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Dual-Functional
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Resonant Shunt Series
Tuned Mass Dampers
This paper proposes a novel retrofittable approach for dual-functional energy-harvesting
and robust vibration control by integrating the tuned mass damper (TMD) and electro-
magnetic shunted resonant damping. The viscous dissipative element between the TMD
and primary system is replaced by an electromagnetic transducer shunted with a reso-
nant RLC circuit. An efficient gradient based numeric method is presented for the param-
eter optimization in the control framework for vibration suppression and energy
harvesting. A case study is performed based on the Taipei 101 TMD. It is found that by
tuning the TMD resonance and circuit resonance close to that of the primary structure,
the electromagnetic resonant-shunt TMD achieves the enhanced effectiveness and robust-
ness of double-mass series TMDs, without suffering from the significantly amplified
motion stroke. It is also observed that the parameters and performances optimized for
vibration suppression are close to those optimized for energy harvesting, and the per-
formance is not sensitive to the resistance of the charging circuit or electrical load.
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1 Introduction

Tall buildings, slender towers, and long bridges are subject to
large vibration due to wind excitations, and tuned mass dampers
(TMDs) have been widely used to suppress the vibration for
human comfort and structure protection [1–3]. Recently the
authors proposed to make dual use of the TMDs for both purposes
of energy harvesting and vibration control [4] and experimentally
demonstrated the feasibility by replacing the viscous damper with
an electromagnetic transducer shunted with a resistive circuit [5].
Based on wind modeling and wind structure interaction, Ni et al.
[6] showed that enhanced performance of vibration control and
energy harvesting can be achieved by putting another reaction
mass in series with the existing TMD; the total mass of a series of
TMDs can be much smaller than the classic TMD to achieve the
same effectiveness of vibration suppression but at the cost of sev-
eral times of larger motion stroke of the electromagnetic har-
vester. In this paper, we propose a novel approach to attain the
enhanced performance of dual-functional series TMDs without
suffering from large motion stroke. This enables the retrofit imple-
ment of energy-harvesting series TMDs.

The key idea is to shunt the electromagnetic transducer between
the TMD and the primary structure with a resonant R-L-C circuit,
where R is the resistive load like the dc-dc charging circuit [7], L
is the inductance of the electromagnetic transducer, and C is the
capacitor of the shunt circuit. Such an idea is inspired by the
shunting damping treatments in literature, initially used in piezo-
electric structures and recently in electromagnetic devices. For-

ward [8] first demonstrated the passive circuit shunting for
narrow-band reduction of resonant mechanical response in 1979.
Hagood and von Flotow ([9]) analytically interpreted and experi-
mentally proved that piezoelectric shunt with an RL circuit will
act as a TMD. Extensive research has been done for shunted pie-
zoelectric damping, as seen in the reviews [10,11] and references
therein. Behrens et al. [12,13] presented the concept of electro-
magnetic resonant damping with an RC shunt circuit, and the tun-
ing parameters were obtained numerically. Inoue et al. [14]
obtained the analytical expressions of the optimal tuning fre-
quency and damping, or the parameters of L and R, by following a
similar approach of Den Hartog’s fixed point method of TMD tun-
ing [15]. Zhang et al. [16] proposed to use a negative inductor to
cancel the inherent inductance of electromagnetic transducer and
demonstrated that the first four vibration modes of a plate can be
suppressed simultaneously as nonresistant viscous damping.

The main contribution of this paper is to demonstrate a series
TMDs effect can be achieved by combining the mechanical
resonance of a TMD and the electrical resonance of an RLC cir-
cuit for enhanced vibration damping or/and vibration energy
harvesting. Another contribution of this paper is an efficient
numeric method to minimize the vibration and maximize the elec-
tric power harvesting.

The paper is organized as following. Section 2 briefly introdu-
ces the dual-function TMD and electromagnetic TMD with high-
light on the mechanical–electrical coupling and energy
harvesting. Section 3 will present the electromagnetic resonant
shunt series TMD and optimization methods based on system
norm and matrix gradient in the decentralized control framework.
The results of vibration suppression, energy harvesting, and pa-
rameter sensitivity based on the case study of Taipei 101 Tower
are presented in Sec. 4, and conclusions follow in Sec. 5.
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2 Electromagnetic TMDs and Dual-Functional TMDs

2.1 Energy-Harvesting TMD. Figure 1 shows the concept
of a dual-functional TMD where the energy dissipative damping
between the primary mass Ms and TMD mass m1 is replaced with
an electromagnetic transducer of coil resistance Ri and inductance
L. The electromagnetic transducer can be either linear or rota-
tional one with motion transmission. The relative motion between
the TMD and primary system will produce a induced voltage
eEMF (traditionally called an “electromotive force” (EMF) respon-
sible for flow of electrons in the circuit) proportional to the rela-
tive velocity

eEMF ¼ kvð _x1 � _xsÞ (1)

where kv is the voltage constant of the electromagnetic transducer
in V/(m/s). The electrical current in the electromagnetic trans-
ducer will produce a force fEMF proportional to the electrical cur-
rent i ¼ dq=dt

fEMF ¼ kf i ¼ kf _q (2)

where kf is the force constant in N/A. For an ideal transducer with-
out energy loss, we have kv ¼ kf .

If the electromagnetic transducer is shunted with the resistive
load Re (a dc–dc charging circuit can be modeled as a resistive
load [5,7]), the electrical circuit equation will be

eEMF þ L€qþ R _q ¼ 0 (3)

where R is the total resistance of the circuit including the internal
resistance of the transducer coil Ri and the external electric load
resistance Re: R¼RiþRe.

When jxL is much smaller than R, or L is cancelled by an exter-
nal inductor in a way like that in Ref. [15], Eq. (3) becomes
eEMF þ R _q ¼ 0 and Eq. (1) will become

fEMF ¼ kf i ¼ � kf kv

R
ð _x1 � _xsÞ (4)

which means that the energy harvesting will also result in ideal
viscous damping with a coefficient as

c1 ¼
kf kv

R
(5)

Based on this principle, Tang and Zuo [5] implemented a dc–dc
charging circuit to harvest energy while achieving the effect of
classic TMD vibration control. The tuning rules of classic TMD
can be used to choose c1 and, thus, R (based on Eq. (5)), for exam-
ple, using Den Hartog’s rule [15]

fopt ¼
x1

xs

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

k1=m1

p

xs

¼ 1

1þ l
; nopt ¼

c1

2m1x1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3l

8ð1þ lÞ

s

(6)

where l is the mass ratio l¼m1/Ms. It should be noted that a type
of regenerated control of active TMDs was demonstrated by the
Yonemura et al. [17], in which an active control force is applied
when the back electromotive voltage is less than the battery volt-
age (dead zone). Compared with Ref. [17], a dc–dc charging cir-
cuit has the advantage of minimizing the dead zone since the
input voltage to the dc–dc booster charging circuit can be much
smaller than the battery voltage.

2.2 Electromagnetic Shunt TMD. Figure 2 shows an elec-
tromagnetic resonant damping shunted with a capacitor C and a
resistor R¼RiþRe. The equation for this RLC circuit is

eEMF þ L€qþ R _qþ 1

C
q ¼ 0 (7)

The resonant frequency of the circuit itself is

Fig. 1 (a) Classic TMD, (b) dual-functional TMD for energy harvesting and vibration control,
where the damping c1 is implemented with an electromagnetic transducer shunted with a resis-
tive circuit

Fig. 2 A vibration system with electromagnetic resonant shunt
circuit is similar as a TMD
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xe ¼ 1=
ffiffiffiffiffiffiffi

LC
p

(8)

And the electrical damping ratio of the circuit itself is

ne ¼
R

2Lxe

(9)

The relation of the external force Fex and the displacement Xs can
be obtained as

Mss
2 þ Ks þ

kf kvs
2

Ls2 þ Rsþ 1

C

2

6

4

3

7

5
Xs ¼ Fex (10)

From Eq. (8) we see that if the whole electromagnetic trans-
ducer circuit has inductance only (R¼ 0, C¼1), kf kv=L will act
as an additional stiffness to Ks. Therefore,

lk ¼
kf kv

LKs

(11)

This is called as electromagnetic mechanical coupling coefficient.
It is actually a stiffness ratio (the electromagnetic mechanical cou-
pling stiffness kf kv=L divided by the stiffness Ks of the original
system), which plays a similar role as the mass ratio in the classic
TMD. Equation (8) also shows that if R¼ 0 and L¼ 0, kf kvC will
act as an additional mass. However, comparing with the Xs and
Fex relation of the classic TMD,

Mss
2 þ Ks þ

m1s
2 k1 þ c1sð Þ

m1s2 þ c1sþ k1

� �

Xs ¼ Fex (12)

one can that Eq. (8) is not exactly the same as the classic TMD,
except for the undamped case R¼ 0, where the single mass with
LC shunted electromagnetic transducer is equivalent to an
undamped absorber system.

An analytical expression obtained in Ref. [14] for such electro-
magnetic shunt TMD based on an electromagnetic mechanical
coupling coefficient, or stiffness ratio lk (Eq. 9) using the fixed
point method, which we simplify in Eq. (13). The frequency
responses of electromagnetic shunt TMD are illustrated in Fig. 3
in comparison with that of the classic TMD.

fopt ¼
xe

xs

¼
ffiffiffiffiffiffiffiffiffiffiffi

1=LC
p

xs

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� lk=2
p

; nopt ¼
R

2Lxe

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

3lk
2� lk

s

(13)

3 Electromagnetic Shunt Series TMDs, and
Optimization for Vibration Control and Energy
Harvesting

3.1 Concept of Electromagnetic Shunt Series TMD. Zuo
[18] proposed the concept of series TMD and reported the
enhanced effectiveness and robustness. Later Tao et al. [6] exam-
ined the application of series TMD for vibration control and
energy harvesting of wind-induced tall building vibration. They
concluded that two masses with 1.62% total mass ratio can attain
the vibration control effect of the classic TMD of 2% mass, while
harvesting a similar amount of energy. However, the motion
stroke is six times larger, as shown in Fig. 4.

Instead of adding a second mass m2, Fig. 5 shows our proposed
new type of series TMD that is composed of an electromagnetic
transducer, resonant shunt circuit, and the classic TMD. This con-
figuration is similar to the energy-harvesting TMD in Fig. 1(b),
however, with the significant difference that the electromagnetic
transducer is shunted with an RLC circuit instead of a resistive
circuit. The physical insight is that the “motion” is amplified in se-
ries, first by the TMD mechanical system then by the RLC electri-
cal resonator.

The question is whether we can achieve the effect of a series
TMD, and how to tune the parameters of stiffness k1, capacitor C,

Fig. 3 The frequency responses of the classic TMD of mass
ratio 1% with Den Hartog’s tuning (dash) and electromagnetic
shunt TMD of stiffness ratio 1% withtuning (solid) of Inoue
et al. [14] compared with that of the primary without TMD (dot)

Fig. 4 (a) Double-mass series TMD, (b) the RMS stroke the double-mass series TMD is several
times larger than the classic TMD or parallel TMDs [6]
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and resistor R for a given electromagnetic transducer of induct-
ance L, force constant kf, and voltage constant kv. Or equivalently,
how to choose the dimensionless parameters:

• mechanical tuning ratio f1 ¼ x1=xs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

k1=m1

p

=xs
• electric tuning ratio fe ¼ xe=xs ¼

ffiffiffiffiffiffiffiffiffiffiffi

1=LC
p

=xs and
• electric damping ratio ne ¼ R=2Lxe

based on a given electromagnetic mechanical coupling stiffness
kf kv=L or electromagnetic mechanical coupling coefficient
lk ¼ kf kv=Lk1.

3.2 Parameter Optimization and Decentralized Control.
To optimize the tuning parameters, we reformulate the problem of
parameter optimization as a control problem by following the pro-
cedure proposed in Ref. [18]. As seen in Fig. 6, we replace the
force of the spring k1 as “control input” u1:

u1 ¼ k1ðx1 � xsÞ (14)

and the voltage on the resistor and capacitor as control input u2:

u1 ¼
1

C
qþ R _q (15)

And we take the “disturbance input” as w¼Fex. The dynamics of
the system can be written in the second order form

Ms 0 0

0 m1 0

0 0 L

2

6

6

4

3

7

7

5

€xs

€x1

€q

0

B

B

@

1
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þ
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2

6

6
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3
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þ
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2
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q

0
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0
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wþ
1 0

�1 0

0 �1

2

6

6

4

3

7

7

5

u1

u2

 !

(16)

By taking the state space variable as x¼ (xs; x1; q; _xs; _x1; _qÞ0, the
system can be written in state space form

_x ¼ Axþ B11wþ B12u

z ¼ C1xþ D11wþ D12u

y ¼ C2x þ D21wþ D22u

(17)

where z is the “performance output,” such as the vibration of the
primary system xs or the electric current _q in the circuit. And y is
the “measurement output,” y ¼ ðx1 � xs; q; _qÞ0, used to generate
control input u

u ¼ u1
u2

� �

¼ k1 0 0

0 1=C R

� �

y ¼ Fdy (18)

Thus, the parameter optimization problem becomes a zero-
order decentralized control problem (Fig. 7); once the block-
diagonal feedback matrix Fd (Eq. (18)) is obtained, we can obtain
the tuning parameters k1;C; and R.

3.3 Optimization for Vibration Control and Energy
Harvesting. Since the wind excitation force to civil structures is
of broad bandwidth, in the following we will utilize H2 control
method, which has the physical meaning of minimizing the root
mean square (RMS) of z under unit white noise input w [19].
White noise means the expectations E[w(t)]¼ 0 and
E[w(t� s)w(t)0]¼ d(s)I, where d(s) is a Dirac function. If the
input w is harmonic excitation with unknown frequency, H1 con-
trol method can be used, which minimizes the maximum peak in
the frequency domain [19].

The nice feature of decentralized H2 control method is that the
system H2 norm (RMS of z under unit white noise input w) and its
gradient @ k Hw!z k22 =@Fd (H2 norm square with respect to the
block-diagonal feedback matrix Fd) can be obtained analytically
using matrix calculus, as derived by the author in Ref. [18].

k Hw!z k22¼ trace½ B1 þ B2FdD21ð Þ0K� (19)

where matrix K (symmetric) is observability Grammian satisfying
the Lyapunov equation

K Aþ B2FdC2ð Þ þ Aþ B2FdC2ð Þ0K
þ C1 þ D12FdC2ð Þ0 C1 þ D12FdC2ð Þ ¼ 0 (20)

By employing the Lagrange multiplier method and matrix cal-
culus, the closed form of the gradient @ k Hw!z k22 =@Fd can be
obtained [18,20], as detailed in the Appendix.

Therefore, we can use gradient based optimization, such as
Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton method
[21], to find the matrix Fd that minimizes the system H2 norm
k Hw!z k2. It should be pointed out that, unlike the standard H2 or
linear-quadratic-Gaussian (LQG) control, “control force” u does not
need to be a weighted part of cost output z to avoid a singularity
problem since we do not use the Riccati equation.

Fig. 5 The proposed series TMD with electromagnetic reso-
nant shunt

Fig. 6 The modeling of electromagnetic shunt series TMD as a
control problem, where the control force u1 is generated by the
spring k1, and the control force u2 is produced by the electrical
capacitor C and the resistor R
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For vibration suppression, we choose the performance measure-
ment z as the displacement, velocity, or acceleration of the pri-
mary system. The optimization procedure is similar to that in Ref.
[18], which we omit here.

However, an unanswered question is whether the parameters
optimized for vibration suppression are also the ones to maximize
the energy harvesting. For energy harvesting, we would like to
maximize the average electrical power on the resistive load R.
Since the instant power is

P tð Þ ¼ R _qðtÞ2 (21)

One may realize that the problem of maximizing the energy is not
easy because the power P(t) involves one state variable _q(t) and
one variable R in the feedback gain matrix Fd (R¼Fd (2,3)), and
the problem is maximization instead of minimization in the stand-
ard H2 control.

To solve the problem of maximizing the energy, we rewrite the
objective function as the average power, which is proportional to
the resistive load R and the RMS value of the current _q(t), the lat-
ter of which can be calculated as the H2 norm of system Hw! _q

Pave ¼ Rð _qRMSÞ2 ¼ R k Hw! _q k22 (22)

Hence, two factors can be observed: (1) The objective function
Pave can be evaluated for a given feedback matrix Fd (composed
of k1, C, and R) by calculating the system H2 norm from w to the
electrical current _q, k Hw! _q k2, using Eq. (19); (2) The gradient of
average power Pave with respect to the block-diagonal feedback
gain matrix Fd can be evaluated using the chain rule

dPave

dFd

¼ R
@ k Hw!z k22

@Fd

þ @R

@Fd

k Hw!z k22 (23)

where the matrix gradient @ k Hw!z k22 =@Fd can be obtained
using Eq. (A2) in the Appendix, and matrix gradient @R=@Fd can
be obtained from Eq. (18) as

@R

@Fd

¼ 0 0 0

0 0 1

� �

Therefore, we can use the gradient based optimization methods
[21] to obtain the block-diagonal feedback matrix Fd that maxi-
mizes the electrical power harvested. Please note the system sta-
bility can be ensured if we replace Fd as

�k21 0 0

0
1

�C2
�R2

2

4

3

5

and the gradient can be modified correspondingly.

4 Case Study Based on Taipei 101 Tower

In this section we take the Taipei 101 tower as a case study and
illustrate the electromagnetic shunt series TMD for energy har-
vesting and vibration control. Results are presented in comparison
with the dual-functional TMDs with classic one mass and two
masses in series.

Taipei 101 is one of the tallest building in the world (449.2m to
roof, and 509.2m to spire). A TMD of 660 metric tonnes (728
short tons) is suspended on the top of the building from the 92nd
to the 87th floor to suppress the wind induced vibration. Up to
40KW of energy dissipation (average 15–20KW) is expected in a
100-year wind event from one of the eight viscous damping devi-
ces between the primary structure and TMD [22]. The TMD is
0.78% of the modal mass, the first natural frequency is 0.146 Hz,
and inherent damping of the building is 1%. In the case study, the
parameters of the classic TMD are designed using the H2 optimi-
zation, and the parameter of series TMDs of total mass ratio
0.78% are obtained using the H2 design chart in Ref. [18] with the
optimal mass distribution m2/(m1þm2)¼ 1.56%, as shown in
Table 1. For the dual-functional implementation without circuit
resonance, the damping c1 (Fig. 1(a)) or c2 (Fig. 4) can be realized
using an electromagnetic transducer shunted with a resistive elec-
trical load (Figs. 1(b) and 5).

4.1 Results of Electromagnetic Shunt Series TMD for
Vibration Suppression. We assume the eletromagnetic trans-
ducer has an inductance L¼ 0.25 Hs, force constant kf¼ 150N/A,
and voltage constant kv¼ 150V/(m/s). The electromagnetic me-
chanical coupling stiffness kf kv=L ¼ 9000 N=m. We keep the
total mass of TMD as 6.60� 105 kg.

The gradient based optimization based of the decentralized H2

control framework will yield the following matrix to minimize
the displacement xs under random force input Fex; k Hw!z k2
¼ 3:707� 10�8 m

Fd ¼
k1 0 0

0
1

C
R

" #

¼ 5:4963� 105 0 0

0 0:20991 0:03532

� �

which means

• k1-opt¼ 5.4963� 105 N/m
• Copt¼ 4.763 Farads
• Ropt¼ 0.03532 X

The optimal vibration performances, including the vibration
amplitude of the building, stroke of the harvester and harvesting
power, of the electromagnetic shunt series TMD are shown in
Table 2. The normalized frequency response of the building dis-
placement with electromagnetic shunt series TMD is shown in
Fig. 8 in comparison with that of the classic TMD and double-
mass series TMD.

Table 2 shows that the vibration control and energy harvesting
performances of an electromagnetic shunt series TMD are very
close to those of double-mass series TMD, as we expected. These

Table 1 Parameters of Taipei 101 Tower and the H2 optimal
classic and double-mass series TMDs

System
Mass
(Kg)

Stiffness
(N/m)

Damping
(N s/m)

Building
without TMD

Ms¼ 8.46� 107 Ks¼ 7.12� 107 cs¼ 1.55� 106

(fs¼ 1%)

Classic TMD Ms¼ 8.46� 107 Ks¼ 7.12� 107 cs¼ 1.55� 106

l¼ 0.78% m1¼ 6.60� 105 k1¼ 5.48� 105 c1¼ 5.30� 104

Double-mass Ms¼ 8.46� 107 Ks¼ 7.12� 107 cs¼ 1.55� 106

series TMDs m1¼ 6.495� 105 k1¼ 5.55� 105 c1¼ 0
l¼ 0.78% m2¼ 1.05� 104 k2¼ 8.52� 103 c2¼ 1.388� 103

Fig. 7 The parameter optimization of the mechanical and elec-
trical components in the framework of decentralized control
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two types of series TMDs are better than the classic TMD. In
terms of the stroke of the energy harvester (in the third column of
Table 2), we see that the stroke of the double-mass series TMD is
6.3 times as that of classic TMD, but the stroke of electromagnetic
shunt series TMD is just increased by 19%. Table 2 also indicates
that the harvestable energy from the TMD systems is 41–51%
more than the energy dissipated by the primary damping. It is also
noted that the total energy taken out of the building using TMDs
and primary damping is 39% more than the energy dissipated only
by primary damping in building without TMDs.

Note that as long as the dimensionless parameters

• electromagnetic mechanical coupling coefficient lk¼kf kv=Lk1
• mechanical tuning ratio f1 ¼ x1=xs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

k1=m1

p

=xs
• electric tuning ratio fe ¼ xe=xs ¼

ffiffiffiffiffiffiffiffiffiffiffi

1=LC
p

=xs
• electric damping ratio ne ¼ R=2Lxe

are the same, the overall system performance will be the same.
This feature allows us to choose more practical parameters in the
implementation. For the example, in this case study if L¼ 0.25H
is too large to implement, we can decrease kf and kv to half (which
can be realized by reducing the motion transmission [4] or choos-
ing smaller generator), and correspondingly decrease L and R to a
quarter, and increase the C by four times.

4.2 Results of Electromagnetic Shunt Series TMD for
Energy Harvesting. We also optimize the parameters of stiffness
k1 and the electrical capacitor C and resistor R to maximize the
harvesting power using the gradient based method proposed in
Sec. 3.3. The results are compared with the ones optimized for
vibration control, as shown in Table 3. The frequency responses
from excitation force Fex to the building displacement xs are
shown in Fig. 9. We see that the parameters and performance are
very close in these two cases, which means that the parameters
for best energy harvesting can also achieve good vibration
suppression.

The frequency responses from external force Fex to the square
root of harvesting power

ffiffiffi

P
p

¼
ffiffiffi

R
p

j _qj of electromagnetic shunt
series TMDs are compared in Fig. 10 where the square root of the
power of the classic TMD is

ffiffiffiffiffi

c1
p j _x1 � _xsj and that of double-mass

series TMD is
ffiffiffiffiffi

c1
p j _x2 � _x1j. Again we see the electromagnetic se-

ries TMDs perform similar as the double-mass series TMD. Both
outperform the classic TMD in power harvested due to broader
bandwidth effect, and for electromagnetic series TMDs we do not
need to worry about the amplified stroke.

It is also interesting to note from the fourth and fifth columns of
Table 2 that the energy extracted by the dual-functional TMDs is
50% more than that of the energy dissipation by the primary
damping of the Taipei 101 building with TMDs.

4.3 Robustness of Vibration Suppression and Energy
Harvesting to Tuning Parameters. In practice it is difficult to
make perfect tuning for the parameters k1, C, and R, or some pa-
rameter may change after a certain time. It is noted that the toler-
ance of the electrical components C and R is usually 1–5% or less.

Table 2 Performances of optimal electromagnetic shunt series TMD in comparison with
classic and double-mass series TMDs for Taipei 101a under unit white-noise force excita-
tion Fex

System
Vibration
Xs-rms (m)

Stroke
DXrms (m)

Harvestinga
ffiffiffiffiffiffiffiffi

Pave

p
(
ffiffiffiffiffi

W
p

)
Dissipationa
ffiffiffiffi

cs
p j _xsjrms

ffiffiffiffiffi

W
p

)

Without TMD 6.726� 10�8 — 7.688� 10�5

Classic TMD 3.892� 10�8 2.724� 10�7 6.272� 10�5 4.445� 10�5

Double-mass
series TMDs

3.704� 10�8 1.721� 10�6

(Dx¼ x1� x2)
6.416� 10�5 4.234� 10�5

Electromagnetic
shunt series TMD

3.707� 10�8 3.24� 10�7

(Dx¼ x1� xs)
6.417� 10�5 4.233� 10�5

aNote: Harvesting means the energy harvested by the electromagnetic transducer, and dissipation refers to
the power dissipated by the inherent damping Cs of the primary system.

Fig. 8 The frequency responses of electromagnetic shunt se-
ries TMD for Taipei 101 Tower (solid) in comparison with
double-mass TMD (dashed-dotted), classic TMD (dash), and
system without TMD (dot), where all parameters are optimized
to minimize the H2 norm from external force to the displacement
of the primary system

Table 3 Optimal parameters and performances of electromagnetic shunt series TMDs
optimized for vibration control and for energy harvesting under unit white-noise force exci-
tation Fex

Electromagnetic
shunt series TMD system

Stiffness
k1 (N/m)

R and C
(X or F)

Vibration
Xs-rms (m)

Stroke
DXrms (m)

Harvesting
ffiffiffiffiffiffiffiffi

Pave

p
(
ffiffiffiffiffi

W
p

)

Optimized for vibration control 5.496� 105 0.353X 3.704� 10�8 3.2426� 10�7 6.417� 10�5

0.476F

Optimized for energy harvesting 5.540� 105 0.351X 3.707� 10�8 3.2431� 10�7 6.419� 10�5

0.473F
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To check the robustness, Fig. 11(a) shows the frequency responses
of electromagnetic series TMD after 5% changes in the tuning pa-
rameters of k1, C, and R. As a comparison, we also plot the fre-
quency response of classic TMD under 5% changes in the tuning
parameters of k1, and c1. We can see that the electromagnetic se-
ries TMD is much more robust than the classic TMD.

To further investigate the sensitivity of the performance of the
tuning parameters k1, C, and R, we plot the root mean square of
the vibration amplitude and the square root of the harvested power
under unit white-noise excitation force Fex when the parameters
change from 1/3 to three times of the optimal value, as shown in
Figs. 12 and 13. We see that the performance is less sensitive to
the change of electrical load R than the changes of capacity C and
stiffness k1. In energy harvesting, the value of electrical load R is
an equivalent resistor of the charging circuit. The insensitivity to
R gives us some convenience to control the charging circuit, for
example, for voltage regulation.

Fig. 9 The frequency response of the electromagnetic series
TMD optimized for vibration suppression (solid) and optimized
for energy harvesting (dash) for Taipei 101 Tower

Fig. 10 The linear power spectrum density (
ffiffiffiffiffiffiffiffiffiffiffiffiffi

W=Hz
p

) of har-
vested energy in electromagnetic series TMD system optimized
for energy harvesting under white-noise force excitation (solid)
and optimized for vibration suppression (dash) in comparison
with the classic TMD (dashed-dotted) and double-mass series
TMD (dot)

Fig. 11 The frequency responses of the electromagnetic series
TMD (left) and the classic TMD (right) after 5% changes of the
tuning parameters (k1, C, R) or (k1, c1). The electromagnetic se-
ries TMD is more robust than the classic TMD.

Fig. 12 Sensitivity of vibration suppression of the electromagnetic shunt series TMD for Taipei 101 to the changes of tuning pa-
rameters: stiffness k1 (solid), capacitor C (dash), and electrical load R (dot) under unit white-noise force excitation Fex
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Conclusions

This paper presents the electromagnetic shunt series TMD with
application to simultaneous vibration control and energy harvest-
ing. By tuning both the resonances of the TMD subsystem and the
RLC charging circuit subsystem close to that of the primary struc-
ture, we achieve the enhanced performance of series TMD with-
out suffering from large motion stroke as in the double-mass
series TMD. Decentralized H2 control and gradient based methods
are used for the optimization of individual parameters. The per-
formance is limited by the transducer’s electromagnetic mechani-
cal electromagnetic mechanical coupling coefficient
lk ¼ kf kv=Lk1. The case study of Taipei 101 TMD system indi-
cates that the electromagnetic shunt series TMD provides better
vibration control and energy harvesting. And the motion stroke of
the energy harvester only increases by 19% instead of 6.3 times in
double-mass series TMD. The parameters optimized for best
vibration suppression are very close to that optimized for best
energy harvesting. Such a proposed approach with combined me-
chanical resonance and electrical resonance will greatly simplify
and lead to practical and retrofitable implementation of series
TMDs for energy harvesting and vibration suppression.
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Nomenclature

Ms, m1, m2 ¼ masses of the primary system and tuned
mass dampers

Ks, k1, k2 ¼ stiffness of the primary system and tuned
mass dampers

Cs, c1, c2 ¼ damping of the primary system and tuned
mass dampers

xs; x1; x2 ¼ displacement of the primary system and
tuned mass dampers

R, Ri, Re ¼ resistances of generator coil, external
load, and sum (X)

L ¼ inductance of generator coil (H)
C ¼ capacitance of the circuit (F)
kf ¼ back electromotive force (EMF) constant

(N/A)
kv ¼ back electromotive voltage constant

(V/(m/s))
fEMF ¼ back electromotive force (N)

eEMF ¼ back electromotive voltage (V)
lk ¼ electromagnetic mechanical coupling

coefficient
Fex ¼ external disturbance force (N)
q, i ¼ charge (C) and current (A) of the electri-

cal circuit
xs, x1, xe ¼ natural frequencies of the primary, TMD,

and electric circuit
fopt ¼ optimal frequency tuning of classic or

electromagnetic TMD
nopt ¼ optimal damping ratio of classic or

electromagnetic TMD
f1 ¼ mechanical frequency tuning ratio

f1¼x1/xs

fe ¼ electrical frequency tuning ratio
f1¼x1/xs

ne ¼ electrical damping ratio f1¼R/2Lxe

A, B11, B12, C11, C12,
D11, D12, D21, D22 ¼ state space description matrices

x ¼ state variable (vector) in state space
y,z ¼ measurement and performance output in

state space
w ¼ disturbance input in state space

P, Pave ¼ power and average power (W)
Fd ¼ decentralized feedback matrix

Hw!z ¼ transfer function from w to z
k k22 ¼ system H2 norm

d/d, @/@ ¼ gradient and partial gradient

Appendix: Gradient of the System H2 Norm to the
Decentralized Feedback Matrix ›jjHw!zjj22=›Fd

By introducing a symmetric Lagrange multiplier matrix L we
can define Lagrange function from Eqs. (19) and (20) as

L Fd;K; Lð Þ ¼ trace½ B1 þ B2FdD21ð Þ0K
þ tracef K Aþ B2FdC2ð Þ þ Aþ B2FdC2ð Þ0K

�

þ C1 þ D12FdC2ð Þ0 C1 þ D12FdC2ð Þ
�

Lg (A1)

Using matrix calculus, the closed form of the gradient
@jjHw!zjj22=@Fd can be obtained [18,20]

@jjHw!zjj22
@Fd

¼ 2½ðD0
12D12FdC2 þ D0

12C1 þ B0
2KÞLC0

2

þ B0
2KðB1 þ B2FdD21ÞD0

12� � Fp (A2)

where we use entry-by-entry multiplication� to pick out the entries
corresponding to the design variables (k1; 1=C;R) in Fd, and

Fp ¼ 1 0 0

0 1 1

� �

The Lagrange multiplier matrix L can be obtained by solving the
Lyapunov equation for a given Fd

L Aþ B2FdC2ð Þ0þ Aþ B2FdC2ð ÞL
þ B1 þ B2FdD21ð Þ B1 þ B2FdD21ð Þ0¼ 0

(A3)

And the observability Grammian matrix K can be obtained by
solving the Lyapunov equation Eq. (20) for a given Fd. It is noted
that Lyapunov equations are linear and can be easily solved using
standard codes the Matlab function lyap.
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