
 Open access Book Chapter DOI:10.1007/978-3-030-58577-8_27

Dual Grid Net: Hand Mesh Vertex Regression from Single Depth Maps
— Source link

Chengde Wan, Thomas Probst, Luc Van Gool, Angela Yao

Institutions: Facebook, ETH Zurich, National University of Singapore

Published on: 23 Aug 2020 - European Conference on Computer Vision

Topics: Transformation matrix

Related papers:

 Embodied hands: modeling and capturing hands and bodies together

 Learning to Estimate 3D Hand Pose from Single RGB Images

 What's in a Mesh? A Survey of 3D Mesh Representation Schemes

 Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images

 Automatic and interactive mesh to T-spline conversion

Share this paper:

View more about this paper here: https://typeset.io/papers/dual-grid-net-hand-mesh-vertex-regression-from-single-depth-
408kj7itx6

https://typeset.io/
https://www.doi.org/10.1007/978-3-030-58577-8_27
https://typeset.io/papers/dual-grid-net-hand-mesh-vertex-regression-from-single-depth-408kj7itx6
https://typeset.io/authors/chengde-wan-4tj0d7ga5r
https://typeset.io/authors/thomas-probst-3k1385dals
https://typeset.io/authors/luc-van-gool-3vvkqjzpe0
https://typeset.io/authors/angela-yao-50qvpc6v71
https://typeset.io/institutions/facebook-98ro9g3i
https://typeset.io/institutions/eth-zurich-2cbshymp
https://typeset.io/institutions/national-university-of-singapore-24b050gz
https://typeset.io/conferences/european-conference-on-computer-vision-2ddurqx3
https://typeset.io/topics/transformation-matrix-3r5wknp2
https://typeset.io/papers/embodied-hands-modeling-and-capturing-hands-and-bodies-2721iwhswm
https://typeset.io/papers/learning-to-estimate-3d-hand-pose-from-single-rgb-images-41sat81vwe
https://typeset.io/papers/what-s-in-a-mesh-a-survey-of-3d-mesh-representation-schemes-423wzsmvsj
https://typeset.io/papers/pixel2mesh-generating-3d-mesh-models-from-single-rgb-images-3o4o5nkvj5
https://typeset.io/papers/automatic-and-interactive-mesh-to-t-spline-conversion-o419wy9t7a
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/dual-grid-net-hand-mesh-vertex-regression-from-single-depth-408kj7itx6
https://twitter.com/intent/tweet?text=Dual%20Grid%20Net:%20Hand%20Mesh%20Vertex%20Regression%20from%20Single%20Depth%20Maps&url=https://typeset.io/papers/dual-grid-net-hand-mesh-vertex-regression-from-single-depth-408kj7itx6
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/dual-grid-net-hand-mesh-vertex-regression-from-single-depth-408kj7itx6
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/dual-grid-net-hand-mesh-vertex-regression-from-single-depth-408kj7itx6
https://typeset.io/papers/dual-grid-net-hand-mesh-vertex-regression-from-single-depth-408kj7itx6

Dual Grid Net: hand mesh vertex regression from single depth maps

Chengde Wan1, Thomas Probst1, Luc Van Gool1,3, and Angela Yao2

1ETH Zürich 2National University of Singapore 3KU Leuven

Abstract

We present a method for recovering the dense 3D surface

of the hand by regressing the vertex coordinates of a mesh

model from a single depth map. To this end, we use a two-

stage 2D fully convolutional network architecture. In the

first stage, the network estimates a dense correspondence

field for every pixel on the depth map or image grid to the

mesh grid. In the second stage, we design a differentiable

operator to map features learned from the previous stage

and regress a 3D coordinate map on the mesh grid. Finally,

we sample from the mesh grid to recover the mesh vertices,

and fit it an articulated template mesh in closed form.

During inference, the network can predict all the mesh

vertices, transformation matrices for every joint and the

joint coordinates in a single forward pass. When given su-

pervision on the sparse key-point coordinates, our method

achieves state-of-the-art accuracy on NYU dataset for key

point localization while recovering mesh vertices and a

dense correspondence map. Our framework can also be

learned through self-supervision by minimizing a set of data

fitting and kinematic prior terms. With multi-camera rig

during training to resolve self-occlusion, it can perform

competitively with strongly supervised methods without any

human annotation.

1. Introduction

We consider the problem of estimating the 3D object

shape and pose from single depth images. Specifically, we

are interested in estimating the surface mesh vertices of the

human hand model from depth maps. Compared to skele-

ton joints, dense mesh vertices provide both pose and shape

information of the hand and enable a much wider scope of

virtual and mixed reality applications. For example, one

can directly pose the virtual hand in a VR game, or overlay

a user’s hand surface with another texture map in mixed re-

ality. Furthermore, the modelling of surface contacts when

manipulating virtual objects on screen can be improved with

mesh representations.

key pointrefined meshinitial meshcorrespondenceinput

Figure 1. Qualitative Results. In each group, upper rows are re-

sults supervised with key-point annotation and lower rows are self-

supervision result without any human label. We visualize the cor-

respondence map with each mesh coordinate, the rendered shad-

ing and depth map of the initial estimated mesh model and refined

ones, as well as key-point. More qualitative results will be shown

in supplementary material.

The estimation of mesh vertices as opposed to skele-

ton joints is significantly more challenging in several re-

gards. First, the scale of the problem increases by several

magnitudes, i.e. to reasonably represent a human hand, one

needs thousands of mesh vertices, as opposed to tens of joint

positions and angles in a standard skeleton model. Sec-

ondly, getting accurate 3D ground truth for the thousands

of vertices from real-world data is extremely difficult, even

though having large amounts of labelled training data is cru-

cial for data-driven learning based methods.

Several recent advances have been made to estimate

mesh vertices with deep learning, including the use of voxel

net [53], graph convolutions [35, 14], and directly estimat-

ing shape parameters and joint angles [6, 60, 22]. These ap-

proaches, while having made significant advances for hand

pose estimation, have several drawbacks. They tend to be

restricted to certain mesh topologies, feature a large number

of parameters to learn, and have limited spatial resolutions.

In this work, we propose to solve the problem of mesh

vertex regression with a fully convolutional architecture.

Our approach is highly efficient and flexible enough to han-

1

ar
X

iv
:1

90
7.

10
69

5v
1

 [
cs

.C
V

]
 2

4
Ju

l 2
01

9

dle different mesh topologies. Moreover, we can also cap-

ture very fine spatial detailing through per-pixel correspon-

dences to a mesh model, thereby allowing for better align-

ment between the mesh model and depth observations.

We parameterize the mesh vertices with a 2D embed-

ding; the embedding vector associated with each vertex is

its “intrinsic” property, i.e. only related to its location on the

hand mesh surface, regardless of the hand pose, shape and

camera view point. In turn, the 3D coordinate of the mesh

vertex is considered “extrinsic”. Similar to digital imaging,

we discretize the embedding space by placing a 2D grid,

namely the mesh grid on the mesh embedding. Both “in-

trinsic” and “extrinsic” properties for each mesh vertex can

be approximated in terms of a weighted sum with properties

of its neighbour points on the grid.

At the core of our method are two 2D fully convolu-

tional networks, applied to the image and mesh estimates

consecutively (see overview in Figure 2). Linking the net-

works together is a 2D embedding which makes for an ef-

ficient way to propagate errors directly from the irregular

representation of a mesh to the regular and ordered repre-

sentation of an image. To refine the estimated mesh, we

design a simple kinematic module. Given a template hand

mesh model with one-to-one correspondences to the esti-

mated mesh, we solve for a similarity transform through

singular value decomposition (SVD). We then re-pose the

template mesh based on the transform, resulting in a de-

noised mesh surface together with key points. Since SVD

has closed form solutions and is a differentiable operator,

one can also place supervision on top of the estimated key

points.

For training our model, we propose a self-supervision

scheme that minimizes a geometric model-fitting energy as

a training loss. The model’s accuracy steadily improves

with increasing amounts of data seen, even without any

human-provided labels. Finally, since correspondences be-

tween observed hand pixels and the mesh are estimated in

a differentiable way, we can optimize the correspondences

jointly with the disparity between the correspondence pairs

during model-fitting. This differs from and complements

standard ICP optimization methods.

Our contributions can be summarized as follows,

• We propose a new fully convolutional network ar-

chitecture for regressing thousands of mesh vertices

in an end-to-end manner. While our method works

with single depth maps, the network architecture is

ready to handle RGB image case without any addi-

tional changes.

• A self-learning scheme is proposed for training the net-

work; without any human labels, our network achieves

competitive results when compared to fully supervised

state-of-the-art. Such a learning approach offers a new

and accurate way of annotating real-world data and

thereby solves one of the key difficulties in making

progress for hand pose estimation.

• We bridge the gap between data-driven discriminative

methods and optimization-based model-fitting and en-

joy benefits from both sides: accuracy that improves

with the amount of data encountered, while not need-

ing human-provided annotations.

2. Related Works

Hand pose estimation. Deep learning has significantly

advanced state-of-the-art for hand pose estimation. The

general trend has been the development of ever deeper

and more sophisticated neural network architectures [8,

25, 9, 15, 23, 12, 55]. However, such progress has also

hinged on the availability of large amounts of annotated

data [51, 59, 39]. Obtaining accurate annotations, even for

simple 3D joint coordinates, is extremely difficult and time

consuming. Annotations generated by manually initializ-

ing trackers [51, 26] require carefully designed interfaces

for 3D annotation on a 2D screen and there is often little

consensus between human annotators [44]. Motion-capture

rigs[39] and auxiliary sensors[59] are fully automatic but

are limited in the scenes in which they can be deployed. To

mitigate the limitations of annotation, semi-supervised ap-

proaches [54, 7, 31] and approaches coupling synthesized

with real data [38, 30, 34] have also been proposed.

An alternative line of work[49, 33, 45, 36, 47, 18, 42, 50]

tackles hand pose estimation by minimizing a model-fitting

error. Model-fitting needs little to no human labels, but the

accuracy is heavily dependent on the careful design of the

energy function. A recent trend tries to bridge the gap be-

tween data-driven and model-fitting approaches [52, 11, 14]

by using a differentiable renderer and incorporating the

model-fitting error as a part of the training loss. Our work

resembles these methods, though we have two key differ-

ences. First, we re-parameterize the mesh with a 2D embed-

ding, which allows us to use a 2D fully convolutional net-

work architecture. Secondly, we can apply self-supervision

on both the image grid and the mesh grid, leading to effi-

cient gradient flow during back-propagation.

Human mesh model recovery from single image.

Data-driven methods have greatly advanced the field of 3D

reconstruction of both shape and pose of the full human

body [48, 56, 4, 28, 46, 29, 52, 19, 53], face [17, 21, 58, 35]

and hands [50, 17, 22, 60, 6, 14]. Earlier works were

focused on landmark detection[4], segmentation[50] and

finding correspondences [48, 56, 17, 58], and performed a

model-based optimization to fit the mesh in a subsequent

step. However, recent trends have shifted towards end-to-

end learning of the mesh with neural networks. For ex-

ample, [28, 19, 29, 52, 60, 6, 22] directly estimate shape

parameters and joint angles of the mesh. However, such

methods are sensitive to perturbations, since small offsets

from only one dimension of the estimation easily prop-

agates to many mesh vertices along the kinematic tree.

In [46, 21, 35, 14], auto-encoders are used with various

decoder structures and outputs, including graph convolu-

tion to mesh vertices [35, 14], VoxelNet to 3D occupancy

grids[53], and fully connected and transposed convolutions

to silhouette [46] and texture and mesh vertices [21]. Un-

like any of these works, our approach is based on cor-

respondence estimation. Yet we also differ from other

correspondence-based methods [56, 48, 2, 17, 58] in that

we estimate mesh vertices with a single forward pass in the

framework.

3D Network Architectures. It is highly intuitive to

parameterize 3D inputs and or outputs as an occupancy

grid or distance field and use for example a 3D voxel

net [13, 53, 23]. However, such an architecture is param-

eter heavy and severely limited in spatial resolution. Point-

Net [32] is a light-weight alternative and while it can inter-

pret 3D inputs a set of un-ordered points, it also largely ig-

nores spatial contexts which may be important downstream.

Since captured 3D inputs are inherently object surfaces,

it is natural to consider them as a 2D embedding in 3D Eu-

clidean space. As such, several works [10, 20, 35] have

modeled mesh surfaces as a graph and have applied graph

network architectures to capture intrinsic and extrinsic ge-

ometric properties of the mesh. Our method also works on

the hand surface, but it is a much simpler and more flexible

network architecture which is easier to train and can han-

dle different mesh topologies. Our method most resembles

[43, 3] by mapping high dimension data to a 2D grid. How-

ever, instead of just working on points from depth map, we

propose a dual grid network architecture, enabling the map-

ping of heterogeneous data from Euclidean space to mesh

surfaces and vice versa.

3. Dual Grid Net

In this section, we introduce our Dual Grid Net (DGN)

which is an efficient fully convolutional network architec-

ture for mesh vertex estimation. At its core are consecutive

2D convolutions on two grids – an image grid and a mesh

grid – where features from one grid can be mapped to an-

other in a differentiable way.

We assume that we are given a canonical hand mesh

model which is generic for all users’ hands. In a given depth

map, every pixel on the hand’s surface on the image grid

has a correspondence to the mesh surface and estimating

this correspondence is equivalent to regressing the pixel’s

coordinates on the mesh grid (Sec. 3.1).

Starting from a depth map of the segmented hand as in-

put, the associated mesh vertices can be estimated as fol-

lows. First, we estimate a dense correspondence map to

the mesh grid for every point in the input point cloud (see

Sec. 3.2). We then map features from the image grid to the

mesh grid according to dense correspondence map and re-

cover the 3D coordinates of all the mesh vertices(sec. 3.3).

We finally refine these coordinates by skinning a tem-

plate mesh model with respect to the recovered mesh ver-

tices(sec. 3.4). This process is illustrated in Figure 2.

3.1. Mesh model

We use a triangle mesh model (see Figure 3(a)) with

1721 mesh vertices. Every point on the mesh surface is as-

sociated with a mesh coordinate which depends only on its

position on the mesh and is therefore invariant to different

hand poses, shapes or view point. In addition, other prop-

erties of points on the mesh surface such as texture, colour

or its 3D coordinates in the camera frame can be approxi-

mated with linear interpolation of neighbour points on the

mesh surface.

A natural way to parameterize mesh coordinates is

through UV mapping [1], as used in [2]. However, the

mesh unwrapping in UV mapping introduces unnecessary

discontinuities along seams. In this work, we use Multidi-

mensional Scaling (MDS) [5] instead. For any two points

on mesh surface, MDS aims to keep their Cartesian distance

w.r.t. the mesh coordinates to be as close as possible to the

geodesic distance on mesh surface. We set the dimension

of mesh coordinates to 2, to allow for 2D convolutions on

the mesh grid. The MDS embedding used in this work is

shown in Figure 3(b), and the corresponding mesh coordi-

nate on mesh surface in Figure 3(c) and (d) respectively.

3.2. Mesh Coordinate Estimation

Similar to [2], we start by estimating the 2D mesh co-

ordinates for all pixels from the hand region. We adopt

an hourglass network[24] (see Figure 2) as the backbone

architecture and apply it in two heads. The first head esti-

mates the 2D mesh coordinates Im for all depth pixels while

the second head estimates a generic feature map If which

will later be mapped to the mesh grid. Unlike [17], which

performs classification followed by residual regression, we

adopt a direct regression approach, which we find achieves

sufficient accuracy.

Previous works [14, 6, 60, 22] encoded image inputs as a

fixed-size latent vector. Our approach, by using dense mesh

coordinates, has two major advantages. Firstly, it allows

us to use a fully convolutional network architecture. This

important difference retains spatial resolution, is more effi-

cient and also translation invariant. It is also much easier for

learning, since supervision at the level of mesh coordinates

can be directly placed here.

Secondly, the estimated mesh coordinates establishes a

dense correspondence map between captured hand surface

feature

mesh coordinate

extension sampling

(B, 1, H, W)

(B, 2, H, W)

(B, F, H, W)

(B, F, M, N) (B, 3, M, N) (B, P, 3)

Similarity

Transformation

(B, P, 3)

Network head

Differentiable module

without parameters

Hourglass Network
B: batch size

F: pre-pixel feature size

H: image grid height

W: image grid width

M: mesh grid height

N: mesh grid width

(P, 3)

Image Grid (sec 3.2) Mesh Grid (sec 3.3) Refinement (sec 3.4)

P: number of mesh vertices

template

mesh

(B, J, 4, 4)

LBS

(B, J, 3)

J: number of bones

Id

Pr

Im

If
Ps T

(c)(b)(a)

Ji Jo

Q

Figure 2. System Framework. Starting from a depth map of the segmented hand as input, we estimate a dense correspondence map to

the mesh model for every point on the image grid(see Sec. 3.2). By mapping features from the image grid to the mesh grid according to

dense correspondence map, we then recover the 3D coordinates of all the mesh vertices(sec. 3.3) on the mesh grid and finally refine these

coordinates by skinning a template mesh model with respect to the recovered mesh vertices(sec. 3.4).

(a) (b) (c) (d)

Figure 3. (a) Triangular mesh model used in this work; (b) 2D

MDS embedding of the mesh vertices; (c, d) corresponding mesh

coordinates on mesh surface.

to that of mesh. The correspondence map, as we will show

in Sec. 4.1, allows us to directly embed a lifting energy [18],

which is beneficial to minimizing the model-fitting error in

a self-supervised setting.

3.3. Mapping from image grid to mesh grid

In this section, we show how to recover all mesh ver-

tices, including occluded ones, from the estimated per-pixel

mesh coordinate and features on the image grid. Based on

the estimated mesh coordinates, features from a pixel of the

hand can be mapped from image grid to mesh grid. Similar

to [3], we call this process extension(see Figure 4).

More specifically, for any pixel p which belongs to the

hand surface, we can regress its coordinate on the mesh grid

m = (mx,my) ∈ R2 as well as its corresponding feature

f ∈ Rd as described in previous section. f is propagated to

mesh grid via soft assignment to the neighbours of m:

f =
∑

n∈Ω(m)

wn · f. (1)

f is propagated to the grid point n with a weighting deter-

f (mx,my)

sampling

extension

Mesh Grid

Figure 4. Illustration of extension and sampling process, given the

feature to be mapped as f ∈ R
f and corresponding coordinate on

mesh grid as (mx,my) ∈ R
2.

mined by the softmax of its distance to m as follows:

wn =
e−σ(n−m)2

∑
l e
−σ(l−m)2

, (2)

where σ = 0.5.

We adopt a second hourglass network on the mesh grid,

o recover all mesh vertices. Given that every mesh vertex is

associated with a fixed mesh coordinate, the output features

of hourglass network is aggregated according to their mesh

coordinates of vertices. To this end, we set the number of

output feature channels as 3 and the aggregated feature for

each mesh vertices is exactly its estimated 3D coordinates in

the camera frame. In turn, this process is named as sampling

(see Figure 4).

Note that propagated features will only partially occupy

the mesh grid due to occlusions. However, the sampling

process requires features from all over the mesh grid. This

resembles an image in-painting process and we leverage the

encoder-decoder structure of hourglass to utilize both global

and local context when filling in these values.

3.4. Refining Mesh Vertices

We observe that the quality of the rendered mesh by the

estimated mesh is sensitive to even small offsets (see Fig-

ure 1). At the same time, as we are focusing on a specific

model, it is excessive to add any sophisticated network ar-

chitectures for more accurate mesh vertices estimation. As

an alternative, we propose refining the mesh vertices with a

kinematic module without adding learnable parameters.

We refine the estimated mesh vertices by aligning the

estimation with a template mesh model and estimating the

transformation with a closed form solution. More specifi-

cally, given the correspondence between estimated vertices

Ps and vertices from the template model Q for each hand

part (palm or finger bone), we estimate a similarity trans-

formation matrix T by minimizing the Euclidean distance

between correspondence points pi∈Ps and qi∈Q as

T = argmin
T

∑

i

‖pi −Tqi‖. (3)

The refined mesh results from posing the template mesh

with the similarity transformation matrices through linear

blend skinning (LBS). Noticing that T can also be estimated

in closed form with singular value decomposition (SVD).

By using the closed form solution, the refined mesh can be

obtained with a single forward pass through the network.

Readers may refer to [40] for more details on estimating the

transformation with a closed form solution.

Coordinates of key points can also be obtained from the

transformation matrices in a similar way as mesh vertices.

Since SVD is differentiable, supervision can be placed on

top of the key-point coordinates. As will be shown in

Sec. 5, when only given sparse supervision of key-points,

our method can accurately recover the mesh.

3.5. Implementation Details

We first segment the hand region with a hourglass net-

work. The input size of image to the hourglass network on

the image grid is 64×64 and we set the size of the mesh

grid as 16×16. To further reduce computation, we adopt

pixel shuffling techniques [37] to decrease the spatial res-

olution by a factor of 2 on both the image grid and mesh

grid. While the number of input and output feature chan-

nels are increased by a factor of 4, the number of feature

channels in hidden layers remains unchanged. The kernel

size of extension and sampling are both set as 8×8.

4. Self-supervision on unlabelled real data

Training the network proposed in Section 3 requires su-

pervision in the form of dense correspondences and ver-

tex locations which is impossible to annotate for real world

data. While the network can be initialized with synthetic

depth maps, as shown in the experiments, the large do-

main gap between real and synthesized depth map gives

rise to compromised accuracy. On the other hand, since

the network also serves as a differentiable renderer, the

natural question that arises is whether or not we can in-

clude a model-fitting loss term into the training loss for self-

supervised learning.

Similar to the conventional model fitting energy, the self-

supervision term is formulated as follows,

L(θ) = Ldata(θ) + λ1Lprior(θ) + λ2Lmv(θ). (4)

This data fitting loss is similar to conventional model-fitting

energy terms. It is composed of a data term Ldata, which

measures how the rendered depth map resembles the input

depth map; kinematic priors Lprior which constrain the es-

timate to be kinematically feasible and a multi-view con-

sistency term Lmv which can be used in calibrated multi-

camera setups to handle self-occlusion.

4.1. Data Terms

The data term is composed of an ICP term and a lifting

energy term:

Ldata(θ) = LICP(θ) + αLlifting(θ). (5)

Similar to [50], we consider only a data-to-model term,

i.e. only minimizing the distance between every depth point

to its correspondence on the mesh surface. Ignoring the

model-to-data term makes the loss robust to occlusions

which is useful for hand-object or hand-hand interactions.

The ICP term measures the disparity between points to

its projection on the mesh surface as follows,

LICP(θ) =
∑

i∈I

min
j∈M(θ)

d(i, j), (6)

where the projection on estimated mesh surface M(θ) is ap-

proximated by finding the nearest vertices from mesh model

based on the distance function d. We use smooth L1 loss

function as d(·, ·). Similar to [45], we restrict points only to

find correspondences in the frontal surface of the mesh.

In addition, we leverage the correspondence map and

minimize the distance between points to their estimated cor-

respondences on the mesh surface via a lifting term:

Llifting(θ) =
∑

i∈I

d(i, f(i|θ)). (7)

where f(i|θ) estimates the 3D coordinates of correspon-

dence of i on the mesh surface, given the estimated mesh

coordinate of i through the sampling process(see Figure 4).

The lifting term simultaneously optimizes over the corre-

spondence map Im on the image grid and the coordinate

map Jo on the mesh grid (see Figure 2). As such, this helps

a more efficient gradient flow to different network stages.

B

B
′

C

T = TpB
−1

LB

L = BT
−1
p TB

−1

Tp

Figure 5. Illustration of the relation ship between local transfor-

mation L with respect to the local bone frame B and global trans-

formation T with respect to the camera frame C.

4.2. Kinematic Priors

The kinematic prior terms are defined as

Lprior(θ) = Lcollision(θ) + κ1Larap + κ2Loffset(θ). (8)

The collision term Lcollisionθ penalizes collisions between

any pair of joints as follows:

Lcollision(θ) =
∑

i,j

max(t− ‖pi − pj‖, 0), (9)

where pi and pj are the 3D coordinate of the corresponding

joints. We set the threshold t = 5mm for all pair of joints.

The as rigid as possible term Larap(θ) constrains the

local deformation of estimated mesh surfaces to be rigid,

similar to [41].

Larap = ‖Ps − Ps‖
2 (10)

where Ps is the original mesh vertices estimation and Pr

is the refined one through linear blend skinning, which is

guaranteed to be rigid for each part.

In section 3.4, we show how to estimate the similarity

transformation T(see Figure 5) with respect to the camera

frame for each hand part. In other words, T transforms the

bone from a neutral pose to the current one with respect to

the camera frame. From the perspective of forward kine-

matics, T is generated as follows,

T = Tp ·B
−1 · L ·B, (11)

where Tp is the parent transformation matrix, B is the bone

frame in the neutral pose with which z-axis is aligned with

its parent bone, the origin is placed at the joint. L is the

rotation matrix with respect to the bone frame B. Since B

is given in the original mesh model and Tp is known from

previous estimation, L can be recovered with a closed form

solution.

We rewrite the local transformation matrix L as [SR|t],
where S ∈ R3×3 is a diagonal matrix scaling the matrix,

R ∈ R3×3 is the rotation matrix, t ∈ R3 is the transla-

tion. Notice that besides the wrist, there is no translation on

the rest finger joints. We thus penalize translations in the

finger’s local transformation with an offset term

Loffset =
∑

i∈F

‖ti‖
2, (12)

where F represents all the finger joints.

We don’t add further push constraints over the joint an-

gles since synthesized data with supervision is also fed to

the network to regularize the estimation. Given that joint

angles can be calculated from local transformation L with

a closed form solution, joint angle constraints can be easily

added if necessary.

4.3. Multiple view consistency

To handle severe self-occlusions and missing inputs due

to holes in noisy depth inputs, we further add multi-view

consistency constraints for real data captured on a multi-

camera rig:

Lmv(θ) = Lvertex(θ) + η1LICP(θ) + η2Llifting(θ). (13)

By calibrating the extrinsics of the camera, the vertex term

Lvertex minimizes the distance between mesh vertices to

their robust average (median in this paper) in the canonical

frame. The ICP term LICP and lifting term Llifting works

similarly to the aforementioned single view cases, with the

only difference that estimated mesh model is mapped to an-

other camera frame and matched against the corresponding

depth map.

4.4. Active data augmentation by estimation

Since the proposed method could recover the hand mesh,

we propose a strategy to actively feed synthesized data

given the estimated mesh on real data to the network. The

supervision from the synthesized data provides more realis-

tic poses and helps the network to better recover from wrong

estimation. According to experiments, we find this strategy

to be useful to stabilize the self-supervision training and fur-

ther decrease the model fitting error on unlabelled training

data.

5. Experimentation

5.1. Dataset and evaluation protocols

We evaluate our method on the NYU Hand Pose

Dataset[51]. It currently the only publicly available multi-

view depth dataset and features sequences captured by 3

calibrated and synchronized PrimeSense depth cameras. It

consists of 72757 × 3 frames for training and 8252 × 3 for

testing. NYU is highly challenging as the depth maps are

noisy and the sequences cover a wide range of hand poses.

In addition, we synthesize a dataset of 20K depth maps of

various hand poses with random holes and depth noise to

evaluate the trained network’s ability to generalize to new

synthesized samples. Our method is highly efficient and

achieves 63.1 FPS on an Nvidia 1080Ti GPU.

Following the protocol of [51] and previous works, we

quantitatively evaluate a subset of 14 joints with two stan-

dard metrics: mean joint position error (in mm) averaged

over all joints and frames, and the percentage of success

frames, i.e. , frames with all predictions are within a certain

threshold [48]. Readers may refer to supplementary materi-

als and video for qualitative results.

5.2. Training with only synthesized data

We first evaluate how a network trained on synthesized

data can generalize to newly synthesized data and real data.

The synthesized data is rendered from a mesh model with

various poses and shapes and then corrupted with random

depth noise and holes. Data is synthesized in an on-line

manner and around 7.2 million synthesized samples are fed

into the network for training. Table 3 (synt(test on synt),

synt(mesh vertices)(test on synt), synt(refined mesh ver-

tices)(test on synt)) shows that the proposed kinematic mod-

ule successfully reduces the average error over all mesh ver-

tices from 14.75mm to 7.65mm. The network can also gen-

eralize to newly synthesized samples and achieves a high

accuracy with only 7.1mm mean joint position error. How-

ever, the accuracy deteriorates dramatically when testing on

real-world depth maps. The mean average joint error in-

creases almost three-fold to 23.21mm. This shows that even

though it encounters data augmented with random noise, the

network readily over-fits to the rasterization artifacts and

hand shapes of synthesized depth maps.

5.3. Ablation studies

Variations in training data. We investigate how differ-

ent training data and different supervision impacts the accu-

racy. First, we train only with the 8252× 3 testing samples

to check how well self-supervision can fit the mesh model

to depth maps. We then trained with all training data, but in

a single view setting to check how a multi-view set up im-

pacts performance. Finally, we also look into supervision

with sparse key-points to check if the proposed network ac-

curately recover the mesh vertices and the key-points on un-

seen samples in testing set.

Interestingly, training directly on the test samples gives

rise to a higher mean joint position error than when train-

ing on a larger training set that excludes the test sam-

ples(14.50mm vs 13.09mm, see Table 3). We attribute this

to the poor initialization of the network when trained on

synthesized data and the possibility of getting trapped in

local minima since first order based optimization is used

during back-propagation. However, if the amount of train-

ing data increases, mean joint position error decreases. This

justifies the benefits of data-driven approaches over conven-

tional model-based trackers which optimizes each frame in-

dependently.

As shown in Figure 1 (see more qualitative examples in

the supplementary materials), our method can accurately re-

construct the 3D mesh model given only sparse key-point

supervision. When it comes to mean joint position error, the

estimation is highly accurate with only 8.5 mean joint posi-

tion error (see Table 3). Furthermore, 67.8% of frames have

a maximum error below 20mm and 85.3% below 30mm re-

spectively (see Table 6).

Impact of self-supervision loss terms. We study the in-

dividual contributions of the different self-supervision loss

terms by training without the Llifting, Lcollision, Larap, Loffset

and active augmentation techniques. According to Table 3

and Figure 6, without the lifting energy techniques, the aver-

age error increases by 1.41mm from 13.09mm to 14.50mm.

The percentage of successful frames drops by 7% from 64%

to 57% on the error threshold of 30mm. This validates the

benefits of the lifting energy. The contributions of the other

terms can also be validated as we observe similar decreases

in accuracy when they are omitted.

5.4. Comparison to state­of­the­art

We compare our results to the most recently proposed

state-of-arts [34, 23, 15, 9, 30, 55, 8, 25, 16, 13, 22, 57,

54, 27, 61]. As shown in Table 2, when trained with key-

point annotations, our method outperforms all other state-

of-arts except [23] and [34] with respect to mean joint po-

sition error. In addition, according to Figure 7, our method

performs similarly to [15, 30] when the error threshold is

larger than 10mm and outperforms all other methods ex-

cept [34]. We note however that [23] report an ensemble

prediction result. This is impractical for real time use; in

comparison, our method is highly efficient and runs at 63.1

FPS on an NVidia 1080Ti GPU. Furthermore, our method

out-performs [23] when compared its single model result.

The work of [34] leverages domain adaption techniques to

better utilize synthesized data. This is complimentary to our

proposed method and we look forward to incorporating this

in our future work. It is also worth noting that key-point es-

timation is a byproduct of our proposed method, which has

the primary aim of recovering the mesh vertices.

We also compare our self-supervision method with [11],

which to best of our knowledge is the only other unsuper-

vised method. As is shown in Figure 7, our network out-

performs [11] by a large margin for the percentage of suc-

cessful frames at error thresholds higher than 25mm. We

achieve a higher accuracy for two reasons. First, our mesh

0 10 20 30 40 50 60 70 80

Max Allowed distance to GT D(mm)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
n

ta
g

e
o

f
fr

am
es

 w
it

h
 a

ll
 j

o
in

ts
 e

rr
o

r
w

it
h

in
 D

real training set

testing set

synth

single view

Figure 6. Impact of using different dataset for self-supervision.

parameterization allows the method to be robust to small

estimation offsets while [11] uses joint angles, which tend

to propagate errors from parent joints to children joints.

Second, there are no gradients in their depth term(Eq. 6

in [11]) associated with unexplained points from the depth

map which we handle with our proposed data term.

We further compare our self-supervision method with

fully supervised deep learning methods. Surprisingly, when

trained without any human label, our self-supervision based

method achieves competitive results and even out-performs

several fully supervised methods[16, 13, 22, 57, 54, 27, 61].

This highly encouraging results suggests that our method

can be applied to provide labels for RGB datasets with weak

supervision from depth maps.

Method Mean joint error

ours (fully supervised) 8.5mm

ours (self-supervised) 13.09mm

synt(test on synt) 7.10mm

synt(mesh vertices) (test on synt) 14.75mm

synt(refined mesh vertices) (test on synt) 7.65mm

synt(test on real) 23.21mm

train on test 14.50mm

single view 16.96mm

without active augmentation 14.52mm

without Llifting 14.50mm

without Lcollision 13.85mm

without Larap 14.06mm

without Loffset 14.12mm
Table 1. Ablation study and self comparison. We report mean

joint error averaged over all joints and frames.

6. Conclusion

We propose a new network architecture to regress thou-
sands of mesh vertices from single depth map with effi-
cient fully convolutional network on 2D grids. We show
that when initialized with synthesized data, the network
could accurately recover the hand mesh vertices with only
sparse key point supervision. When given only unlabeled
real world dataset, the proposed network can be fine tuned

0 10 20 30 40 50 60 70 80

Max Allowed distance to GT D(mm)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
n

ta
g

e
o

f
fr

am
es

 w
it

h
 a

ll
 j

o
in

ts
 e

rr
o

r
w

it
h

in
 D

ours

without collision loss

without arap loss

without offset loss

without lifting loss

without active augmentation

Figure 7. Impact of different loss terms and active data augmenta-

tion on self-supervised learning.

0 10 20 30 40 50 60 70 80

Max Allowed distance to GT D(mm)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
n

ta
g

e
o

f
fr

am
es

 w
it

h
 a

ll
 j

o
in

ts
 e

rr
o

r
w

it
h

in
 D

Ours(supervised)

Ours(self-supervised)

Refine 3D(wt nyu label) (Dibra et. al.)

Point-to-Point (Ge et. al.)

FeatureMapping (Oberweger et. al.)

V2V (Moon et. al.)

DeepPrior++(Oberweger et. al.)

REN (Guo et. al.)

SHPR-Net(frontal view)(Chen et. al.)

MURAUER(Poier et. al.)

Figure 8. Comparison to fully supervised (dashed line) and self-

supervised (solid line) state-of-arts.

Method mean joint error

ours (supervised) 8.5mm

ours (self-supervised) 13.1mm

FeatureMapping[34] 7.4mm

V2V(ensemble)[23] 8.4mm

V2V(single model)[23] 9.2mm

Point-to-Point[15] 9.0mm

SHPR(three views)[9] 9.4mm

MURAUER[30] 9.5mm

DenseReg[55] 10.2mm

Pose-REN[8] 11.8mm

DeepPrior++[25] 12.2mm

REN-4x6x6[16] 13.4mm

3DCNN[13] 14.1mm

DeepHPS(fine-tuned)[22] 14.2mm

Lie-X[57] 14.5mm

CrossingNet[54] 15.5mm

Feedback[27] 15.9mm

DeepModel[61] 17.0mm
Table 2. Comparison with fully supervised state-of-the-art. We

report mean joint error averaged over all joints and frames. All

methods are tested on the NYU[51] test set.

in a self-supervision manner and provide comparable accu-
racy to state-of-arts with multi-camera rig during training.
Finally, although this paper focuses on depth map input the
human hand, since we use 2D FCN, the proposed method

can be readily applied to RGB images without any changes
to the architecture, when RGB annotation is available.

References

[1] https://en.wikipedia.org/wiki/UV_

mapping.

[2] R. Alp Guler, G. Trigeorgis, E. Antonakos, P. Snape,

S. Zafeiriou, and I. Kokkinos. Densereg: Fully convolutional

dense shape regression in-the-wild. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017.

[3] M. Atzmon, H. Maron, and Y. Lipman. Point convolutional

neural networks by extension operators. ACM Transactions

on Graphics (TOG), 2018.

[4] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero,

and M. J. Black. Keep it smpl: Automatic estimation of 3d

human pose and shape from a single image. In European

Conference on Computer Vision, pages 561–578. Springer,

2016.

[5] I. Borg and P. Groenen. Modern Multidimensional Scaling.

Springer Series in Statistics. Springer New York, 1997.

[6] A. Boukhayma, R. de Bem, and P. H. Torr. 3d hand shape

and pose from images in the wild. In CVPR, 2019.

[7] Y. Cai, L. Ge, J. Cai, and J. Yuan. Weakly-supervised 3d

hand pose estimation from monocular rgb images. ECCV,

Springer, 12, 2018.

[8] X. Chen, G. Wang, H. Guo, and C. Zhang. Pose guided

structured region ensemble network for cascaded hand pose

estimation. arXiv preprint arXiv:1708.03416, 2017.

[9] X. Chen, G. Wang, C. Zhang, T.-K. Kim, and X. Ji. Shpr-

net: Deep semantic hand pose regression from point clouds.

IEEE Access, 2018.

[10] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-

tional neural networks on graphs with fast localized spectral

filtering. In Advances in Neural Information Processing Sys-

tems, 2016.

[11] E. Dibra, T. Wolf, C. Oztireli, and M. Gross. How to refine

3d hand pose estimation from unlabelled depth data? In 3D

Vision (3DV), 2017.

[12] L. Ge, Y. Cai, J. Weng, and J. Yuan. Hand pointnet: 3d hand

pose estimation using point sets. In CVPR, 2018.

[13] L. Ge, H. Liang, J. Yuan, and D. Thalmann. 3d convolutional

neural networks for efficient and robust hand pose estimation

from single depth images. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, vol-

ume 1, page 5, 2017.

[14] L. Ge, Z. Ren, Y. Li, Z. Xue, Y. Wang, J. Cai, and J. Yuan.

3d hand shape and pose estimation from a single rgb image.

In CVPR, 2019.

[15] L. Ge, Z. Ren, and J. Yuan. Point-to-point regression point-

net for 3d hand pose estimation. ECCV, 2018.

[16] H. Guo, G. Wang, X. Chen, C. Zhang, F. Qiao, and H. Yang.

Region ensemble network: Improving convolutional net-

work for hand pose estimation. In Image Processing (ICIP),

2017.

[17] H. Joo, T. Simon, and Y. Sheikh. Total capture: A 3d defor-

mation model for tracking faces, hands, and bodies. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 8320–8329, 2018.

[18] D. Joseph Tan, T. Cashman, J. Taylor, A. Fitzgibbon, D. Tar-

low, S. Khamis, S. Izadi, and J. Shotton. Fits like a glove:

Rapid and reliable hand shape personalization. In CvPR,

2016.

[19] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik. End-

to-end recovery of human shape and pose. In Computer Vi-

sion and Pattern Regognition (CVPR), 2018.

[20] I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and B. Joan.

Surface networks. In 2018 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2018, 2018.

[21] S. Lombardi, J. Saragih, T. Simon, and Y. Sheikh. Deep

appearance models for face rendering. ACM Transactions

on Graphics (TOG), 2018.

[22] J. Malik, A. Elhayek, F. Nunnari, K. Varanasi, K. Tamaddon,

A. Héloir, and D. Stricker. Deephps: End-to-end estimation

of 3d hand pose and shape by learning from synthetic depth.

2018.

[23] G. Moon, J. Y. Chang, and K. M. Lee. V2v-posenet: Voxel-

to-voxel prediction network for accurate 3d hand and human

pose estimation from a single depth map. In CVPR, 2018.

[24] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-

works for human pose estimation. In European Conference

on Computer Vision, 2016.

[25] M. Oberweger and V. Lepetit. Deepprior++: Improving fast

and accurate 3d hand pose estimation. In ICCV workshop,

2017.

[26] M. Oberweger, G. Riegler, P. Wohlhart, and V. Lepetit. Ef-

ficiently creating 3d training data for fine hand pose estima-

tion. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4957–4965, 2016.

[27] M. Oberweger, P. Wohlhart, and V. Lepetit. Training a feed-

back loop for hand pose estimation. In ICCV, 2015.

[28] M. Omran, C. Lassner, G. Pons-Moll, P. Gehler, and

B. Schiele. Neural body fitting: Unifying deep learning and

model based human pose and shape estimation. In 2018 In-

ternational Conference on 3D Vision (3DV), pages 484–494.

IEEE, 2018.

[29] G. Pavlakos, L. Zhu, X. Zhou, and K. Daniilidis. Learning

to estimate 3D human pose and shape from a single color

image. In CVPR, 2018.

[30] G. Poier, M. Opitz, D. Schinagl, and H. Bischof. Murauer:

Mapping unlabeled real data for label austerity. In 2019

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 1393–1402. IEEE, 2019.

[31] G. Poier, D. Schinagl, and H. Bischof. Learning pose spe-

cific representations by predicting different views. In CVPR,

2018.

[32] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

arXiv preprint arXiv:1612.00593, 2016.

[33] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun. Realtime and

robust hand tracking from depth. In CVPR, 2014.

https://en.wikipedia.org/wiki/UV_mapping
https://en.wikipedia.org/wiki/UV_mapping

[34] M. Rad, M. Oberweger, and V. Lepetit. Feature mapping for

learning fast and accurate 3d pose inference from synthetic

images. In CVPR, 2018.

[35] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black. Gener-

ating 3d faces using convolutional mesh autoencoders. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 704–720, 2018.

[36] T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton,

D. Kim, C. Rhemann, I. Leichter, A. Vinnikov, Y. Wei, et al.

Accurate, robust, and flexible real-time hand tracking. In

Proceedings of the 33rd Annual ACM Conference on Human

Factors in Computing Systems, 2015.

[37] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken,

R. Bishop, D. Rueckert, and Z. Wang. Real-time single im-

age and video super-resolution using an efficient sub-pixel

convolutional neural network. 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016.

[38] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,

and R. Webb. Learning from simulated and unsupervised

images through adversarial training. In CVPR, 2017.

[39] T. Simon, H. Joo, I. A. Matthews, and Y. Sheikh. Hand key-

point detection in single images using multiview bootstrap-

ping. In CVPR, 2017.

[40] O. Sorkine. Least-squares rigid motion using svd. Technical

notes, 2009.

[41] O. Sorkine and M. Alexa. As-rigid-as-possible surface mod-

eling. In Proceedings of the Fifth Eurographics Symposium

on Geometry Processing, 2007.

[42] S. Sridhar, F. Mueller, M. Zollhoefer, D. Casas,

A. Oulasvirta, and C. Theobalt. Real-time joint track-

ing of a hand manipulating an object from rgb-d input. In

Proceedings of European Conference on Computer Vision

(ECCV), 2016.

[43] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H.

Yang, and J. Kautz. SPLATNet: Sparse lattice networks for

point cloud processing. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2530–2539, 2018.

[44] J. S. Supancic, G. Rogez, Y. Yang, J. Shotton, and D. Ra-

manan. Depth-based hand pose estimation: data, methods,

and challenges. In ICCV, 2015.

[45] A. Tagliasacchi, M. Schroeder, A. Tkach, S. Bouaziz,

M. Botsch, and M. Pauly. Robust articulated-icp for real-

time hand tracking. Computer Graphics Forum (Symposium

on Geometry Processing), 34(5), 2015.

[46] J. Tan, I. Budvytis, and R. Cipolla. Indirect deep structured

learning for 3d human body shape and pose prediction. Pro-

ceedings of the BMVC, London, UK, pages 4–7, 2017.

[47] D. Tang, J. Taylor, P. Kohli, C. Keskin, T.-K. Kim, and

J. Shotton. Opening the black box: Hierarchical sampling

optimization for estimating human hand pose. In ICCV,

2015.

[48] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitru-

vian manifold: Inferring dense correspondences for one-shot

human pose estimation. In CVPR, 2012.

[49] J. Taylor, R. Stebbing, V. Ramakrishna, C. Keskin, J. Shot-

ton, S. Izadi, A. Hertzmann, and A. Fitzgibbon. User-specific

hand modeling from monocular depth sequences. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2014.

[50] J. Taylor, V. Tankovich, D. Tang, C. Keskin, D. Kim,

P. Davidson, A. Kowdle, and S. Izadi. Articulated dis-

tance fields for ultra-fast tracking of hands interacting. ACM

Transactions on Graphics (TOG), 2017.

[51] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-time

continuous pose recovery of human hands using convolu-

tional networks. ACM Transactions on Graphics (ToG).

[52] H.-Y. Tung, H.-W. Tung, E. Yumer, and K. Fragkiadaki. Self-

supervised learning of motion capture. In Advances in Neu-

ral Information Processing Systems (NIPS), 2017.

[53] G. Varol, D. Ceylan, B. Russell, J. Yang, E. Yumer, I. Laptev,

and C. Schmid. Bodynet: Volumetric inference of 3d human

body shapes. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 20–36, 2018.

[54] C. Wan, T. Probst, L. Van Gool, and A. Yao. Crossing nets:

Combining gans and vaes with a shared latent space for hand

pose estimation. In CVPR, 2017.

[55] C. Wan, T. Probst, L. Van Gool, and A. Yao. Dense 3d re-

gression for hand pose estimation. In CVPR, 2018.

[56] L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li. Dense

human body correspondences using convolutional networks.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016.

[57] C. Xu, L. N. Govindarajan, Y. Zhang, and L. Cheng. Lie-x:

Depth image based articulated object pose estimation, track-

ing, and action recognition on lie groups. International Jour-

nal of Computer Vision, 2017.

[58] R. Yu, S. Saito, H. Li, D. Ceylan, and H. Li. Learning dense

facial correspondences in unconstrained images. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

[59] S. Yuan, Q. Ye, B. Stenger, S. Jain, and T.-K. Kim. Big-

hand2. 2m benchmark: Hand pose dataset and state of the

art analysis. In CVPR, 2017.

[60] X. Zhang, Q. Li, W. Zhang, and W. Zheng. End-to-end hand

mesh recovery from a monocular rgb image. arXiv preprint

arXiv:1902.09305, 2019.

[61] X. Zhou, Q. Wan, W. Zhang, X. Xue, and Y. Wei.

Model-based deep hand pose estimation. arXiv preprint

arXiv:1606.06854, 2016.

Supplemental Materials

7. Qualitative results

We show more qualitative results on the testing set of

NYU dataset in Fig. 10, 11 and 12. Left column shows re-

sults trained by the sparse key point supervision. Right col-

umn shows results trained by the proposed self-supervision

method. Readers may also refer to the attached video to

check qualitative results on more frames.

8. Self-supervision training error

We investigate how well the proposed self-supervision

method can fit to the training set itself, i.e. , the training er-

ror, as “self-supervised(test on training set)” in Tab. 3 and

Fig. 9. Since our self-supervision method can be potentially

applied for automatic annotation of depth frames and ac-

companied RGBs, its training error indicates how accurate

can the annotation be.

We compare the training error against its correspond-

ing testing error, i.e. , on the unseen testing set with the

same network (“self-supervised”), as well as the testing

error trained only with synthesized dataset (“synthesize”),

and training error on the testing set (“self-supervised(train

on testing set)”), which is roughly 9 times smaller than

the training set. As expected, compared to accuracy on

the testing set, the mean joint error on training set de-

creases by 1.2mm from 13.1mm to 11.9mm according to

Tab. 3, and around 10% more successful frames on the

error threshold between 20 to 40mm according to Fig. 9.

When comparing with the recent proposed state-of-arts

with complicated network architectures and trained with

full supervision[57, 13, 16, 25, 8, 55], our self-supervision

method provides with competitive or even higher accuracy.

This validates our self-supervision method can provide with

highly accurate annotation.

In addition, as already discussed in the paper, the accu-

racy of self-supervision method is also impacted by the size

of the dataset, even when no human label is provided. This

infers that accuracy can be further improved when collect-

ing a larger scale dataset.

Method Mean joint error

self-supervised 13.1mm

synthesize 23.2mm

self-supervised(test on training set) 11.9mm

self-supervised(train on testing set) 14.5mm

Lie-X[57] 14.5mm

3DCNN[13] 14.1mm

REN-4x6x6[16] 13.4mm

DeepPrior++[25] 12.2mm

Pose-REN[8] 11.8mm

DenseReg[55] 10.2mm
Table 3. Ablation study and self comparison. We report mean

joint error averaged over all joints and frames.

0 10 20 30 40 50 60 70 80

Max Allowed distance to GT D(mm)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
n
ta

g
e

o
f

fr
am

es
 w

it
h
 a

ll
 j

o
in

ts
 e

rr
o

r
w

it
h

in
 D

self-supervised

synthesize

self-supervised(train on testing set)

self-supervised(test on training set)

Figure 9. Comparison of using different dataset for training and

testing for proposed self-supervision method.

key pointrefined meshinitial meshcorrespondence mapinput ground-truth key pointrefined meshinitial meshcorrespondence mapinput ground-truth

key point supervised self supervised

Figure 10. Qualitative results on NYU dataset. We visualize the correspondence map with each mesh coordinate, the rendered shading and

depth map of the initial estimated mesh model and refined ones, as well as estimated and ground truth key-point.

key pointrefined meshinitial meshcorrespondence mapinput ground-truth key pointrefined meshinitial meshcorrespondence mapinput ground-truth

key point supervised self supervised

Figure 11. Qualitative results on NYU dataset. We visualize the correspondence map with each mesh coordinate, the rendered shading and

depth map of the initial estimated mesh model and refined ones, as well as estimated and ground truth key-point.

key pointrefined meshinitial meshcorrespondence mapinput ground-truth key pointrefined meshinitial meshcorrespondence mapinput ground-truth

key point supervised self supervised

Figure 12. Qualitative results on NYU dataset. We visualize the correspondence map with each mesh coordinate, the rendered shading and

depth map of the initial estimated mesh model and refined ones, as well as estimated and ground truth key-point.

