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ABSTRACT To perform bearing fault diagnosis under variable speeds, the optimal resonant fre-

quency (ORF) band selection and diagnosis strategy are pivotal. Indexes, such as kurtosis, crest factor (CF)

and smoothness index (SI), are extensively used for guiding ORF selection. Due to that each index has

unique advantages, the hybrid of such indexes has been developed. However, applications of the current

index hybrid method are impeded by problems of: 1) ineffectiveness for signal corrupted by impulsive

noises and 2) equal segmentation of frequency band with human intervention. This paper, therefore, firstly

proposes a dual-guidance based scheme with an embedded tunable Q-factor wavelet transform (TQWT)

to address the problems. The so-called dual-guidance scheme contains two guidance procedures: 1) the SI

guided pre-process for obtaining weight vectors and 2) the index hybrid output guided scheme for ORF

selection. The embedded TQWT is used for frequency band segmentation and sub-band signal acquisition

without subjective interventions. With the proposed scheme, the ORF band can be determined for bearing

fault feature extraction. Then, an algorithm for multiple instantaneous frequency (IF) ridge identification is

exploited based on the peak search algorithm for diagnosis. To tackle the difficulty that, at each time instance,

the amplitudes of IF ridges of interest do not always dominate the time frequency representation (TFR),

a starting point search tactic with a synchronization step is explored. A diagnosis vector can subsequently be

obtained by calculating the average ratios of the identified ridges and bearing fault diagnosis can then be done

bymatching the elements of the diagnosis vector with fault characteristic coefficient (FCC). Comparisons are

performed to illustrate the superiority of the proposed method. The experimental analyses are also conducted

to validate the proposed method for bearing fault diagnosis under variable speeds.

INDEX TERMS Variable speed condition, bearing fault diagnosis, index hybrid, optimal resonant frequency,

time frequency ridge extraction, fault feature extraction.

NOMENCLATURE

FCC Fault characteristic coefficient

SK Spectral kurtosis

IF Instantaneous frequency

SNR Signal to noise ratio
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IFCF Instantaneous fault characteristic frequency

STFT Short time Fourier transform

IH Index hybrid

TFA Time frequency analysis

ISRF Instantaneous shaft rotating frequency

TFR Time frequency representation

ORF Optimal resonant frequency

TQWT Tunable Q-factor wavelet transform
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I. INTRODUCTION

Bearings are one of key components in rotating machinery;

thus their fault detection and diagnosis have long been inves-

tigated to prevent severe equipment damage and unscheduled

downtime [1], [2]. When a fault in one surface of a bear-

ing interacts another surface, an impulse is generated which

excites resonances in the system. These impulses are the main

features to be detected to perform bearing fault diagnosis,

regardless of bearing working conditions (constant speeds or

variable speeds). For constant speed conditions, once these

impulses are extracted, the frequency of impulse repetition

can be obtained by frequency analysis, which is related to

the fault existence and fault category [3]–[5]. However, when

the rotational speed is unstable, the speed fluctuations may

cause ‘‘smearing’’ of the discrete frequencies in the frequency

representation, indicating that these frequencies are no longer

detectable [6]. As a result, approaches developed for bearing

fault diagnosis under a constant speed would be ineffective.

Order tracking has proven powerful in bearing fault detec-

tion under variable speeds [7]. Nevertheless, order track-

ing unavoidably propagates error to the result because the

resampling is achieved via polynomial interpolations, while

vibration signals are generated by cyclic phenomena and

thus sinusoidal not polynomial in nature [8]. Moreover, order

tracking might render the carrier frequencies of the transient

responses extend to a wider scope as natural characteristics of

bearing system rarely vary, which is not conductive to bearing

fault feature extraction [9]. Fortunately, time frequency anal-

ysis (TFA) provides an alternative for bearing fault diagnosis

under time-varying speeds; it, therefore, has strong potential

to characterize the vibration signals of bearings working in

nonstationary speed conditions. However, even if a clear TFR

can be obtained with extracted fault signatures, bearing fault

diagnosis cannot be fulfilled yet as the fault type cannot be

determined without knowing the relationship of the IF ridges

on the TFR. Thus, it can be concluded that there are two

major tasks to perform an effective bearing fault diagnosis

under variable speed operations: fault feature extraction and

IF ridge identification from TFR.

Numerous techniques and tools have been developed for

bearing fault feature extraction. One of the most straight-

forward methods is to filter signals by identifying the ORF

band [10], [11]. Lin and Qu utilized wavelet analysis for

the optimal band pass filter design based on the wavelet

entropyminimizationmethod [12]. Later, Qiu et al. attempted

to combine Shannon entropy with a periodicity detection

method to select Morlet wavelet parameters for the wavelet

filter for bearing fault detection [13]. Bozchalooi and Liang

adopted SI for wavelet parameter determination and then they

extended the application of SI for band-pass filter design for

bearing fault diagnosis [14], [15]. He et al. suggested to fuse

Morlet wavelet filter and sparse code shrinkage to identify

bearing fault signatures [16]. Wang et al. introduced a general

sequential Monte Carlo method to optimize a complex Mor-

let wavelet filter for bearing fault feature extraction, which

successfully determined the optimal center frequency and

bandwidth [17]. In addition to wavelet-based filter, spectral

kurtosis (SK) has been also proven an effective tool in locat-

ing the ORF band for rotating machinery fault diagnosis [18].

However, the complete exploration of a whole plane (f , 1f )

is a challenging task (f and 1f representing frequency and

frequency resolution, respectively), which confines the indus-

trial application of SK. To address such a problem, a fast algo-

rithm of kurtogram is proposed for computing the kurtogram

over a dyadic grid in the (f , 1f ) plane [19]. Along this line,

improved kurtogram-based algorithms have been exploited

to enhance the capability of locating OFR band for rotating

machinery condition monitoring [20]–[23]. All the afore-

mentioned SK-related methods are based on a fact that the

kurtosis can effectively measure the impulsiveness of signals.

However, kurtosis does not always truly reflect the signal

impulsiveness when the signal to noise ratio (SNR) is low and

non-Gaussian noise exists, as stated by Moshrefzadeh and

Fasana [24]. They then modify forms of kurtosis and propose

the Autogram for selecting the optimal demodulation band.

Before Autogram, Antoni also advances the SK method by

proposing to measure the negentropy of the squared envelope

and squared envelope spectrum of signals, from which the

squared envelope infogram and squared envelope spectrum

infogram are generated for identifying ORF of signal with

impulsive noise [25]. The infogram is an extension of kur-

togram, extending the domain of applicability of the kur-

togram. However, as reported in ref. [26], negentropy cannot

quantify the repetitive transients masked in strong random

noise.

Different from the approaches mentioned above,

Bozchalooi and Liang suggest to develop indexes which can

tackle signals with impulsive noise. They propose an index,

i.e., SI, to measure the signal impulsiveness [14]. Besides,

crest factor (CF) is also employed as an index to guide the

Morlet wavelet demodulation [27]. Further, due to that each

index has the exclusive virtues, an algorithm which fuses the

three indexes (i.e., kurtosis, CF and SI) to guide the ORF band

selection is proposed by Li et al. [28], where the processing

results of simulated and experimental data validates the supe-

riority of the proposed method, compared with using a single

index. However, there are two issues requiring to be taken

into consideration to further improve the detectability of the

fusion method: (1) multiple indexes may fail to cooperatively

work towards the ORF band selection because one or two

of the indexes may have large values caused by outliers or

interfering signals and still play a leading role to determine

the ORF band due to fixed weights; whereas functions of

other indexes may be weakened; and (2) the frequency band

are empirically segmented equally.

Moreover, it has to mention that most of the afore-

mentioned techniques are applied for bearing fault diag-

nosis under in-variant speed conditions. In the content of

time-varying speeds, bearing health condition monitoring

cannot be done yet onlywith the selectedORF band. As stated

above, a resampling-free method is preferred [9], [29] and

thus TFA becomes an alternative due to its advantages in
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non-stationary signal analysis. The diagnosis can be per-

formed by identifying the IF ridges on the obtained TFRs

and then calculating their ratios. Related research has been

conducted in this direction. Shi et al. develop a novel TFA

method to gain a clear TFR and then apply it for bear-

ing fault diagnosis by computing the point-to-point ratios

between IF ridges [30]. Huang et al. propose to use a fast

path optimization algorithm for multiple IF ridge extraction

from the TFR [31]. Then, the average curve-to-curve ratios

are utilized to achieve the fault diagnosis. The key step of

such TFR-based algorithms for bearing condition monitoring

is to accurately extracted the IF ridges of multiple signal

components. The mentioned two techniques are effective in

time frequency curve extraction; however, they are sensitive

to strong noise as no de-nosing operation is involved. Most

fundamental IF ridge extraction methods are performed via

searching the frequency bins with maximum energy at each

time instance [32], which is extensively used for IF estimation

of non-stationary signals as it is easy to be implemented with

computational efficiency. Nevertheless, this kind of methods

are based on the assumption that at each time instance the IFs

of interest have the maximum amplitude on TFR, which is

not always true, particularly for the multi-component signal

with low SNR under variable speeds. To solve this issue,

Wang et al. developed a novel amplitude-sum based spec-

tral peak search algorithm, where, for each frequency bin,

the sum of the amplitudes of its several multiples is calculated

to replace the original amplitude [33]. The effectiveness of

this algorithm is likely to be weakened if the signal con-

tains shaft-synchronized signal components caused by other

machine components, such as gears. Moreover, to perform

bearing fault diagnosis under variable speeds without using

resampling which is error-prone in the noisy environment,

a single extracted IF ridge is not sufficient [30], [31].

In view of the above, this paper first proposes a dual-

guidance based schemewith TQWT embedded for ORF band

selection to maximally extract the defect-induced impulses.

The proposed scheme is devised to address the issue that

the three indexes may fail to jointly contribute to the ORF

selection for signal with impulsive noise. The utilization of

TQWT aims to tackle the second aforementioned problem

that the frequency band is subjectively divided equally. The

frequency responses of TQWT can partition the frequency

band following the pattern that the frequency resolution

increases with the decrease of frequency, which satisfies the

requirement that high frequency can accept a lower frequency

resolution whereas low frequency requires a higher frequency

resolution. A peak amplitude search based multiple IF ridge

identification method with a synchronization step and novel

starting point search tactics involved is subsequently devel-

oped for bearing fault diagnosis. With the extracted IF ridges,

the bearing fault diagnosis can be conducted using a diagnosis

vector with elements consisting of the average ratios among

the extracted IF ridges.

The rest of the paper is organized as follows. Moti-

vations of the proposed method are given in Section 2.

FIGURE 1. Frequency response of TQWT with Q = 4, r = 5, J = 60: (a) the
frequency response, and (b) the corresponding sub-band signals.

Section 3 presents the proposed dual-guidance based ORF

band selection scheme, the algorithm for multiple IF ridge

path identification and the diagnosis strategy. Experiment

validations of the proposed method are shown in Section 4.

The conclusions are summarized in Section 5.

II. MOTIVATIONS OF THE PROPOSED SCHEME

Prior to the presentation of the proposed method, the motiva-

tions are firstly demonstrated in the following.

A. SUMMARY OF TQWT AND ORIGINAL INDEX HYBRID

METHOD

To begin with, TQWT proposed in ref. [34] is employed

to segment the entire frequency band into a string of

sub-frequency bands and each of the sub-frequency bands

corresponds to a band-pass filter. If the sub-frequency band

combinations corresponding to the ORF of the vibration sig-

nal could be detected, the fault-induced impulses can then

be maximally extracted, paving the way for further TFA

and bearing fault diagnosis. TQWT is determined by three

parameters, including Q-factor Q, redundancy r and decom-

position stage J . Once parameters r , Q and J are specified,

a TQWT-generated frequency response is determined. More

details regarding TQWT can be found in ref. [34]. With a

specific TQWT-related parameter set, the frequency response

can then be obtained, as shown in FIGURE 1 (a). Each

sub-frequency band corresponds to each sub-signal given in

FIGURE 1 (b). For ORF selection, the main objective is

to adaptively select one or several sub-frequency bands to

maximally extract bearing fault induced impulses.

Based on TQWT for frequency band partition, Luo et al.

proposed a kurtosis-guided method for adaptive demodula-

tion for bearing fault diagnosis and the effectiveness of this

method has been validated by experiments [35]. For an N -

point signal x, kurtosis is defined as

kurtosis(x) =

∑N
i=1 (xi − x̄)

4 /N
(

∑N
i=1 (xi − x̄)

2 /N
)2

, (1)

where x̄ denotes the mean of the signal sequence. However,

as illustrated in ref. [14], the effectiveness of kurtosis as an

impulsiveness measure in the context of bearing condition

monitoring would be undermined by the over-sensitivity to
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outliers, the dependency of kurtosis on rotational speed and

the lack of a meaningful benchmark to be used to distin-

guish the level of impulsivity. To address such problems,

Bozchalooi and Liang proposed to replace the kurtosis by

SI to measure the impulsiveness of signals [14]. For a signal

x(n) with the length of N , the SI is defined as the ratio of the

geometric mean and the arithmetic mean to the signal series,

i.e.,

SI (x) =

(

∏N
n=1 x(n)

)1/N

(1/N )
∑N

n=1 x(n)
. (2)

A property of SI is that it approaches unity for flat time

series and drops to zero for a highly impulsive series. Fur-

thermore, SI is not easily influenced by outliers, as indicated

in [14]. The drawback of SI, however, is that it is inca-

pable of distinguishing signals with low SI values [28]. Thus,

Li et al. developed an index hybrid technique for spectral

segmentation, where the kurtosis, SI and crest factor (CF) are

jointly applied. CF is a measure of a waveform, such as sound

or vibration signals, showing the ratio of peak values to the

effective value. In other words, CF indicates how extreme the

peaks are in a waveform. CF equaling 1 manifests no peaks

and higher CF values indicate impulsiveness. It is defined as

the ratio of the peak amplitude to the root mean square (RMS)

of the signal

CF(x(n)) =
max(x(n))−

(

∑N
n=1 x(n)

)

/N
√

(

∑N
n=1 x

2(n)
)

/N

. (3)

The joint application makes the three measurements mutu-

ally complement and yields a better outcome for spectral seg-

mentation [28]. Motivated by this, it can be foreseen that the

index hybrid strategy has a great potential application to ORF

determination for bearing condition monitoring. The single

function which fuses multiple indexes is defined as [28]

IH (xi(t)) = F
(

Iq(xi(t))
)

, (4)

where IH (xi(t)) represents the index hybrid output of signal

xi(t), xi(t) denotes the ith sub-band signal obtained by inverse

TQWT, as shown in FIGURE 1, F(·) stands for the hybrid

of indexes, and Iq denotes the qth index (q = 1, 2, and 3,

representing the index of kurtosis, CF and the reciprocal of

SI, respectively). In such a way, it can be concluded that a

high level of impulsivity leads to a large output of Eq. (4).

The three indexes work together to determine the output of

the function. The difference is that each one weighs variously

for different signals. Ideally, the index which can provide

more useful information should be given a greater weight. To

determine the weight of each index, the information entropy,

a measure of the disorder degree of data, is utilized. High

inhomogeneity of the distribution of an index indicates low

entropy of the index, namely an index with a lower entropy

should be given more weights [28]. With the weight for each

index being determined, multiple indexes can be hybrid. The

original index hybrid steps are summarized in the following.

1. Normalize each index Iq using the equation below (5), as

shown at the bottom of the next page where I ′q (xi(t)) repre-

sents the normalized value of each index for the ith sub-band

signal, xi(t) denoted the ith sub-band signal generated by

inverse TQWT.

2. Calculate the entropy Eq of each index using

Eq =
1

ln(J + 1)

∑J+1

i=1
Pq (xi(t)) ln

(

Pq (xi(t))
)

, (6)

where Pq (xi(t)) ln
(

Pq (xi(t))
)

= 0 when Pq (xi(t)) =

0, Pq is the probability of the I ′q (xi(t)) presenting in the

sequence
[

I ′q (x1(t)) , I ′q (x2(t)) , . . . , I ′q (xJ+1(t))
]

and calcu-

lated by Pq (xi(t)) = I ′q (xi(t))
/

∑J+1
i=1 I

′
q (xi(t)).

3. Determine the weight Wq for the qth normalized index

by

Wq =
1− Eq

∑3
q=1 (1− Eq)

. (7)

Then Eq. (4) can be re-formed as

IH (xi(t)) =
∑3

q=1

(

WqI
′
q(xi(t))

)

. (8)

The hybrid strategy detailed above takes advantages of

complementary signatures of the indexes and has the potential

of being used to guide the ORF band selection.

B. MOTIVATION ILLUSTRATION

With the TQWT for frequency band segmentation, the pro-

cedure of the ORF selection is that: a) the sub-band signals

corresponding to (J+1) stages of TQWT are firstly generated;

b) the merging operation of neighboring sub-band signals

is implemented if the current merging forms a signal with

a higher IH output calculated by Eq. (4); otherwise the

sub-signal is remained unchanged and the process turns to

the next sub-band signal; c) step b) is repeated under the

guidance of the IH output until all the sub-band signals have

been involved.

However, when vibration signals collected from rotating

machinery under variable speed conditions are polluted by

extensive background noise and outliers which may be gen-

erated by unexpected strikes during the operation, the ORF

would be improperly selected using the original index hybrid

method detailed above. The reason is that both kurtosis and

CF values are over-vigilant to such outliers. Thus, kurtosis

and CF would play a leading role when selecting the fre-

quency band since the weight for each of them is fixed;

whereas the contribution of SI which is negligibly affected by

outliers would be weakened, thus leading to an inappropriate

ORF selection.

To illustrate, a simulated signal containing fault-induced

impulses under time-varying speed operation, cyclic inter-

ferences and outliers are constructed. The simulated signal

x(t) is a mixture of bearing fault induced impulses x1(t),

white Gaussian noise n(t), interferences xint (t) and random
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TABLE 1. Parameters of the simulation model.

interfering impacts ximp(t)

x(t) = x1(t)+ n(t)+ xint (t)+ ximp(t). (9)

The impulsive signal of faulty bearing under ramp-down

speed is firstly generated. The model of vibration signal

collected from faulty bearing under unstable speed operation

can be written as [36]

x1(t) =

L
∑

l=1

Ale
−β(t−tl ) sin(ωr (t − tl))u(t − tl), (10)

where L is the signal length, Al = A(N /fs − ηtl) is amplitude

which is inversely proportional to time instant tl since the

bearing works under a speed-down case, A and η are con-

stants, n(t) is the white Gaussian noise, and tl is the occur-

rence time of the lth impulse (l = 1, 2, . . .). The parameters

associated with the simulation model is listed in TABLE 1.

More details about the impulsive-like signal generation under

time-varying speed can be found in ref. [36]. The instanta-

neous shaft rotating frequency (ISRF) and simulated FCC

is set to fr (t) = −1.25t + 35 and 3.7, respectively, in this

study. SNR is set to−12 dB. In addition to background noise

n(t), vibration signals of faulty bearing are often polluted by

cyclic interferences xint (t) which is constituted by two parts.

The first part xint_1(t) is often resulted by mechanical or/and

electrical components, thereby a cyclic interferences with a

constant frequency 60 Hz and amplitude 1 being added into

the simulated signal. Meanwhile, to reflect the phenomena of

misalignment, imbalance or/and eccentricity, the other part

xint_2(t) is composed of the cyclic interferences with the

shaft rotational frequency and its harmonics as the frequen-

cies, i.e., xint_2(t) =
∑I

i=1 Ai cos(2πkifr (t)t). Three shaft

speed related signal components are taken into consideration,

therefore ki (i = 1, 2, 3) equals 1, 2, 3. The amplitude Ai
(i = 1, 2, 3) is set to 1.25, 1.5,1 for each signal component.

Apart from the impulses induced by bearing localized fault,

vibration signals might be contaminated by other random

impacts [14]. Hence, two outliers, i.e., ximp, are mixed into

the simulated signal. The simulated signal mixture and the

TFR of its envelope is shown in FIGURE 2 (a) and (b),

respectively.

To extract the impulses from the simulated signal, one of

the effective methods is to identify the ORF band and then

band-pass filter the signal. The original index hybrid strategy

stated above is used for this purpose. Processing results are

shown in FIGURE 3. The Q-factor Q and redundancy r are

FIGURE 2. The simulated signal and its TFR: (a) simulated signal in time
domain, and (b) STFT-generating TFR of the envelope of the simulated
signal.

FIGURE 3. Processing results of the simulated signal using original index
hybrid strategy: (a) frequency responses of TQWT; (b) original kurtosis,
CF and reciprocal of SI of each sub-signal; (c) IH output of each merged
signal; (d) selected ORF band; (e) filtered signal using the selected ORF
band; and (f) TFR of the filtered signal envelope. (Note: Unit of the
simulated signal can be arbitrary)

determined as 2 and 5, respectively (details are presented in

subsection 0). The number of stages is calculated by Eq. (19).

The resulted frequency response is presented in FIGURE 3

(a). FIGURE 3 (b) shows the kurtosis, CF and the reciprocal

of SI values of each subsignal. The index hybrid output (IH

output) is achieved by fusing the three indexes following the

manner detailed above. The larger IH output means the higher

level of impulsivity.

The resulting IH output is shown in FIGURE 3 (c) and the

selected sub-frequency bands are exhibited in FIGURE 3 (d).

I ′q (xi(t)) =
Iq (xi(t))−min

[

Iq (x1(t)) , Iq (x2(t)) , . . . , Iq (xJ+1(t))
]

max
[

Iq (x1(t)) , Iq (x2(t)) , . . . , Iq (xJ+1(t))
]

−min
[

Iq (x1(t)) , Iq (x2(t)) , . . . , Iq (xJ+1(t))
] , (5)
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It can be seen that the center frequency of the selected

band-pass is around 6000 Hz, largely deviating from the

pre-set resonant frequency 2000 Hz. The signal is then puri-

fied using the selected filter centered at 6000 Hz, resulting the

filtered signal in FIGURE 3 (e). STFT-resulting TFR of the

envelope of the filtered signal is presented in FIGURE 3 (f),

where no IF-ridges related to instantaneous fault charac-

teristic frequency (IFCF) and its harmonics can be easily

recognized as the ORF is improperly selected. This exam-

ple demonstrates that the ORF for bearing fault diagnosis

might be mistakenly selected if the vibration signal contains

outliers when using the original criterion fusion strategy.

The underlying reason is that two of the three indexes are

over-sensitive to impulsive noises while the weight for three

indexes are almost identical due to that the indexes present

the similar changing pattern, resulting the incorrect frequency

band is selected (weights equals 0.3214, 0.3466 and 0.3320,

respectively, according to Eq. (7)).

III. PRESENTATION OF THE PROPOSED METHODOLOGY

To correctly determine the ORF of signals corrupted with

impulsive noise and harmonic interferences, the proposed

method for bearing fault diagnosis under unstable rotational

speed conditions is detailed in this section, which is consti-

tuted by three parts, including the dual-guidance based ORF

selection, multiple ridge path identification and diagnosis

strategy. Each part is elaborated in the following section.

A. DUAL-GUIDANCE BASED ORF SELECTION SCHEME

WITH TQWT EMBEDDED

1) PROPOSED DUAL-GUIDANCE BASED SCHEME FOR ORF

SELECTION

To tackle the aforementioned issues, the novel dual-guidance

based ORF scheme is proposed. It is known that two of the

three indexes, i.e., kurtosis and CF, are sensitive to outliers

and shaft rotating speeds; whereas SI is not alert to out-

liers and operation speeds [14]. Inspired by this observation,

we propose to use SI to guide weight vector generation of

the other two indexes before hybrid operations, which is the

first guidance. The purpose of calculating weight vectors

is to make sure that the index correctly reflect the signal

impulsiveness is given more weights while the one that does

not truly reflect signal impulsiveness is given no weights.

Specifically, if the kurtosis andCF change in the samemanner

as SI (i.e., peaks of three indexes are located in the same

intervals), the IH output is calculated using Eq. (4) with

constant weights; otherwise, weight vectors of kurtosis and

CF vectors are calculated.

Further, TQWT is used to partition the frequency band

with desirable frequency resolution, instead of subjective

partition. The index hybrid is then performed to guide ORF

band selection based on TQWT, which is the second guidance

operation. According to the discussion above, the steps of the

proposed dual-guidance scheme are elaborated as follows.

1. Acquire index vectors. Generate the frequency response

and all sub-band signals with determined TQWT-related

parameters (details in section 0). Each sub-band signal,

i.e., x1(t), x2(t), . . . , xi(t), . . . , xJ+1(t), corresponds to each

sub-frequency filter, as illustrated in FIGURE 1,

xi(t) = TQWT−1(wi), i = 1, 2, . . . , J + 1, (11)

where wi represents the wavelet coefficients of the ith stage,

and TQWT−1 denotes the inverse TQWT. Generate three

index vectors of J + 1 sub-band signals, i.e., Iq, q = 1, 2, 3,

denoting the kurtosis, CF and reciprocal of SI, respectively.

2.Calculate weight vectors(first guidance). Use SI to guide

the weight vector calculation. Denote weight vectors by Wq

(q = 1, 2, 3). Comparing peak intervals of vector I1 and

I2 with that of I3, If peak intervals of the three vectors are

situated in the same region (this can be done by comparing

the peak locations of vectors: if their peaks are located at

the same stage, then their peak intervals are in the same

region; otherwise, their peak intervals are situated at different

regions), go to step 3; otherwise, weight vector for Kurtosis

and CF vectors are calculated by the following way. Peak

interval is defined as the region centered at the maximal value

of Iq (q = 1, 2, 3) with the boundaries determined by n

and n′. The n and n′ are stage number located at left and

right sides of the current maximal value of Iq, respectively,

and correspond to the stage number where the index value

Iq(n) (Iq(n
′)) is greater than the mean of Iq and its left (right)

neighbor is not greater than the mean of Iq, as shown in

FIGURE 6 (a). Elements of weight vectorW3 are equal since

SI is not sensitive to outliers and calculated by Eq. (7).Weight

vectorsWq (q = 1, 2) are calculate using

Wq(i) =











0, i ∈ [n, n′]
1− Eq

∑3
q=1 (1− Eq)

, otherwise

(i = 1, 2, . . . , J + 1), (12)

and Eq. (8) can be re-formulated as

IH (xi(t)) =
∑3

q=1

(

Wq(i)I
′
q(xi(t))

)

, (13)

whereWq(i) represents the ith element of vectorWq.

3. Implement merging operations (second guidance). Uti-

lize the obtained weight vectors to calculate IH output via

Eq. (13) to guide the merging operation. Intermediate signal

yim(t), which is defined as the signal being processed at the

current merging operation, is generated. If the addition of

the current sub-band signal xi(t) to the intermediate signal

yim(t) can boost the IH output, the xi(t) is added to yim(t) to

form a new intermediate signal, i.e., yim(t)← yim(t)+ xi(t);

otherwise, the current intermediate signal remains unchanged

and is output, and the new intermediate signal is updated as

yim(t)← xi(t). Namely, if IH (yim(t)) < IH (yim(t)+ xi(t)),

continue merging the intermediate signal yim(t) with the ith

sub-band signal to form the new intermediate signal yim(t);

otherwise, keep the intermediate signal yim(t) as an output

of merging denoted by mxj(t) and set the ith sub-band signal

xi(t) as the new intermediate signal yim(t), then switch to

merging the next sub-band signal with the new yim(t). Repeat
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FIGURE 4. Pseudo code of merging operation.

the process until all sub-band signals are involved, resulting

J∗ output signals. The pseudo code of the merging operation

is shown in FIGURE 4.

4. Select ORF band. Find out the merged signal with max-

imal IH output denoted by mxjopt , which can be formulated

as

mxjopt (t) = xk (t)+ xk+1(t)+ . . .+ xk+m(t),

k ∈ (1, 2, . . . , J ), m ∈ (0, 1, . . . , J − k),

subjected to : jopt = argmax
j

(

IH
(

mxj(t)
))

,

j = 1, 2, . . . , J∗, (14)

which means that the selected merged signal is composed by

m+1 sub-band signals starting from the kth sub-band signal.

Output the corresponding merged sub-frequency band fm(jopt )
determined by [fk fk+m], which is the selected ORF band using

the proposed scheme.

The developed dual-guidance based ORF band selection

is graphically presented in the flowchart of FIGURE 5. The

determined ORF band corresponds to the merged signal seg-

ment with the maximum IH output calculated by Eq. (13).

To validate the effectiveness of the proposed dual-guidance

based scheme for ORF determination, the simulated signal

defined by Eq.(9) in Section 0 is processed. FIGURE 6 shows

the processing results. The normalized indexes are shown in

FIGURE 6 (a), where peak intervals of kurtosis and CF are

located at different regions with that of SI. The black dashed

lines in FIGURE 6 (a) represents the mean of kurtosis and

CF vectors, respectively. For kurtosis vector, n and n′ equal

to 4 and 6, respectively, as presented in FIGURE 6 (a); thus,

the peak interval is [4], [6]. Likewise, the peak interval for CF

can also be obtained [3], [7] from FIGURE 6 (a). The weight

vectors are then calculated, as shown in FIGURE 6 (b). With

the weight vectors, IH output can be obtained. The IH output

of signals which are merged by the guide of the index hybrid

scheme is presented in FIGURE 6 (c), where the maximal

FIGURE 5. Flowchart of the proposed dual-guidance based ORF selection
scheme.

FIGURE 6. Processing results of the simulated signal in Section 2 using
the proposed dual-guidance based scheme (fm(j ) represents the j th
merged filter).

IH output can be easily identified. The 3rd merged signal

mx3(t) yields the maximal IH output (i.e., jopt = 3), which

is constituted by three sub-band filter. From FIGURE 6 (d),

it can be seen that the 8th, 9th and 10th sub-band filters of the
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original frequency response (before merging) composes the

3rd merged signal; hence parameters m and k can be identi-

fied as k = 8, m = 2. The selected ORF is plotted in FIG-

URE 6 (e). The raw signal is then filtered using the selected

ORF band, resulting the filtered signal in FIGURE 6 (f). FIG-

URE 6 (g) shows the spectrum of the filtered signal using the

selected ORF band, where it can be seen that the signal fre-

quency is almost centered at 2000 Hz, identical to the pre-set

resonant frequency. The vibration signal is then demodulated

and time-frequency analyzed using Hilbert Transform and

STFT, respectively. The resulting TFR is exhibited in FIG-

URE 6 (h). As seen, the IFCF and three its harmonics can

be recognized, indicating that the adverse effect of harmonic

interferences and unexpected outliers on ORF determination

are eliminated using the proposed dual-guidance based ORF

selection scheme.

Compared with the results (shown in FIGURE 3) obtained

by the original index hybrid strategy, the ORF band can be

properly selected using the proposed scheme as fixed weights

are replaced by weight vectors to make sure that the vigilance

of kurtosis and CF to outliers and speed variations are weak-

ened and the three criteria then jointly work towards the ORF

determination.

2) PARAMETER DETERMINATION OF TQWT FOR ORF

SELECTION

The proposed dual-guidance based ORF selection is based

on frequency responses generated by TQWT. As stated pre-

viously, TQWT is a kind of wavelet transform with tunable

parameters, including Q-factor (Q), redundancy (r), and the

number of stages (J ). The determination of such param-

eters inevitably has influences on the effective realization

of TQWT for ORF selection. There are numerous types of

combination of Q, r and J . In order to guide the parameter

selection of TQWT for ORF band determination, the effects

of these parameters on frequency response are analyzed.

Our focus of using TQWT is on the ORF selection to

extract the fault-generated impulses as much as possible;

hence, the bandwidth of each sub-frequency band, which

corresponds to a band-pass filter, is vital for the success of the

proposed scheme. A wide sub-frequency band would result

in a low frequency resolution; while a narrow one would

lead to a high frequency resolution, which is desirable by

the proposed scheme. According to ref. [34], the bandwidth

of the frequency response producing sub-frequency band j is

approximately half the width of the interval over which the

frequency response is non-zero. Using this approximation,

the bandwidth of jth sub-frequency band can be calculated

by

BWj =
1

2
βαj−1π. (15)

The scaling parameters α and β can be expressed by

α = 1−
β

r
, β =

2

Q+ 1
. (16)

FIGURE 7. Frequency responses of TQWT with different parameter
combinations (data length N is 250, number of stages J adopts the
maximum. The calculation of maximal J can refer to ref. [28]. Note that
the low frequency is not covered in these figures as the signal length is
only 250.).

From Eqs.(15) and (16), it can be deduced that an increase

of Q will narrow the bandwidth of each sub-frequency

response if the redundancy r is fixed. This observation can

also be echoed by observing the first row of FIGURE 7.

However, Q cannot be unlimitedly large as its increase could

incur the decrease of the covering frequency range. The cov-

ering frequency range is defined as the frequency range that

the frequency response of TQWT can reach. Without losing

the generality, the lowest frequencies flow that frequency

responses can reach versus different Q-factors is plotted in

FIGURE 8, where it can be seen that the lowest frequencies

covered by frequency responses drop with the increase of Q.

In addition, the computation cost is also boosted by the

increase of Q for the index hybrid guided ORF determination

algorithm. This is because the number of stage J grows

with the augment ofQ and consequently more sub-frequency

bands are involved for computation. The computational com-

plexity of the whole algorithm can be approximated as O(J ),

indicating that execution time of the algorithm is linear in J .

Therefore, Q represents a compromise among the band-pass

bandwidth, frequency range and computational cost. The

effect of redundancy r on bandwidth of sub-frequency bands

is similar to that of Q, i.e., the bandwidth becomes narrow

with the increase of r when Q being fixed according to

Eq.(15) and Eq.(16). In terms of the covering frequency range

and computational cost, the former slightly declines when r

increasing, as shown in FIGURE 8, and the latter boosts with

the increase of r because the number of stage J of TQWT

increases according to the following equation [34]

Jmax =
⌊

log(N
/

4(Q+ 1))
/

log
(

1
/

(1− 2
/

(r(Q+ 1))
)⌋

(17)

where ⌊z⌋ stands for the largest integer that is less

than z.Therefore, the growth of r would substantially aug-

ment the computational cost since it linearly increases with J .

As can be observed in FIGURE 8, the covering frequency

range is negligibly affected by the increase of the redun-

dancy r . Thus, r can be determined by achieving a desirable

trade-off between the bandwidth and computational cost. The

number of stages has few effects on the bandwidth of each
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FIGURE 8. Frequency range that the frequency response can cover under
different parameter combinations (data length N is 250, number of stages
J adopts the maximum, flow represents the lowest normalized frequency
that the frequency response of TQWT can reach).

TABLE 2. Effects of TQWT-related parameters for optimal resonant
frequency selection.

sub-frequency band and can be determined by taking the

covering frequency range and computational cost into consid-

eration. The effects of each parameter on bandwidth of each

band-pass filter, covering frequency range and computational

cost are summarized in TABLE 2.

With the analysis above, the general principle for determin-

ing the TQWT-related parameters is to 1) keep the bandwidth

of sub-frequency band narrow enough, 2) cover enough fre-

quency range to ensure that the possible resonant frequency

bands are not left out and 3) minimize the computational cost.

To do so, the Q-factorQ and redundancy r cannot be too large

as it will greatly boost the number of stages J and computa-

tional cost. Therefore, the range of the redundancy factor r

is fixed for a desirable trade-off between the bandwidth and

computational cost. The maximum Q adopts 10 by compro-

mising among the bandwidth, covering frequency range and

computational cost. The number of stages J for ORF selection

is not necessary to take the maximum value since the resonant

frequency of bearing systems is often thousands of Hertz. The

center frequency of each band-pass filter can be calculated

using the following equation [34]

fcj = αj
2− β

4α
fs, j = 1, 2, . . . , Jmax, (18)

where fcj represents the center frequency of the jth sub-

frequency band and fs is the sampling frequency. To ensure

that the resonant frequency of bearing systems is not left out,

the lowest frequency that the frequency response can reach

should be not less than fbd, where fbd is a threshold that reso-

nant frequency of most bearing systems can be encompassed.

To achieve this, for a determined combination of Q and r ,

the number of stages J can then be calculated by

J = logα
4αfbd
fs(2−β) , (19)

where fbd is a user-specified parameter. J can then be deter-

mined using Eq. (19) when the lower cut-off frequency fbd

FIGURE 9. IH output- Q scatter diagram.

is specified by considering covering all possible resonant

frequencies of analyzed bearing systems.With the fixed range

for Q and r , the combination which is optimal for the signal

analyzed is determined using the strategy introduced below.

As described above, the index hybrid strategy yields a

better outcome for ORF selection, which also suggests that

the IH output can also be employed to determine the optimal

Q and r combination for the signal analyzed. The optimal

combination can be found using

Q, r = argmax
Q,r

IH (y(t)) ,

s.t. Q ∈ [1,Qmax], r ∈ [rmin, rmax], (20)

where y(t) represents the filtered signal using the proposed

index hybrid guided scheme. Given the range of parameters

Q and r , the optimal Q and r combination corresponds to

the merged signal with the maximum IH output. Parameters

Q and r for the simulated signal in Section 0 can then be

determined as 2 and 5, respectively, as shown in FIGURE 9.

B. MULTIPLE RIDGE PATH IDENTIFICATION

ORF can be determined using the proposed dual-guidance

based scheme with the embedded TQWT. Impulse-like sig-

nals can then be extracted. However, bearing health condition

monitoring is not completed yet since the fault types are not

diagnosed only with the filtered signal. Hence, a diagnosis

method based on multiple ridge path identification is devel-

oped in the following. To conduct the diagnosis, extraction of

IFCF and ISRF is critical. In reality, even though the proposed

dual-guidance based ORF scheme can facilitate the identifi-

cation of ridge paths, it cannot make sure that IFCF, ISRF and

their harmonics are accurately extracted as the associated sig-

nal components might be still faint for weak faults. Dynamic

programming algorithms, like the Viterbi algorithm, have

been explored to extract ridge paths [37], [38]. Nevertheless,

the application of such algorithms might be confined by

the taxing computation cost. This paper, therefore, proposes

a fast as well as effective method for multiple ridge path

identification based on the peak search algorithm which is

a fundamental IF extraction method [30], [32].

To begin with, the TFR of the signal analyzed has to be

obtained. Since STFT is a powerful tool for TFA of nonsta-

tionary signal, the TFRs in this paper are obtained via STFT.

For a signal x(t), its STFT can be defined as

X (t, f ) =

∫ +∞

−∞

x(τ )w(τ − t)e−j2π f τdτ, (21)
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FIGURE 10. Pseudo code of ‘Algorithm I’.

where w(t) should be a low-pass filter, X (t , f ) can be

interpreted as the correlation between x(τ ) and w(τ −

t)e−j2π f τ , and w(τ − t)e−j2π f τ is compactly time and fre-

quency supported, with energy concentrated at time t and

frequency f . Therefore, |X (t, f )|2 can be viewed as the

energy in x(t) at time t and frequency f . Let P(t, f ) =

|X (t, f )|2 (P(t, f ) is known as the spectrogram of signal

x(t)). With the STFT-generating TFR, a regional peak search

algorithm presented in [32], [39] is introduced. The pseudo

code of the algorithm (named ‘Algorithm I’) is listed in

FIGURE 10.

The algorithm presented above searches ridge paths in sub-

regions, which increases the accuracy of the extracted ridge

path in a noisy environment. The sub-regions are determined

by the parameter 1f : a large 1f signifying a wide sub-

region and a small 1f indicating a narrow sub-region. Both

too large and too small 1f would decrease the accuracy

of the algorithm. For rotating machinery, the rotating speed

generally does not exhibit a dramatic change; hence,1f is set

as around 2∼5 Hz (2 ∼ 4 times the frequency resolution of

STFT-generating TFR). The 1f is set to 5 Hz for simulated

and experimental signals in this paper. The key step of the

success of ‘Algorithm I’ is to find a proper starting point

for searching as an inappropriate starting point would lead

to incorrect ridge path identification. The extensively used

method of determining the starting point is to find out the

location of the maximum energy in TFR. However, the point

with maximum energy does not always correspond to a point

right on the IF ridge path of interested signals, particularly

for a multi-component signal. It is quite common that when

the ridge path of the first signal component is extracted with

the starting point corresponding to the one of the maxi-

mum energy, ridges paths of remaining signal components

cannot be accurately searched started with the point with

the maximum energy of the updated TFR as the remain-

ing signal components are often even weaker in terms of

energy.

FIGURE 11. (a) The simulated signal, (b) True IF paths of the four signal
components, and (c) TFR of (a).

To illustrate, a simulated signal s(t) composing of multiple

signal components is taken into consideration:

s(t) =

K
∑

k=1

Ak cos (2π · IFk (t) · t)+ n(t), (22)

where Ak represents the amplitude of each signal component,

IFk (t) is the IF of each component, n(t) stands for noise

as defined in Section 0 and K denote the number of signal

components. Four signal components are considered in this

example. IF1(t) is set to be−2.5t + 35 and IF2(t), IF3(t) and

IF4(t) are equal to 2IF1(t), 4IF1(t), and 5IF1(t), respectively.

The amplitude of each component is randomly set 1.5, 0.9,

1.05, and 0.8, respectively. The simulated signal and the IF

of each component are shown in FIGURE 11 (a) and (b),

respectively. FIGURE 11 (c) presents the TFR of the simu-

lated signal defined by Eq.(22).

The starting point corresponds to the one with maximum

energy in the TFR shown in FIGURE 12 (a). With such a

starting point, the IF of the first signal component, in FIG-

URE 12 (b), is successfully extracted using ‘Algorithm I’.

However, the IFs of the remaining signal component cannot

be accurately extracted by ‘Algorithm I’. The underlying

reason is that points with maximum energy of the updated

TFR are not located on IF ridge paths of the signal compo-

nents. As displayed in FIGURE 12 (c), the second IF is not

correctly identified as the starting point with the maximum

energy is triggered by interfering signals, rather than signal

components. Similarly, the IFs of the third and fourth signal

components are not accurately identified as well for the same

reason, as shown in FIGURE 12 (e) and (f). Note that the

energy distribution of the fourth signal component is not

plotted.

To ensure that the selected starting point for searching

is located on the IF ridge paths of interested signal com-

ponents, an improved version of ‘Algorithm I’ is proposed.

IF paths of signal components of interest extracted by ‘Algo-

rithm I’ are acted as IF pre-estimators denoted by pre-IFk (t),

k = 12, . . . ,K , where K represents the number of signal

components of interest. The improved algorithm attempts to

employ one of the pre-extracted IFs to guide the starting point

selection for the rest of signal components. The selected IF

used for guidance, denoted by g-IF(t), is the one firstly pre-

extracted from TFR, i.e., pre-IF1, as signal component of the

first extracted IF is generally energy-dominant on TFR and it

is most likely to be accurately extracted.

Then, a synchronizing operation between g-IF(t) and pre-

IFk (t) is subsequently developed for an appropriate starting
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FIGURE 12. Ridge path identification using ‘Algorithm I’: (a), (c) and
(e) Energy distribution of original signal, signal after the first IF path
extracted and signal after the first two IF paths extracted, (b) the first
identified ridge path and true IF 1, (d) the second identified ridge path
and true IF 1, and (f) four identified IF paths.

point selection for IF extraction. The purpose of the synchro-

nization is to find the synchronization coefficient, named sck ,

which makes the summation of absolute values between g-

IF(t) and IFtemp(k)(t) minimal. The IFtemp(k)(t) is defined as

IFtemp(k)(t) =
pre-IFk (t)

sck
, (23)

and the synchronization coefficient sck can be obtained by

sck = argmin
sc

∑M

m=1

∣

∣

∣

∣

g-IF(tm)−
pre-IFk (tm)

sc

∣

∣

∣

∣

,

sc = λ, 2λ, 3λ, . . . , scmax. (24)

The time instant corresponding to the minimal absolute

value between the g-IF(t) and IFtemp(k)(t) is set as the starting

point tst for IF extraction.

tst = argmin
tm

∣

∣g-IF(tm)− IFtemp(k)(tm)
∣

∣ , m = 1, 2, . . . ,M ,

(25)

where the parameter λ is the resolution of synchronizing

and scmax is the maximum of synchronization coefficients.

The parameter scmax is specified according to the number

of harmonics taken into consideration and the synchronizing

resolution λ should be set small enough to make sure that

shaft rotating IF, IFCF and their harmonics are not left out.

Update the starting point and re-call ‘Algorithm I’. The IF

of the kth signal component, IFk (t), can then be accurately

extracted. The pseudo code of the improved version of ‘Algo-

rithm I’ is given in FIGURE 13. In this work, scmax and λ are

respectively set to 20 and 0.01 for simulated and experimental

signal analyses. The scmax equaling 20 is sufficient to cover

IFCF, ISRF and a few of their harmonics and λ equaling

FIGURE 13. Pseudo code of improved version of ‘Algorithm I’.

0.01 is small enough to distinguish IFCF, ISRF and their

harmonics by ratios among them.

The proposed algorithm is then applied to process the

simulated signal defined by Eq.(22). The pre-estimators of IF,

i.e., pre-IFk (t), are extracted by ‘Algorithm I’ and displayed

in FIGURE 12 (f). The first pre-extracted IF is selected

as the guidance IF g-IF(t) to update the starting point for

the signal components. With the improved algorithm, new

starting points for the rest of signal components are searched

by finding the minimal absolute value between g-IF(t)

andIFtemp(k)(t), as presented in FIGURE 14 (a-c). The syn-

chronizing coefficient sck (k = 1, 2, 3, 4) for each signal

component is determined as 1, 2, 4 and 5 by the synchro-

nization, respectively, which is identical to the pre-set values.

The new starting points, exhibited in FIGURE 14 (a-c), for

the second, third and fourth signal components are located

at 10, 1 and 12, respectively, indicating that the IFs for the

three signal components are obtained by seeking the max-

imum energy in sub-regions starting at the new points and

then moving forwards and backwards till all time instants

are taken into consideration. It is worth mentioning that the

synchronizing for IF of the first signal component is not

plotted in FIGURE 14 since it has been correctly extracted

using ‘Algorithm I’. The improved version of the algorithm

can ensure that starting points of searching are located on

the IF paths of signal components; therefore the IFs can be

accurately extracted, as shown in FIGURE 14 (d).

C. BEARING FAULT DIAGNOSIS USING THE PROPOSED

DUAL-GUIDANCE BASED ORF SELECTION AND MULTIPLE

RIDGE PATH IDENTIFICATION

With the determined ORF band and improved algorithm I,

the fault-induced impulsive signal can be extracted and the

IFCF and its harmonics can be detected. However, the bearing

fault type cannot be revealed yet without knowing the FCC.

The FCC for bearing with outer race fault (FCCo) and inner

race fault (FCCI) under time-varying speed operation can be

calculated using

IFCFo =
Nb

2
(1−

d

D
cosϕ)f 1r = FCCo · fr , (26)
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FIGURE 14. Ridge path identification using the improved version of
‘Algorithm I’: (a-c) the g-IF1 and the IFtemp of the second, third and fourth
signal component, respectively, and (d) the identified IF ridge paths of the
signal defined by Eq. (22).

IFCFI =
Nb

2
(1+

d

D
cosϕ)f 1r = FCCI · fr , (27)

where Nb represents the number of rolling elements, d is the

diameter of the rolling element, D denotes the pitch diameter

of the bearing, ϕ represents the angle of the load from the

radial plane, fr represents the ISRF, and IFCFo and IFCFI
stand for the IFCF of bearing with outer race fault and inner

race fault, respectively. From Eqs. (26) and (27), it can be

seen that FCCo and FCCI are only determined by parameters

of bearings and independent of shaft rotational speed; hence,

they can be employed to perform bearing fault diagnosis

under time-varying speed.

In order to calculate FCC, ISRF (denoted by fr(t)) has to

be estimated in advance. The ISRF and its harmonics may

present in the TFR of envelope of the filtered signal due to

amplitude modulation, particularly for inner race fault. They

are also very likely to present in low frequency band because

of misalignment, imbalanced mass or eccentricity caused

by manufacturing or/and mounting errors etc. [31], [40].

Therefore, to make sure the ISRF and its harmonics can

be extracted, the frequency band of collected vibration is

chopped and the signal of low frequency band is obtained

using a low-pass filter. The cut-off frequency of the low-

pass filter is user-specified and set to cover the ISRF and a

few of its harmonics. The ridge paths of the ISRF and its

harmonics can be identified using the proposed algorithm

in section 0. It has to be noted that it cannot be guaranteed

that the first extracted ridge path just happens to be the

ISRF; however, the ISRF can be always extracted using the

proposed algorithm because the sub-regions are set to zero

after the extraction of the previous ridge paths. The bearing

fault diagnosis can then be implemented via matching the

average ratios of the extracted IFCFi(t) (i = 1, 2, 3, . . .)

to f
j
r (t) (j = 1, 2, 3, . . .) to FCC and its multiples, where

IFCFi(t) represents the ith extracted IFCF-related IF path

and f
j
r (t) stands for the jth extracted ISRF-related IF path.

FIGURE 15. Flowchart of the bearing fault diagnosis.

The average ratio between IFCFi(t) and the first extracted

ISRF-related IFf 1r (t) can be expressed as

R1i =
1

M

M
∑

m=1

IFCFi(tm)

f 1r (tm)
, i = 1, 2, . . . , imax, (28)

where M is the number of time instant as defined previ-

ously, imax denotes the number of extracted IFCF-related

ridge paths. The average ratio R
j
i of IFCFi(t) to f

j
r (t), (j =

2, 3, . . .) can be calculated in the same manner. Let a vector

Rj = [R
j
1,R

j
2, . . . ,R

j
i, . . . ,R

j
imax], i.e., the vector R

j , named

diagnosis vector, represents the average ratios of imax IFCF-

related ridge paths to the jth ISRF-related IF path. Based

on the statement presented above, the bearing fault diag-

nosis procedure can be summarized using a flowchart of

FIGURE 15.

IV. VALIDATIONS

To exam the performance of the proposed method, exper-

imental signals contaminated by interferences transmitted

from a gearbox and noise are collected on a SpectraQuest

machinery fault simulator (MFS-PK5MT). Vibration signals

from both outer race fault and inner race fault are measured.

A. BEARING OUTER RACE FAULT DIAGNOSIS

The experimental setup for outer race fault is shown in

FIGURE 16, where two ER16K bearings are utilized to sup-

port the shaft of 1 inch in diameter and a mass of 5.03 kg

is mounted on the shaft as an external load. The bearing

shaft is driven by an AC converter controlled motor through a

coupling. The right side is connected to the gearbox shaft by

belts and two sheaves (the smaller one is fixed on the bearing

shaft and the larger one is installed on the gearbox shaft).

Detailed parameters of the bearing are listed in TABLE 3. The

motor shaft rotational speed rises from 35.3 Hz to 60.7 Hz

following a nonlinear manner. The sampling frequency is

20 kHz. In addition, as shown in FIGURE 16, a tachometer
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FIGURE 16. Experimental setup for outer race fault.

TABLE 3. Parameters of the bearings used in the test.

FIGURE 17. Collected vibration signal and TFA for outer race fault case:
(a) raw signal, (b) TFR of the raw signal, (c) TFR of the envelope of the raw
signal, and (d) Collected ISRF.

is used to collect the instantaneous shaft rotational speed for

the purpose of verifying the proposed method.

The collected raw signal is shown in FIGURE 17 (a).

FIGURE 17 (b) and (d) exhibit the TFR of the raw signal

and its envelope signal, respectively. It can be seen that the

instantaneous gear meshing frequency dominates the TFR of

the raw vibration signal. In addition, a few of shaft related

IF components can also be observed in FIGURE 17 (b).

However, IFCF and its harmonics cannot be identified. In

terms of the TFR of envelope of the raw signal, no clear TF

ridges can be recognized, as presented in FIGURE 17 (c). The

collected shaft rotational speed is shown in FIGURE 17 (d),

which can be used to verify the estimated IF obtained by the

improved algorithm.

The proposed dual-guidance based scheme is then

adopted to process the collected signal. To determine the

TQWT-related parameters, Q-factor versus IH output scatter

diagram is plotted in FIGURE 18 (a), showing that the deter-

mined Q and r is 8 and 6, respectively. The corresponding

frequency responses are presented in FIGURE 18 (b).

According to Eq. (19), there are 91 stages, i.e., 91 sub-

signals. The normalized kurtosis, CF and reciprocal of SI

values of each sub-signals are calculated, as exhibited in

FIGURE 18 (c), from which it can be observed that the peak

intervals (indicated by n and n′) of the three indicators are

situated in different positions. Weight vectors are then calcu-

lated via step 2 in sub-section 0. The obtained weight vectors

of the three indexes are displayed in FIGURE 18 (d). The

IH output of the indexes of each merged signal is calculated

during merging, shown in FIGURE 18 (e). The maximum

of IH output corresponds to the 3rd merged signal which

contains 8 original sub-signals from the 6th to 13th according

the merged sub-band filters in FIGURE 18 (f). By observing

FIGURE 18 (f), parameters m and k can be determined

as 8 and 6, respectively. The selected ORF band, FIG-

URE 18 (g), is centralized around 6470 Hz with the band-

width 1699 Hz. The raw signal is subsequently filtered using

the determined ORF band. The band-pass filtered signal is

shown in FIGURE 18 (h). FIGURE 18 (i) and (j) exhibit the

frequency spectrum of the filtered signal and the TFR of its

envelope. The spectrum further indicates that the frequency

of filtered signal is around 6470 Hz. With the weight vectors,

the effects of index values caused by noise and interferences

are weakened and contribution of index values arisen by

target signal is kept when calculating IH output. Then, the

ORF can be successfully selected. From the TFR of envelope

of the filtered signal, two IF paths which are likely to be

IFCF-related ridge paths can be easily recognized. However,

the final diagnosis result cannot be made yet without know-

ing the ISRF information because there is a possibility that

the two IF paths may relate to ISRF or other components,

rather than IFCF and its harmonics, even though this rarely

happens. Furthermore, even if the two IF paths are related to

IFCF, the fault type cannot be determined yet without ISRF

information.

To complete the diagnosis, ISRF related ridge paths are

also required to be extracted and average ratios among the

extracted ridge paths have to be calculated, in addition to

IFCF related ridge paths. The diagnosis results can then

be made by matching the average ratios to bearing FCCs

and its multiples. The ‘Algorithm I’ is applied to extract-

ing the pre-estimator of IFCF-related paths, i.e., pre-IFCF,

and the extracted results are presented in FIGURE 19 (b).

As seen, the IFCF1 can be accurately extracted using ‘Algo-

rithm I’. This is because the maximal energy is located on

IFCF-related path, as shown in FIGURE 19 (a).

Then, the improved version of ‘Algorithm I’ is used. The

extracted IFCF1 acts as the guidance IF. The synchronization

is performed and the synchronization coefficient sc2 is found

to be 2. As shown in FIGURE 19 (c), the starting point of

searching is located at the 38th time instance, where absolute

value between IFCF1(t) and IFtemp(2)(t) is minimal, instead

of the one with maximum energy which might be caused by

interfering signals. With the new starting point, the IFCF2 is

extracted, as displayed in FIGURE 19 (d) (black solid line).
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FIGURE 18. ORF selection using the proposed dual-guidance based
scheme for bearing outer race fault diagnosis.

The lower frequency band signal is obtained by a low-pass

filter with the cut-off frequency 500 Hz. The filtered signal

and its envelope spectra are shown in FIGURE 20 (a) and

(b), respectively. Two IF ridges can be clearly discerned in

FIGURE 20 (b). By ‘Algorithm I’, the results are shown in

FIGURE 20 (d), showing that the first ISRF-related path is

accurately extracted. This is also echo with FIGURE 20 (c),

where the maximal energy is situated in the ISRF-related

path. In this case, the second ISRF-related IF is also success-

fully detected by ‘Algorithm I’, as shown in FIGURE 20 (d).

It is worth mentioning that the second harmonic of ISRF is

extracted prior to ISRF in this circumstance.

Given the extracted IFCF-related ridges and IRSF-related

ridges, the average ratios among them can be calculated

using Eq. (28), as presented in FIGURE 21. The vector R1

FIGURE 19. Multiple ridge path identification using the improved version
of ‘Algorithm I’ for band-pass filtered signal from the bearing with an
outer race fault: (a) energy distribution of the filtered signal, (b) pre- IFCF
obtained by ‘Algorithm I’, (c) synchronized IFCF2 and extracted IFCF1, and
(d) extracted IFCF-related paths and true IFCF.

FIGURE 20. Multiple ridge path identification for lower frequency band
signal from the bearing with an outer race fault: (a) low-pass filtered
signal; (b) TFR of the filtered signal; (c) energy distribution of the filtered
signal, and (d) extracted ISRF-related ridges using ‘Algorithm I’.

represents the average ratios of the extracted IFCF-related

ridges IFCFi(t) (i = 1, 2) to first extracted ISRF ridge f 1r (t),

i.e., 1
M

M
∑

m=1

IFCF1(tm)

f 1r (tm)
and 1

M

M
∑

m=1

IFCF2(tm)

f 1r (tm)
for the outer race

case. Likewise, the vector R2 represents average ratios of the

extracted IFCFi(t) (i = 1, 2) to the second extracted ISRF-

related ridge f 2r (t), i.e.,
1
M

M
∑

m=1

IFCF1(tm)

f 2r (tm)
and 1

M

M
∑

m=1

IFCF2(tm)

f 2r (tm)
.

By observing the average ratios in FIGURE 21, it can be

found that 3.49 matches to FCCo (3.57), 6.98 equals to

2×FCCo and 1.74 is around half of FCCo. It can be con-

cluded that the first extracted ISRF-related path is the second

harmonic of ISRF and the second extracted path is the ISRF.

It can also be confirmed that the bearing has a local fault on

the outer race.
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FIGURE 21. Multiple ridge paths from lower frequency band signal and
ORF band signal.

FIGURE 22. ORF band selection using the original criterion fusion
strategy for bearing outer race fault diagnosis: (a) IH output of each
merged signal; (b) selected ORF band; (c) filtered signal using the
selected ORF band; and (d) TFR of the filtered signal.

For comparison, the original criterion fusion strategy is

applied for ORF band determination of the signal from the

bearing with an outer race fault. Merging results in FIG-

URE 22 (a) shows that there are 39 signal components after

merging and the 5th merged signal containing 15 sub-signals

generates the maximum IH output. Accordingly, the selected

ORF band is centered at 4140 Hz with the bandwidth

3074 Hz, as shown in FIGURE 22 (b). The raw signal is

then filtered using the selected ORF band, followed by TFA

of the envelope of the filtered signal in FIGURE 22 (c).

The resulting TFR is presented FIGURE 22 (d), where IF

ridges can barely be recognized. The weights for kurtosis,

CF and SI index are 0.3149, 0.3361 and 0.3490, respectively,

thus it cannot highlight the index which truly reflects the

impulsiveness.

B. BEARING INNER RACE FAULT DIAGNOSIS

To further investigate the performance of the proposed

method, it is applied for bearing inner race fault diagnosis

in this sub-section. The experiment is shown in FIGURE 23.

Two ER16K bearings, the same as the ones in outer race fault

diagnosis experimental setup, are used. Unlike the outer race

fault case, the accelerometer is positioned right on the top of

the faulty bearing. The bearing parameters have been listed

in Table 3. A tachometer and accelerometer are mounted on

the test rig to collect the shaft speed and vibration signal,

FIGURE 23. Experimental setup for bearing inner race diagnosis.

FIGURE 24. Collected vibration signal and TFA for inner race fault case:
(a) the raw signal, (b) TFR of the raw signal, (c) TFR of the envelope of the
raw signal, and (d) Collected ISRF.

respectively. Similar to the outer race fault case, the shaft

speed is measured for the purpose of validation. The signal

is sampled at a rate of 20 kHz for 10 s. The ISRF decreases

from 24 Hz to 12 Hz.

The collected raw signal and shaft rotational speed are

shown in FIGURE 24 (a) and (d), respectively. As stated

above, the ISRF plotted in FIGURE 24 (d) declines from

24 Hz to 12 Hz during 10 s. The TFR of the raw signal is

presented in FIGURE 24 (b). As shown, the TFR of the raw

signal is dominated by harmonics of gear meshing frequency

fmesh and thus no information related to bearing fault can

be revealed. FIGURE 24 (c) shows the blurry TFR of the

envelope of the raw signal, from which no clear IF ridges can

be seen due to the existence of interfering signals.

Applying the proposed method for the raw signal, the opti-

mal parameters Q and r are selected as 7 and 4, respec-

tively, according to FIGURE 25 (a). The frequency responses

with 53 stages resulted by parametrized-TQWT are given in

FIGURE 25 (b). For each stage, kurtosis, CF and reciprocal

of SI are calculated. The normalized vectors are shown in

FIGURE 25 (c). The locations of peak interval, indicated in

FIGURE 25 (c), of the three indexes are different; therefore,

weight vectors are calculated, as presented in FIGURE 25 (d).

Then the IH output is calculated using Eq. (13) for merging
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FIGURE 25. ORF selection using the proposed dual-guidance based
method for bearing inner race fault diagnosis.

operation. After merging, the IH output of eachmerged signal

is displayed in FIGURE 25 (e), fromwhich it can be observed

that the second merged signal containing 3 sub-signals (from

the 4th to 6th) has the maximum IH output. The merged

sub-band filters are exhibited in FIGURE 25 (f), from which

it can be seen that m and k equal to 3 and 4, respectively,

indicating that there are three sub-band filters composed the

select ORF starting from the 4th sub-band filter. The selected

ORF is presented in FIGURE 25 (g) with frequency center

6760 Hz and bandwidth 871 Hz. The raw signal is then

filtered by the selected ORF band, with the result presented

in FIGURE 25 (h). The spectrum of the filtered signal and

TFR of its envelope are plotted in FIGURE 25 (i) and (j),

respectively, showing that the filter signal is centered around

6760 Hz and a few of IF ridges can be identified in the TFR of

FIGURE 26. Multiple ridge path identification using the improved version
of ‘Algorithm I’ for band-pass filtered signal from the bearing with an
inner race fault.

the filtered signal. Compared with the TFR of the raw signal

envelope in FIGURE 24 (c), the filtered signal is dominated

by impulsive signals and the other interfering signal has been

removed. However, it cannot determine what these IF ridges

represent and what the fault type is yet.

The improved version of ‘Algorithm I’ is then applied

for IF ridge extractions. FIGURE 26 presents the extraction

results. The details about performing the improved algorithm

are not given in the paper since they are similar to those

of the outer race fault diagnosis. The extracted IFCF-related

path and ISRF-related path are shown in FIGURE 26. The

true IFCF is also plotted in FIGURE 26 for comparison.

To conduct bearing fault diagnosis, the average ratios of the

IF ridge positioned in the very bottom of TFR and other three

IF ridges are calculated, which forms a vector R1 shown in

FIGURE 26. By observing this vector, the second element

5.42 matches the FCCI (=5.43) very well. The first element

is half of the second one and the third one is 1.5 times of

the second one. It then can be concluded that the extracted

ISRF-related path is the second harmonic of ISRF and the

bearing is inner race defective.

It has to mention that, unlike the outer race fault diagnosis,

the lower frequency band signal is not discussed for the inner

race fault case and the diagnosis can be completed without

being adversely affected. The reason is that the ISRF-related

IF ridges can also be extracted from the band-pass filtered

signal in the inner case as the amplitude modulation often

happens.

Additionally, the original criterion fusion strategy is also

used to filter the raw signal for comparison. The IH out-

put is shown in FIGURE 27 (a) and the selected frequency

band is shown in FIGURE 27 (b). The center of the selected

frequency band is around 4000 Hz with the bandwidth of

1780 Hz. Filtering the raw signal by the selected frequency

band, the filtered signal and TFR of its envelope are dis-

played in FIGURE 27 (c) and (d), respectively. Apparently,

the TFR in FIGURE 27 (d) is more obscure than the one in

FIGURE 25 (j). The comparison indicates that the proposed

IH guided ORF scheme outperforms the original one. The

calculated weights of kurtosis, CF and SI vector of the orig-

inal hybrid method are 0.3023, 0.3400 and 0.3577. Similar

to outer race case, no obvious difference among the weights;

hence index values triggered by impulsive noise cannot be

distinguished from the ones caused by target impulsive sig-

nals, resulting in failure of ORF selection.
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FIGURE 27. ORF band selection using the original criterion fusion
strategy for bearing inner race fault diagnosis: (a) IH output of each
merged signal; (b) selected ORF band; (c) filtered signal using the
selected ORF band; and (d) TFR of the filtered signal.

TABLE 4. Executing time of the proposed method for experimental data
analysis (related to ORF band determination and multiple IF path
identification).

The computational cost the algorithm is important for

industrial applications, particularly for on-line fault diagno-

sis. To give information about the computational efficiency

of the proposed ORF selection method and multiple IF path

identification method, the executing times for experimental

data processing are listed in Table 4. The algorithms are

executed by MATLAB 2014b on the Laptop running Win-

dows 10 with an Intel Core i7-8550U 1.8GHz processor and

8.00 GB of RAM. It can be seen from Table 4 that: 1) the

computational cost of ORF selection is dependent on the sig-

nal length, the number of sub-signals and signal types, and the

computational efficiency of multiple IF extraction algorithm

relies upon the signal length, the number of extracted IF paths

and signal types; and 2) the peak search based multiple IF

extraction algorithm is quite computationally effective, much

more efficiency than the ORF selection algorithm.

For optimal Q and r combination selection, the computa-

tional time is more expensive as all possible combinations

have to be considered to find the optimal one. The compu-

tational time of identifying optimal Q and r combination for

outer race and inner race fault signal is respectively around

8 min and 11.5 min using the same Laptop. However, it is

worth mentioning that the procedure of determining optimal

Q and r is not mandatory for the success of the proposed

method for bearing fault diagnosis. The resonant frequency

band can still be detected without the strategy of determining

optimal Q and r combination; but it may be not the optimal

one. For real applications, if the first priority is given on

the time effectiveness it is not recommended to involve the

procedure of finding optimalQ and r . Otherwise, the strategy

for optimal parameter combination can be executed to obtain

the optimal frequency band for filtering. Additionally, it is

noteworthy that, if the procedure of optimalQ and r combina-

tion is not involved, larger Q and r values are recommended.

Then, frequency resolution of frequency response would be

higher and an inefficient filter, such as the 1st frequency

response in Fig.3, can be avoided.

V. CONCLUSION AND DISCUSSIONS

A. CONCLUSIONS

This paper proposes a technique to address the main chal-

lenges of bearing fault diagnosis under time-varying speed

conditions. The proposed method contains two parts: the

dual-guidance based ORF selection scheme with TQWT

embedded and multiple IF ridge identification by the

improved peak search algorithm. The former is designed to

maximally extract defect-induced fault signature under vari-

able speed conditions and the latter is devoted to identifying

multiple IF ridges from TFR of the extracted fault signatures.

Given the identified ridges, the fault diagnosis can then be

effectively conducted without relying upon tachometers and

resampling, which expands the industrial application of the

proposed technique.

The developed dual-guidance based scheme with TQWT

embedded exploits non-fixed weights for the index vec-

tors, resolving the drawback of the existing criterion fusion

method where constant weights are used. Furthermore,

the frequency band segmentation is realized via frequency

responses of TQWT, instead of equal division, which satisfies

the frequency resolution requirement that high frequency

band accepts a lower frequency resolution and low frequency

band needs a higher frequency resolution for signal analysis.

The optimal TQWT related parameters are also determined

based on IH output. With the extracted impulses, multiple IF

ridge identification algorithm is devised for fault diagnostics.

The algorithm not only keeps the simple yet computationally

effective advantage of the fundamental peak search algo-

rithm, but also can accurately identify IF ridges with the

synchronization step.

In addition, the motivation of the proposed dual-guidance

based ORF selection scheme is illustrated and the comparison

between the original peak search algorithm and improved one

is also performed. Experimental investigations are executed

to have tested the effectiveness of the proposed techniques.

B. DISCUSSIONS

Segmenting frequency bands using TQWT has limitations.

The frequency range that TQWT frequency response can

cover is dependent on signal length, in addition to Q-factor

and redundancy. If the target frequency is quite low and,

unfortunately, meanwhile the signal length is quite short,

the target frequency may not be able to be detected. Besides,

finding optimal Q and r combination is time consuming;
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thus, the future work can be conducted on the direction of

determining optimal Q and r efficiently.

Lastly, it is worth mentioning that the function used for

weight vector calculation is not smooth, where, as long as

needed, the weights for index points are set zero. In future

work, this function still has the room for improvements.

In addition, identifying two or evenmultiple ORF band is also

recommended for future work.
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