

DMU6 0.010 1.107 1.001 0.505 2 1.720 2 

DMU7 0.017 1.773 1.006 0.511 6 1.746 1 

DMU8 0.030 3.683 1.020 0.525 16 1.651 5 

DMU9 0.010 1.098 1.001 0.505 3 1.682 3 

DMU10 0.007 1.001 1.000 0.504 1 1.678 4 

DMU11 0.047 6.176 1.039 0.543 23 1.186 15 

DMU12 0.245 30.276 1.220 0.732 30 1.224 13 

DMU13 0.029 3.121 1.016 0.522 14 0.759 30 

DMU14 0.044 5.778 1.036 0.540 21 0.974 25 

DMU15 0.034 4.248 1.024 0.529 18 1.155 18 

DMU16 0.019 2.476 1.011 0.515 9 1.317 11 

DMU17 0.033 3.523 1.019 0.526 17 1.105 20 

DMU18 0.053 5.263 1.032 0.542 22 0.976 24 

DMU19 0.018 1.660 1.005 0.512 7 1.182 16 

DMU20 0.021 2.487 1.011 0.516 10 1.361 10 

DMU21 0.032 3.436 1.018 0.525 15 1.119 19 
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DMU22 0.053 6.309 1.040 0.546 25 0.987 23 

DMU23 0.022 2.745 1.013 0.517 11 0.994 22 

DMU24 0.066 8.382 1.055 0.561 27 0.831 29 

DMU25 0.043 5.679 1.035 0.539 20 1.171 17 

DMU26 1.000 134.371 2.000 1.500 31 0.566 31 

DMU27 0.036 4.583 1.027 0.531 19 0.958 27 

DMU28 0.052 6.278 1.040 0.546 24 0.973 26 

DMU29 0.185 15.828 1.111 0.648 28 0.846 28 

DMU30 0.166 22.103 1.158 0.662 29 0.998 21 

DMU31 0.064 5.770 1.036 0.550 26 1.375 9 
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Table 6.5 Results of the proposed output-oriented model compared with the Wang et al. [157] model 

DMU 

Output-oriented 

Wang et al. model Rank Optimistic  

model (6.13) 

Pessimistic  

model (6.16) 

Pessimistic 

AIN 

Final score 

model (6.17) 
Rank 

DMU1 4.8656 0.0075 1.0051 0.5063 12 1.2951 12 

DMU2 4.7890 0.0074 1.0050 0.5062 10 1.4206 7 

DMU3 3.6435 0.0058 1.0035 0.5046 8 1.3771 8 

DMU4 2.9379 0.0045 1.0026 0.5035 6 1.2099 14 

DMU5 2.0126 0.0032 1.0013 0.5023 5 1.4879 6 

DMU6 1.1952 0.0019 1.0003 0.5011 2 1.7200 2 

DMU7 1.8907 0.0033 1.0012 0.5022 4 1.7460 1 

DMU8 4.7711 0.0075 1.0050 0.5062 11 1.6507 5 

DMU9 1.5027 0.0024 1.0007 0.5015 3 1.6816 3 

DMU10 1.0015 0.0013 1.0000 0.5007 1 1.6777 4 

DMU11 12.4408 0.0177 1.0151 0.5164 21 1.1855 15 

DMU12 61.5218 0.0825 1.0798 0.5811 29 1.2237 13 

DMU13 10.2570 0.0147 1.0122 0.5135 18 0.7589 30 

DMU14 16.6643 0.0233 1.0206 0.5220 26 0.9742 25 

DMU15 7.4298 0.0110 1.0085 0.5097 15 1.1547 18 

DMU16 5.0722 0.0077 1.0054 0.5065 13 1.3168 11 

DMU17 7.5124 0.0111 1.0086 0.5098 16 1.1047 20 

DMU18 13.3887 0.0190 1.0163 0.5177 23 0.9762 24 

DMU19 3.5717 0.0056 1.0034 0.5045 7 1.1821 16 

DMU20 4.0733 0.0064 1.0040 0.5052 9 1.3609 10 

DMU21 7.6670 0.0113 1.0088 0.5100 17 1.1188 19 
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DMU22 12.9698 0.0184 1.0158 0.5171 22 0.9865 23 

DMU23 6.0097 0.0090 1.0066 0.5078 14 0.9940 22 

DMU24 19.7597 0.0274 1.0247 0.5261 27 0.8314 29 

DMU25 11.7375 0.0168 1.0142 0.5155 20 1.1713 17 

DMU26 759.6427 1.0000 2.0000 1.5000 31 0.5660 31 

DMU27 10.5364 0.0151 1.0126 0.5138 19 0.9579 27 

DMU28 14.8482 0.0209 1.0183 0.5196 25 0.9727 26 

DMU29 63.6523 0.0853 1.0826 0.5839 30 0.8455 28 

DMU30 52.1975 0.0702 1.0675 0.5688 28 0.9975 21 

DMU31 14.6490 0.0206 1.0180 0.5193 24 1.3751 9 
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The results of the proposed model are compared with the results of Wanget al.  [157] in the 

last columns of Table 6.4 and Table 6.5. By applying a Kendall ranking correlation [158], a strong 

correlation was observed between the ranking results of this model and the Wang et al. model. The 

Kendall correlation depends on finding a relationship between the data to determine Kendall’s tau 

coefficient (𝜏), where the value of tau is equal to 1 if there is a very high agreement level between 

the two rankings (i.e., the two rankings are exactly similar); if the data are in complete 

disagreement, the value of tau is equal to 0. In the case of the proposed model, the correlation 

coefficients between the results of this model and the Wang et al. model are 𝜏𝑖𝑛 = 0.49  , 𝜏𝑜𝑢𝑡 =0.69 for both input- and output-oriented models. This degree of agreement is considered to be 

fairly high, considering that the proposed model is based on an FDH where convexity is relaxed, 

whereas the Wang et al. model is based on a CRS assumption. 

 

6.4.  Summary and conclusion  

In this chapter, improved dual frontiers models that incorporate optimistic and pessimistic 

FDH with virtual DMUs have been developed.  

 The virtual DMUs approach has been applied to dual FDH models in this study to achieve 

better and unbiased ranking. It is considered that the limited ability of the FDH approach in 

achieving high discrimination power has limited the attention paid to its application and 

development. This chapter, along with the previous chapter, has extended the investigation on the 

FDH model. Section 3 of this chapter proposed a comprehensive approach that uses optimistic and 

pessimistic approaches to achieve unbiased evaluations. It is understood that neither approach has 

previously been applied to the FDH approach in the existing literature. After obtaining both 

optimistic and pessimistic FDH measures, an algorithm was proposed to achieve full ranking 
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power for all DMUs in the dataset. In the second step, two virtual DMUs were added to the data 

to create a larger envelopment by enlarging the optimistic and pessimistic frontiers. The 

measurements across both approaches were combined using AINs, and full ranking was achieved. 

An empirical application that compared these results with those of other common models in the 

existing literature using a Kendall ranking correlation showed a high level of agreement between 

the proposed model and the existing models 

We believe that this proposed method contributes to the existing literature by providing 

better ranking. The methods developed in this study exhibit the following advantages: (1) although 

the PPS is expanded by introducing the super and worst virtual DMUs, the decrease in the number 

of efficient DMUs leads to improved discrimination; (2) the existing models generally combine 

pessimistic and optimistic approaches in a straightforward manner without adjusting the 

pessimistic scores for bias; and (3) there is no dual-frontier with virtual DMUs methodology in the 

existing literature that applies FDH when the convexity assumption must be relaxed. The results 

obtained show consistency when compared with other models in the literature, as a Kendall 

ranking correlation showed a high level of agreement between the proposed model and the existing 

models.  
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Chapter 7: Estimating Efficiency of 

Customizable DMUs Using Optimistic and 

PessimisticVirtual FDH and DEA Models 
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7.1. Introduction 

A well-known strength of DEA is that it can evaluate the efficiency of any dataset; 

however, a weakness is that it lacks the discrimination power of creating a full ranking for all the 

efficient units in the dataset. For most decision makers, it is not enough to simply classify the firms 

under assessment into efficient or inefficient. On the other hand, regression analysis (RA) is a well-

known comparative efficiency technique that is widely used to determine the efficiency of units. 

RA uses least square methods to produce the average line, while DEA uses linear programming to 

obtain efficiency frontier lines. Both DEA and RA focus on finding or estimating the efficiency 

frontier of the data, and, for that reason, they are considered equivalent alternatives. However, 

DEA and RA result in different efficiency rankings, with major variations on their respective 

efficiency scores.   

This chapter suggests a new method that predicts the score of any possible data point by 

combining regressed optimistic and regressed pessimistic models. The chapter presents the 

methodology of the current method by applying the dual virtual models discussed in chapter 5 and 

chapter 6. The dual virtual DEA model is discussed in the following section of this chapter, along 

with illustrative examples to demonstrate the model. Section 7.3 discusses the proposed 

methodology incorporated with dual virtual FDH models.    

Both proposed methodologies show how the new models can predict the efficiency score 

of any DMU within or outside the dataset in reference to current available data.  

 

7.2. Estimation model using optimistic and pessimistic virtual DEA approach  

This section suggests a new method for forecasting customizable DMUs in any dataset. 

The methodology proposed in this section combines both the optimistic and pessimistic 
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approaches, with the introduction of virtual units to the data, similar to the approach discussed in 

Section 5.2. But in this section an additional step is taken that incorporates the optimistic and 

pessimistic models with regression analysis. The method is discussed in detail in the following 

subsections. Also, an illustrative example will follow in subsection 7.2.4.   

7.2.1. Regressed optimistic DEA 

As noted above, in 1978, Charnes et al. [1] transformed envelopment analysis from its 

graphical form into a linear program. Their linear program LP requires no restrictions on the 

number of inputs or outputs. Furthermore, their CCR model assigns virtual weights to inputs and 

outputs, and this allows the model to measure efficiency without assigning prior weight to the 

input and output. All that was discussed in chapters 2 and 3, but this chapter will elaborate and 

present a different representation. On the virtual weights, the DEA model applies a linear program 

that maximizes the efficiency ratio of DMUs. Finally, the LP model is applied to all DMUs in the 

dataset one by one.  

To clarify this, it is supposed that there are n DMUs with s outputs and m inputs, so for 

every DMUk there are: 

Virtual input 𝑉1𝑋1𝑘 + … + 𝑉𝑚𝑋𝑚𝑘and

Virtual output𝑈1𝑌1𝑘 + … + 𝑈𝑠𝑌𝑠𝑘
where the virtual weight of the inputs are represented by Vi (i=1,..., m) and the virtual 

weight of the outputs are represented by Ur (r=1,...,s). The following function represents the DEA 

efficiency of any DMU:   

𝐷𝐸𝐴 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑖𝑛𝑝𝑢𝑡  
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In the CCR model, the weights of each DMU are selected so as to maximize the efficiency 

ratio. Charnes et al. maximized the efficiency of each DMUk by applying linear programming and 

solving the following fractional program [1]: 

max 𝜃𝑘 = 𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘 𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘 

Subject to: 
0 ≤  𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘 𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘  ≤ 1     (𝑘 = 1… , 𝑛) 𝑣1, 𝑣2, … , 𝑣𝑚 ≥ 0  𝑢1, 𝑢2, … , 𝑢𝑠 ≥ 0  

(7.1) 

 

In the above program, the solution is calculated n times for every DMU in the data, each 

with its own efficiency score. The fractional model of CCR can be transformed into a linear form 

by normalizing the denominator of the objective function, as shown in Section 2.2. The model 

must also assume that no DMU will have a negative efficiency. So each DMU is classified as 

efficient if θk obtains a value of 1. The CCR model is also known as the optimistic model and the 

best relative efficiency model. 

The previous standard DEA model used an optimistic approach to rank all DMUs, based 

on the efficiency frontier. Along this frontier, all units are considered efficient or optimistically 

efficient DMUs. Furthermore, as modeled in CCR, scores are equal to 1 for all efficient DMUs. 

In this section, a regressed optimistic model is presented. Based on Arnold et al. [159], a 

traditional, single output regression analysis will be applied to the DEA results to prepare the model 

for overall combination with the pessimistic model. In the model, the DEA efficiency score is 
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defined as a final optimum output for the regression function. The RA model of the score functions 

as follows: 

𝜃𝑘𝑜 = 𝜆0 + ∑𝛽𝑥𝑜𝑖𝑋𝑘𝑖𝑠
𝑖=1 + ∑𝛽𝑦𝑜𝑙𝑌𝑘𝑙  ≤ 1 + 𝜀  𝑚

𝑙=1  (7.2) 

where 𝜃𝑘𝑜  is the estimated optimistic score for DMUk, whether included in the dataset or 

from another dataset; λ0 is the optimistic intercept; Xki is the value of the ith output of DMUk; Ykl is 

the value of the lth input of DMUk; and ε is the random error. Furthermore, it can be concluded that 𝜃𝑘𝑜≤1+ε. 

After applying both stages and obtaining the regressed optimistic function 𝜃𝑘𝑜, the score 

of any DMU in the data can be easily calculated. However, as Entani et al. [86] noted, approaches 

that utilize only the optimistic approach are biased. To eliminate this bias, the proposed model also 

includes a pessimistic approach in the following subsection. 

 

7.2.2. Regressed pessimistic DEA 

The CCR model, an example of the optimistic approach, aims to optimize all units towards 

a maximum efficiency score of 1. In contrast, the pessimistic approach evaluates all DMUs along 

an inefficiency frontier. Rather than maximizing the efficiency ratio, ratios are minimized in the 

fractional program of the pessimistic approach. Inefficient DMUs receive a score of 1, and all 

constraints in the pessimistic approach should be greater than or equal to 1. The following 

represents the fractional pessimistic model for any DMUk [85]:   

𝑚𝑖𝑛 𝜃𝑘∗ = 𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘 𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘  (7.3) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑢1𝑦1𝑘 + 𝑢2𝑦2𝑘 + …+ 𝑢𝑠𝑦𝑠𝑘 𝑣1𝑥1𝑘 + 𝑣2𝑥2𝑘 + …+ 𝑣𝑚𝑥𝑚𝑘  ≥ 1 (𝑘 = 1… , 𝑛) 𝑣1, 𝑣2, … , 𝑣𝑚 ≥ 0   𝑢1, 𝑢2, … , 𝑢𝑠 ≥ 0   
This section suggests introducing regression analysis to obtain efficiency scores using a 

pessimistic approach. After applying the RA, the final pessimistic efficiency scores can be 

calculated as follows: 

𝜃𝑘𝑝 = 𝜆𝑝 + ∑ 𝛽𝑥𝑝𝑖𝑋𝑘𝑖𝑠𝑖=1 + ∑ 𝛽𝑦𝑝𝑙𝑌𝑙  ≥ 1 − 𝜀  𝑚𝑙=1   (7.4) 

where 𝜃𝑘𝑝  is the estimated pessimistic score for DMUk, whether included in the dataset or 

not; 𝜆𝑝 is the regressed pessimistic intercept; 𝑋𝑘𝑖 is the value of the ith output of DMUk; Ykl is the 

value of the lth input of DMUk; and ε is the random error. Furthermore, it can be concluded that 𝜃𝑘𝑝will always be greater than or equal to 1- ε. 

 

7.2.3. DEA dual frontiers estimation model 

After developing regressed optimistic and regressed pessimistic models in Sections 7.2.1 and 

7.2.2, it can be concluded that both models can be used to obtain efficiency scores of a data point 

or even predict a score of a virtual data point. However, relying on one approach lacks precision 

and introduces bias. Each model may lead to an inaccurate efficiency score; nevertheless, using 

one model over the other is biased, as shown in previous chapters of this thesis.  

Therefore, unbiased methods must combine pessimistic and optimistic approaches. This 

combination can be achieved by calculating the geometric average of both scores. Wang et al. 
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provided a detailed theorem and proof of this [31]. They advocated ranking all DMUs by taking 

the geometric average between the pessimistic and optimistic scores of each DMU. Following 

Wang et al., this subsection proposes to combine a regressed optimistic approach with a regressed 

pessimistic approach by taking their geometric average. The final efficiency score prediction 

formula of the proposed method can be calculated as follows: 

𝜃𝑘𝑓𝑖𝑛𝑎𝑙 = √ 𝜆0 +  ∑ 𝛽𝑥𝑜𝑖𝑋𝑘𝑖𝑠𝑖=1 +  ∑ 𝛽𝑦𝑜𝑙𝑌𝑘𝑙 𝑚𝑙=1(𝜆𝑝 +  ∑ 𝛽𝑥𝑝𝑖𝑋𝑘𝑖𝑠𝑖=1 +  ∑ 𝛽𝑦𝑝𝑙𝑌𝑘𝑙𝑚𝑙=1 )−1 = √ 𝜃𝑘𝑜(𝜃𝑘𝑝)−1 (7.5) 

 

7.2.4. Illustrative example for the DEA forcasting model  

To illustrate the new model proposed in this chapter, the multiple inputs and outputs example 

of bank branches presented in chapter 5 is used, where Table 5.5 shows the raw data of 12 bank 

branches. Table 7.1 shows the results of the optimistic model, pessimistic model, regressed 

optimistic model, regressed pessimistic model, and the final score of the proposed model.  

 

 

 

 

 

 

 



134 
 

Table 7.1 Comparison results of the proposed DEA forecasting model 

DMU  

 
Optimistic 

model 

 
Pessimistic 

model 

 Regressed 

optimistic 

model (𝒀𝒌𝒐 ) 

 Regressed 

pessimistic 

model (𝒀𝒌𝒑 ) 

  
Proposed model 

(𝜽𝒌𝒇𝒊𝒏𝒂𝒍 )      

  Score Rank   Score Rank   Score Rank    Score Rank   Score Rank 

1  0.512 8  1.189 8  0.613 6  1.735 7  1.032 7 

2  0.413 11  1.000 9  0.513 10  1.349 9  0.831 9 

3  0.456 9  1.370 7  0.526 9  1.369 8  0.849 8 

4  1.000 1  3.005 4  1.064 1  3.279 4  1.867 2 

5  0.413 10  1.000 9  0.329 12  0.507 12  0.409 12 

6  1.000 1  3.968 1  0.895 4  3.499 2  1.770 4 

7  1.000 1  3.548 3  0.996 3  3.442 3  1.851 3 

8  0.996 4  3.736 2  0.999 2  3.510 1  1.873 1 

9  0.729 5  1.646 5  0.624 5  1.886 5  1.085 5 

10  0.622 7  1.504 6  0.612 7  1.781 6  1.044 6 

11  0.342 12  1.000 9  0.409 11  1.033 10  0.650 10 

12   0.624 6   1.000 9   0.527 8   0.576 11   0.551 11 

 

It can be observed that both the regressed optimistic model and regressed pessimistic model 

are consistent with the original optimistic or pessimistic DEA. Figure 7.1 shows consistency 

between the proposed model and all other models. This allows reliance on the model for prediction. 

In addition, overcoming the issue of bias within each model, the final proposed model yields 

accurate results, and it can be used for efficiency score prediction on any virtual data point that does 

not belong to the data, but, of course, this evaluation is in reference to this specific dataset. For 

example, if virtual branch X is about to be established and the decision maker wants to know if this 

branch will be efficient or not, the proposed models can be applied. So, if the DM knows that a 

branch has the following resources: 12 employees, 800,000 operation cost, 2,000,000 interest 

earned per saving, 900,000 interest earned per loan, and 700,000 non-interest income, then by 

applying the proposed models (7.2), (7.4), and (7.5), the efficiency score for that customizable 
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branch will be 75.1% and it will be ranked as branch number 10 among the current available 

braches. So this is a major application benefit from the proposed models; moreover, these models 

can also be used to rank the existing data when discrimination between DMUs is needed. 

 

 

 

7.3. Estimation model using optimistic and pessimistic virtual FDH approach 

This section develops a new method for forecasting customizable DMUs, similar to the 

previous approach presented in subsection 7.2. However, the model applied in this forecasting 

model is switched to the FDH model instead of the DEA model. The model proposed combines 

both the optimistic and pessimistic approaches to the data in a virtual context, similar to the 

approach discussed in Section 6.2. RA analysis is incorporated into the last step of the model in 

order to allow prediction application when a customizable DMU is available for alteration by the 

DM. A forecasting or prediction framework of three steps is proposed. Subsections 7.3.1, 7.3.2 and 

Figure 7.1 Score comparisons of all models with the proposed final model 
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7.3.3 discuss in detail the incorporation of the virtual FDH models and the regression approach. 

Subsection 7.3.4 discusses an empirical application of the methodology proposed.    

 

7.3.1. Regressed optimistic FDH 

The FDH model of Tulkens [155] is applied in this section to create a non-convex hull that 

imposes strong disposability assumptions. To this end, this subsection presents an interval regressed 

FDH for measuring the bounded efficiency, where the upper bound is obtained from the regressed 

optimistic perspective and the lower bound is obtained from the regressed pessimistic perspective.  

To present the new proposed model, the FDH input and output oriented models presented in 

chapter 3 need to be borrowed as follows:  

Foin−FDH(Xo, Yo)  = min {∑θjj : λjXj ≤ θjXo; λjYj ≥ λjYo;∑λj = 1j ; λj ≥ 0 } 

Foout−FDH(Xo, Yo)  = max {∑θjj : λjXj ≤ λjXo; λjYj ≥ θjYo;∑λj = 1j ; λj ≥ 0 } 

(3.15) 

  

The formulations presented above show the input and output orientation of the FDH models. 

In this section, the regressed output orientation of the FDH model will be developed from the 

optimistic perspective. Input orientation can be developed similarly. From the above formulation, 

the developed optimistic output oriented virtual FDH model can be obtained by adding the super 

virtual DMU to the dataset. The DMUsuper consists of the maximal output and minimal input among 

all units in the dataset. 
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So, for any dataset that has n DMUs with m inputs and s outputs, the new formulation after 

virtual DMU introduction for the optimistic virtual FDH model will be as follows:  

Fsuperout−FDH(Xo, Yo)
= max {∑θjj : λjXj ≤ λjXo; λjYj ≥ θjYo;∑λj = 1j ; λj ≥ 0 , where j
= 1,2,… . 𝑛 + 1  } 

(7.6) 

In order to develop the regressed optimistic FDH model, the single output regression 

model of Arnold et al. [159] is applied. In this model, the FDH efficiency score is defined as a final 

optimum output for the regression function. The optimistic RA score function for any DMUk, is 

presented as follows: 

𝜃𝑘𝑜𝐹𝐷𝐻𝑜𝑢𝑡  = 𝜆0 + ∑𝛽𝑥𝑜𝑖𝑋𝑘𝑖𝑠
𝑖=1 + ∑𝛽𝑦𝑜𝑙𝑌𝑘𝑙  ≤ 1 + 𝜀  𝑚

𝑙=1  (7.7) 

where 𝜃𝑘𝑜𝐹𝐷𝐻𝑜𝑢𝑡  is the estimated optimistic virtual FDH optimistic score for DMUk from the 

output orientation, whether that DMUk is included in the dataset or not; λ0 is the optimistic intercept; 

Xki is the value of the ith output of DMUk; Ykl is the value of the lth input of DMUk; and ε is the 

random error. Furthermore, it can be concluded that 𝜃𝑘𝑜≤1+ε. 

After applying both stages and obtaining the regressed optimistic function 𝜃𝑘𝑜𝐹𝐷𝐻𝑜𝑢𝑡, the 

score of any DMU in the dataset can be easily calculated. This first step of estimation can be useful 

when only the optimistic perspective is needed, but, as this study suggests, the pessimistic 

perspective should always be included in the evaluation, and that is what subsection 7.3.2 will 

discuss.   



138 
 

7.3.2. Regressed pessimistic FDH 

In contrast to the previous subsection, the pessimistic approach evaluates all DMUs along 

an inefficiency frontier. In order to do so, this section will discuss the development of the regressed 

virtual FDH model from the pessimistic perspective.  

Initially, the fundamental pessimistic FDH model that has been developed in this thesis 

needs to be built on. The basic FDH pessimistic model is presented in chapter 3 as follows:   

F̿oin−FDH(Xo, Yo)  = max {∑θjj : λjXj ≥ θjXo; λjYj ≤ λjYo;∑λj = 1j ; λj ≥ 0 } 

F̿oout−FDH(Xo, Yo)  = min {∑θjj : λjXj ≥ λjXo; λjYj ≤ θjYo;∑λj = 1j ; λj ≥ 0 } 

(3.16) 

 In this section, the regressed virtual FDH model will be developed from output orientation 

only, and, similarly, the input orientation can be developed. So for any dataset that has n DMUs 

with m inputs and s outputs, the new formulation after introducing DMUworst for the pessimistic 

virtual FDH model will be as follows:  

Fworstout−FDH(Xo, Yo)
= max {∑θjj : λjXj ≤ λjXo; λjYj ≥ θjYo;∑λj = 1j ; λj ≥ 0 , where j
= 1,2, … . 𝑛 + 1  } 

(7.8) 

where DMUworst is defined as a virtual DMU that has the minimal output and maximal 

input among all units in the dataset. In order to develop the regressed pessimistic FDH model, the 
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RA analysis is incorporated in a similar way to the previous section. So, the pessimistic RA score 

function for any DMUk, is: 

𝜃𝑘𝑝𝐹𝐷𝐻𝑜𝑢𝑡  = 𝜆0 + ∑𝛽𝑥𝑜𝑖𝑋𝑘𝑖𝑠
𝑖=1 + ∑𝛽𝑦𝑜𝑙𝑌𝑘𝑙  ≤ 1 + 𝜀  𝑚

𝑙=1  (7.9) 

where 𝜃𝑘𝑝𝐹𝐷𝐻𝑜𝑢𝑡  is the estimated optimistic virtual FDH score for DMUk from the output 

orientation, whether that DMUk is included in the dataset or not; λ0 is the optimistic intercept; Xki 

is the value of the ith output of DMUk; Ykl is the value of the lth input of DMUk; and ε is the random 

error. Furthermore, it can be concluded that 𝜃𝑘𝑜≤1+ε. 

After applying both stages and obtaining the regressed pessimistic function 𝜃𝑘𝑜𝐹𝐷𝐻𝑜𝑢𝑡, the 

score of any DMU in the data can be easily calculated. This concludes the second to last step in the 

methodology of overall estimation. The final dual unbiased evaluation will be calculated in the 

following subsection.  

7.3.3. FDH dual frontiers forecasting model  

Implementing one approach lacks precision and introduces bias. Both models introduced in 

the last two subsections may lead to an inaccurate efficiency score if solely used. Therefore, an 

unbiased approach must combine the pessimistic and optimistic approaches. This combination can 

be achieved by calculating the geometric average of both scores. Similar to the theorem of Wang et 

al. [31] in this subsection, a dual regressed optimistic and regressed pessimistic approach is 

presented, by combining the virtual regressed FDH optimistic and pessimistic models. The final 

efficiency score prediction formula of the method can be calculated as follows: 
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𝜃𝑘𝐹𝐷𝐻𝑓𝑖𝑛𝑎𝑙 = √ 𝜃𝑘𝑜𝐹𝐷𝐻𝑜𝑢𝑡  (𝜃𝑘𝑝𝐹𝐷𝐻𝑜𝑢𝑡)−1 (7.10) 

It must be noted that the above formula only calculates, or, in other words, estimates, the 

efficiency scores for customizable DMU from the output orientation only. In the following 

subsection, an illustrative example will be discussed.  

 

7.3.4. Illustrative example for the FDH forcasting model  

In this subsection, the proposed model in the previous subsection will be illustrated by 

applying it to the sales associates example presented in Section 6.1. The application will show the 

behavior of regressed optimistic FDH and regressed pessimistic FDH and the final proposed model 

of the dual FDH forecasting.The objective of this application is to test the credibility of the proposed 

model.  Table 7.2 shows the results of the optimistic model, the pessimistic model, the regressed 

optimistic model, the regressed pessimistic model, and the final score of the proposed model for the 

sales associates example. 
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Table 7. 2 Comparison results of the proposed FDH forecasting model 

Sales 

Associate  

 Optimistic 

virtual FDH 

model 

 Pessimistic 

virtual FDH 

model 

 Regressed 

optimistic 

FDH model 

 Regressed 

pessimistic 

FDH model 

  Dual 

regressed 

FDH model 
     

  Score Rank   Score Rank   Score Rank    Score Rank   Score Rank 

1  1.000 9  1.000 9  1.446 6  0.498 1  0.848 6 

2  2.667 1  0.500 4  2.451 1  0.522 4  1.131 1 

3  1.333 6  0.500 4  1.676 5  0.510 2  0.925 5 

4  2.667 1  0.333 3  2.164 2  0.526 5  1.067 3 

5  1.143 7  0.250 2  0.843 10  0.516 3  0.660 10 

6  2.000 3  0.500 4  2.135 3  0.535 7  1.069 2 

7  1.600 4  0.200 1  1.072 9  0.529 6  0.753 9 

8  1.600 4  0.500 4  1.848 4  0.540 8  0.999 4 

9  1.143 7  0.500 4  1.273 7  0.550 9  0.837 7 

10   1.000 9   1.000 9   1.244 8   0.558 10   0.833 8 

 

7.4. Summary and conclusion 

Since 1978, when DEA first emerged, a large body of research has been conducted on 

DEA, resulting in major developments in its methods and applications. A subfield of research, 

focusing on score prediction and the ranking of DMUs, has emerged. It is understood that the 

combination of optimistic and pessimistic DEAs with regression models has not yet been explored. 

In the proposed model in this chapter, a two-stage methodology for determining, and, in particular, 

predicting efficiency scores for any possible data point is presented. The first stage of the model 

individually applies RA to optimistic and pessimistic DEA models in order to obtain regressed 

optimistic scores and regressed pessimistic scores. In the second stage, both scores are combined 

through a geometric average technique. Combining both scores yields much more accurate results. 

This chapter has presented this methodology through the conventional DEA models and through 

the newly developed FDH that has been discussed in this study. Moreover, even though this model 
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is used for score prediction, it can also rank efficient DMUs, since the final scores of all DMUs tend 

to be much more discriminated than the scores generated from the standard DEA model. 
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Chapter 8: Summary and Conclusion  
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8.1. Thesis summary  

The field of data envelopment analysis has a very interesting growth in the literature of 

decision analysis and economic science. Every day, researchers and practitioners add practical cases 

of DEA, along with theoretical development. As shown in the survey conducted by Liu et al. [160], 

the number of theoretical publications of DEA between 1978 till 1999 was always higher than the 

number of empirical publication. After 1999 the number of published application work increased 

to exceed the number of methodological publications until it reached almost double the number of 

accumulated theoretical published works. It can be stated that the theoretical DEA literature is quite 

mature, and the literature referred to in this thesis has shown how one topic, DEA ranking 

approaches, has evolved over the past 40 years. Many models have been developed and proposed, 

and the research observation can be made that most approaches are considered to be post-analysis 

development of the few fundamental DEA models.  

This study was able to identify a field that has not yet matured in terms of the topic of DEA 

ranking, and an attempt has been made to elaborate and develop fundamental and extended models 

in this field. All conventional DEA models conduct evaluation from the optimistic perspective by 

using single frontier analysis. This study focused on developing a ranking framework using both 

optimistic and pessimistic approaches, in order to avoid any bias in evaluation.  

This thesis proposed original FDH models from optimistic and pessimistic perspectives 

that consider both input and output orientation. These dual FDH models can be considered as a 

major contribution to the literature, due to their originality. Theoretically, the models contribute to 

the body of knowledge in the DEA field, but also it is believed that these models are very helpful 

to practitioners who need to apply DEA in real-life scenarios where the convexity assumption needs 

to be relaxed. Moreover, the proposed FDH model can be very useful in providing an unbiased 
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ranking approach, and more practical in certain applications, for example, integer data application 

and elimination process scenarios.  

As a part of the research, this thesis has delivered an elaborate analysis of the dual frontiers 

ranking approach. Besides the FDH models, several different models have been proposed. These 

models are needed mainly to deliver better accuracy for evaluation outcomes. Chapter 4 showed 

three different FDH models: the slack-based model, the super-efficiency model, and the super-

efficiency model without infeasibility. The super-efficiency model can be considered as a unique 

model with a very major contribution to the ranking literature. Many researchers criticize the super-

efficiency model for its continual infeasibility problem and its limited applicability for outliers’ 

detection only, while this thesis proposes that SF-FDH models overcome the feasibility issue, to 

become an unbiased ranking method.  

Chapters 5 and 6 aimed to extend the development of the optimistic and pessimistic model 

to include another immature approach in the literature that incorporates virtual DMUs. Two 

improved models that incorporate virtual DMUs are proposed for conventional DEA and FDH from 

both the optimistic and pessimistic approaches. After discussing all new models, empirical 

application is carried out to show feasibility and applicability, in addition to the advantages of the 

proposed models.  

Finally, a major finding of this research is that using only the optimistic approach in any 

evaluation procedure might lead to a biased evaluation. The study included an estimation model 

that implements both optimistic and pessimistic approaches in order to predict the future resources 

needed to build a new decision-making unit in reference to any dataset. Chapter 7 tackles this goal 

by proposing a new dual regression model for estimating customizable DMUs. The proposed 
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methodology can be very effective because it relies on optimistic and pessimistic approaches. Both 

DEA and FDH models have been used to develop these estimation models.   

 

8.2. Contribution and main findings 

The topic of DEA ranking is a very rich topic, and there have been many attempts in the 

literature toward DEA ranking improvement. This thesis also seeks to achieve the goal of reaching 

strong discrimination power when DEA evaluation is applied to any existing data. The main finding 

in this thesis is that using only the conventional or optimistic DEA, as with most DEA ranking 

models in the literature, might lead to a biased evaluation. This body of research therefore proposes 

that researchers or practitioners should always include pessimistic approaches alongside optimistic 

approaches whenever DEA models are applied. 

In this dissertation, several models under the optimistic and pessimistic framework have 

been proposed. These models have two different bases: either an FDH base or a virtual DMU base. 

Further on in the research, both bases are combined to serve the ranking objective, like all other 

models presented beforehand in the thesis. As an extended objective, an estimation model has been 

proposed and discussed to provide a useful tool for practitioners who need to determine efficiency 

scores for customizable DMUs. These estimation models were also developed under the optimistic 

and pessimistic framework, and similarly used FDH and virtual DMUs as bases. 

In summary, this thesis contributes the following to the field of DEA:  

 A comprehensive literature review up to 2016 for all DEA ranking methods, with critical 

insights. The last DEA ranking review in the literature was carried out in 2002. In the 
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current review, new methods have been categorized and included as updated and major 

directions in the DEA ranking research field (see Aldamak and Zolfaghari [161]).  

 The fundamental contribution to the literature is the development of the FDH model from 

pessimistic and optimistic approaches. In this thesis, a comprehensive dual FDH frontiers 

framework is developed with a new representation of the optimistic FDH model. The 

proposed FDH model, fills a gap in the literature, since there is no pessimistic DEA-FDH 

model from both input and output orientations [58].  

 A slack-based (SB) FDH model has been developed from both optimistic and pessimistic 

approaches. 

  The weakness of the discrimination power in the FDH model has been addressed, by 

developing a super-efficiency FDH model (first SF-FDH integration). Based on the 

previous contributed model, an improved FDH super-efficiency model has been 

developed without infeasible results (second SF-FDH integration). 

 An improved ranking methodology using virtual DMUs with the dual frontiers of 

conventional DEA [94] and FDH has been used. This methodology is considered as an 

unbiased ranking method with optimistic and pessimistic approaches  

 An efficiency estimation model has been presented, based on the combination of the 

optimistic and pessimistic approaches, where customizable or future DMUs are within 

the scope of the assessment [162]. 

The objective of all models presented in this thesis is to improve the ranking efficiency of the 

classical DEA model and to develop models that are more applicable to real life scenarios by 

relaxing the strong assumptions of the conventional DEA model. Referring to Figure 1.1 in order 

to show the contribution of the developed models in summary, Table 8.1 compares the five generic 
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models developed in this thesis with the CCR model in regard to the following main criteria: 

strength of discrimination power (ranking), assumption disposability, and computational intensity. 

From the Table 8.1 results, we can observe that models 3 and 5 are the only models that are high in 

ranking power and disposing assumption, but both models require a further computational process. 

 

Table 8.1 Comparison of the proposed models with the CCR model 

 

8.3. Directions for future work 

As mentioned earlier, the subfield of dual DEA frontiers analysis is fairly new, and there 

is much scope to develop the literature. This thesis has developed various models using multiple 

approaches. Also, there are common approaches in the literature that are worth investigating to see 

how dual analysis can be incorporated into them. A very interesting model might be the dual FDH 

cross-efficiency model, where the cross-efficiency matrix should be constructed from both 

perspectives. Also, fuzzy DEA is a hot research area within the DEA topic and it would be very 

interesting to investigate its compatibility to both DEA and FDH dual analysis.  

Model  

 

Ranking Power  

 Assumptions 

disposability 

 Computational 

intensity 

 

    

CCR model  Low  Low  Low  

Model 1: Dual FDH model  Low  High  Low  

Model 2: Dual slack based FDH model  Low  High  Low  

Model 3: Dual SF-FDH model  High  High  High  

Model 4: Dual virtual DMUs model  High  Low  Moderate  

Model 5: Dual virtual FDH model  High  High  Moderate  
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Moreover, dual frontiers analysis has not been tested with many MCDM models. Even 

though MCDM is usually customized for special case problems, it would be worth investigating 

empirical applications, with a comparison of results between dual and single frontiers analysis. 

Also, it is worthwhile to mention that all models presented in this thesis are developed 

under the scope of evaluating discrete data that has no reciprocal relation over time. However, a 

new direction of research can focus on developing a dual FDH network model that can be applied 

to continuous series cases such as supply chain performance evaluation.   

We believe that this thesis has developed original theoretical models, and proposed new 

FDH approaches that are very suitable for real-life scenarios when some of the DEA axiomatic 

assumptions need to be waived. Future real-life empirical studies to show the applicability of the 

proposed models should contribute much to complete the picture of the dual frontiers framework 

proposed in this thesis.  
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