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ABSTRACT In this paper, we propose a novel loss function named dual-guided loss (DGL) for ground-based

cloud classification in weather station networks. The proposed DGL could integrate the knowledge of differ-

ent convolutional neural networks (CNNs) in the process of optimization, which improves the discriminative

ability of ground-based cloud feature representations. To this end, we add a modulation term into the DGL,

which assigns large weights to the hard-classified ground-based cloud samples. As a result, the deep network

is forced to pay more attention to these hard-classified samples, and therefore, the performance of the

deep network gets improved. We demonstrate the effectiveness of the proposed DGL with the extensive

experiments on two ground-based cloud datasets, and the experimental results of the DGL outperform the

state-of-the-art methods.

INDEX TERMS Dual guided loss, ground-based cloud classification, weather station networks.

I. INTRODUCTION

Accurate ground-based classification is vital for many

real-world applications, such as climate monitoring, weather

forecast, agriculture and aviation industry. The use of weather

station networks equipped with image sensors is one of

the most effective ways to collect substantial ground-based

cloud images. Correspondingly, various approaches have

been developed for automatic ground-based cloud classifica-

tion with these collected samples.

Some approaches [1]–[6] usually employ hand-crafted fea-

tures, such as texture, structure, color and so on, to represent

clouds. However, hand-crafted features are designed based

on the expert knowledge, and the discriminative ability is

limited. It is because hand-crafted features are difficult to

adapt to great variations of cloud appearances caused by

different sensor locations in weather station networks.

Over the past few years, deep learning has significantly

boosted the state-of-the-art performance in a variety of visual

classification tasks, for example, object recognition [7]–[9]

and face recognition [10], [11], and has pointed out a new

way for ground-based cloud classification [12]–[18]. The

convolutional neural network (CNN) is a representative of
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FIGURE 1. The general pipeline of CNN model.

deep learning algorithms and has been used to learn discrim-

inative features. The advantage of CNN lies in the ability to

learn highly complex non-linear features owing to its multiple

convolutional layers and pooling layers, and therefore CNN

is able to adapt to different data distributions.

The CNN models can be viewed as the combination of

deep feature learning component and loss component as

shown in Fig. 1. It should be noticed that since the outputs

of the last fully connected layer are usually employed to

compute the CNN loss, we define the loss function together

with the last fully connected layer as the loss component
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of CNN. The parameters of CNN is optimized by minimizing

the loss using the back-propagated algorithm, and accord-

ingly the representation ability of each layer is strengthened.

Currently, the common-used loss functions are contrastive

loss [19], triplet loss [20] and cross-entropy loss [21]. These

loss functions aim to strengthen intra-class compactness and

inter-class separability. For ground-based cloud classifica-

tion task, the cross-entropy loss is the most commonly used

benefiting from its simplicity and excellent performance.

However, the cross-entropy loss treats each class equally

and does not take into consideration the knowledge of other

CNN models, which results in the knowledge poverty for the

hard-classified cloud samples.

In this paper, we propose a novel loss named dual guided

loss (DGL) for ground-based cloud classification in weather

station networks, which could embed the knowledge of dif-

ferent CNN models into the process of CNN optimization.

To this end, the DGL is obtained by imposing a modula-

tion term on the cross-entropy loss. The modulation term

reflects the distribution of each cloud category learned from

another CNN model, and therefore the DGL is restricted by

both the prior knowledge and current prediction probabilities.

The modulation term assigns a large weight to the cloud

image with low classification accuracy. This in turn increases

the importance of specific cloud classes, and reaches a

balanced learning ability of the CNN model between the

easy-classified cloud images and the hard-classified cloud

images. In the experiments, we implement the proposed algo-

rithm on the ResNet-50 [22] and verify the performance on

two ground-based cloud datasets. The experimental results

verify that the proposed DGL has an advantage over the

cross-entropy loss as well as the hand-crafted features.

The remainder of this paper is constructed as follows.

Section II briefly reviews the related work. Section III

presents a description of the proposed DGL in detail.

Section IV exhibits comprehensive experimental results on

two ground-based cloud datasets and Section V finally termi-

nates this paper.

II. RELATED WORK

This work is closely connected to the deep learning-based

ground-based cloud classification and the loss of CNNs.

We briefly introduce the two kinds of works in this

section.

A. DEEP LEARNING-BASED CLOUD CLASSIFICATION

Since clouds have a great texture characteristic, many

researchers employ texture classification techniques for

ground-based cloud classification. Zhuo et al. [23] combined

the texture, local structure and global rough structure infor-

mation to classify ground-based cloud images, where the

former two are captured by the color census transform (CCT)

and the later one is captured by the block assignment

method. Liu et al. [24] presented the weighted local binary

patterns (WLBP) which assigns each pixel an adaptive weight

in the process of accumulating histogram to distinguish dif-

ferent ground-based cloud categories. In stable LBPs [25],

the averaged ranks of the occurrence frequencies of all rota-

tion invariant patterns in the LBPs are learned in order to

obtain stable representations for classifying ground-based

cloud images.

Recently, deep learning-based features have been demon-

strated the effectiveness for ground-based cloud classifica-

tion. For instance, Taravat et al. [26] verified that multilayer

perceptron (MLP) achieves better performance than support

vector machine (SVM) for ground-based cloud classification

in most situations. Xia et al. [12] applied a hybrid scheme

on the basis of neural network and K -nearest neighbor to

distinguish various cloud types. Shi et al. [13] conducted

the max-pooling or sum-pooling strategy on convolutional

feature maps of CNN to produce the deep convolutional

activations-based features to represent each ground-based

cloud image. Ye et al. [14] exerted the cloud pattern mining

and selection method to discover meaningful local descrip-

tors from convolutional activation maps, and then encoded

them using the Fisher vector. Zhang et al. [15] proposed the

CloudNet to learn texture, structure and shape features from

CNN for cloud classification.

Apart from visual features extracted from cloud images,

some approaches investigate to fuse the cloud multi-modal

information under the framework of CNN. For example, Liu

and Li [16] exerted the sum-pooling operation across convo-

lutional activation maps and flattened them as cloud visual

features. Then the visual features are directly concatenated

with the multimodal information to reform the ground-based

cloud representation. Afterward, the joint fusion convolu-

tional neural network (JFCNN) [17] was proposed to inte-

grate visual features and multi-modal information using

the joint fusion layer in a unified framework. Furthermore,

Liu et al. [18] presented the multimodal generative adversar-

ial network (Multimodal GAN) to generate the cloud images

and the corresponding multimodal information simultane-

ously, which could improve the generation ability of the

classification network.

B. LOSS FUNCTION

Loss functions aim to estimate how much the predicted value

deviates from the corresponding true value. The parameters

of deep neural networks are optimized by minimizing the

loss and therefore the representative features can be learned.

The loss functions utilized for classification tasks are the

contrastive loss, triplet loss, cross-entropy loss as well as a

series of their variants [27]–[29]. At present, the CNN mod-

els of ground-based cloud classification are mainly super-

vised by the multinomial logistic regression [13], [15] and

the cross-entropy loss [16], [17]. Normally, the outputs of

the last fully connected layer are first passed through the

softmax function and then computed by the corresponding

loss function. To improve the generalization ability of CNN,

Liu et al. [18] first generated the fake cloud samples, and
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then trained them using the label smoothing regularization

for outliers (LSRO) together with the cross-entropy loss.

III. APPROACH

Deep learning methods especially CNN models have

achieved huge success in terms of ground-based cloud clas-

sification. The majority of them focus on how to design the

CNN structure, and few involves the loss function of CNN.

This paper proposes the DGL to enhance the discriminative

ability of features by explicitly integrating the knowledge of

different CNN models in the loss function. Since the DGL is

derived from the cross-entropy loss, we introduce it starting

from the cross-entropy loss.

A. CROSS-ENTROPY LOSS

For ground-based classification, the cross-entropy loss is one

of the most commonly employed losses in CNN and formu-

lated as

L = −

K∑

i=1

qilog pi, (1)

where K is the ground-based cloud category number, qi = 1

if i is the ground-truth label and 0 otherwise, and pi ∈ [0, 1]

indicates the predicted probability of the i-th cloud category.

pi is calculated by the softmax function

pi =
exi

∑K
j=1 e

xj
, (2)

where xi is the output result of the i-th neuron of the last fully

connected layer. In the training procedure, the loss calculated

by Equation (1) is back-propagated through the whole net-

work. As a result, the network assigns a high value to xi when

i is the ground-truth label, otherwise xi is assigned to a low

value. Hence, the predicted probability of the ground-truth

label in Equation (2) is maximized.

From Equation (1), it is observed that the cross-entropy

loss treats each category sample equally. However, there

exists imbalance in terms of classification difficulty among

different categories. That is, the number of hard-classified

samples in different cloud categories is significantly different

as shown in Fig. 2(a). Hence, the loss should consider the

cloud images from different categories in an unequal way in

the training process.

B. DUAL GUIDED LOSS

To overcome the weakness of cross-entropy loss, we propose

the DGL which utilizes the modulation term to adjust the

learning weights for hard-classified samples. The modulation

term of the i-th class is defined as

ri = α
γ

i , (3)

where αi is an indicator of classification difficulty, and γ is a

positive tunable parameter. In this paper, αi is computed by

αi =
1

ci
, (4)

FIGURE 2. (a) Indicates the classification result of the cross-entropy loss,
and (b) indicates the classification result of the proposed DGL which is
imposed by the modulation term. Herein, the circle, triangle and square
represent three different categories of cloud samples. In (a), the cloud
categories represented by circle and triangle include many hard-classified
samples, and the category represented by square is well classified. In (b),
after imposing the modulation term, the three categories are all well
classified by learning in an unequal way.

where ci is the classification accuracy of the i-th class which is

learned by the CNN model with the traditional cross-entropy

loss. Hence, a high weight will be assigned to the sample with

the low classification accuracy.

Combining Equation (1) and Equation (3), the DGL is

formulated as

LDGL = −

K∑

i=1

riqilog pi. (5)

There are two properties of the DGL. Firstly, the DGL

assigns different weights according to the degree of clas-

sification difficulty, which could force the CNN model to

tilt the hard-classified cloud samples. Specifically, when a

cloud image is from the easy-classified class, the modulation

term is near 1 and the loss is almost unchanged. On the

contrary, when a cloud image is from the hard-classified

class, the modulation term is larger than 1 and the loss value

rises due to the increased weight of the hard-classified cloud

sample. Secondly, the DGL could smoothly adjust the influ-

ence of the hard-classified cloud samples using the parameter

γ . When γ = 0, the DGL degenerates into the traditional

cross-entropy loss. As γ becomes larger, the effect of the

modulation term increases. As a result, the sample is penal-

ized heavily when it is misclassified. This in turn forces the

network to concentrate more on the hard-classified samples

and therefore we learn an optimal CNN model to classify

different types of ground-based cloud images.

IV. EXPERIMENTS

In this section, we start with presenting the description of two

ground-based cloud datasets, and then give an introduction of

the experimental setup. Afterwards, we show the classifica-

tion results of two cloud datasets. Eventually, the important

parameters are analyzed.

A. GROUND-BASED CLOUD DATASETS

GCD-A. The ground-based cloud dataset A (GCD-A) con-

tains 8000 ground-based cloud images captured by the sky

camera with fisheye lens. Since the collection of the dataset

undergoes a long period of time, the cloud images have large

VOLUME 7, 2019 63083



M. Li et al.: DGL for Ground-Based Cloud Classification in Weather Station Networks

FIGURE 3. Some representative cloud samples from each category in GCD-A and GCD-B. The Arabic numerals from 1 to
7 indicate 1) cumulus, 2) altocumulus and cirrocumulus, 3) cirrus and cirrostratus, 4) clear sky, 5) stratocumulus, stratus and
altostratus, 6) cumulonimbus and nimbostratus, and 7) mixed cloud, respectively.

FIGURE 4. The detailed sample numbers of each category on GCD-A and GCD-B.

variations in illumination and appearance. Each cloud image

is with the resolution of 1024 × 1024 pixels and preserved

in the JPEG format. The dataset is partitioned into 7 cate-

gories, including 1) cumulus, 2) altocumulus and cirrocumu-

lus, 3) cirrus and cirrostratus, 4) clear sky, 5) stratocumulus,

stratus and altostratus, 6) cumulonimbus and nimbostratus,

and 7) mixed cloud. Herein, the categories are classified

in terms of the genera-based classification recommendation

of the World Meteorological Organization (WMO) and the

visual similarities of cloud appearance in practice. Addition-

ally, cloud images with cloudiness less than 10% are treated

as the clear sky. The GCD-A is divided into the training set

and the test set, both of which are with 4000 samples.

GCD-B. The ground-based cloud dataset B (GCD-B) is

collected in Zhangjiakou, Hebei, China from 2017 to 2018.

It contains 12000 ground-based cloud images and is classified

into seven sky types according to the same criteria as GCD-

A. The GCD-B is separated into the training set and the test

set in which both of them contain 6000 cloud images with

seven sky types. Furthermore, each cloud image is captured

by a camera sensor and preserved in the JPEG format with

the pixel resolution of 512× 512. Some representative cloud

samples from GCD-A and GCD-B are shown in Fig. 3, and

the detailed sample numbers of each category on the two

datasets are illustrated in Fig. 4.

B. EXPERIMENTAL SETUP

As for GCD-A, we initially resize the ground-based cloud

images into 252 × 252, and then subtract the mean RGB

values calculated from the training set for each cloud image.
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To augment the number of training examples, we randomly

crop the cloud images into 224 × 224, and randomly flip the

cloud images horizontally. The ResNet-50 is utilized as the

training model, and the last fully connected layer is substi-

tuted with a new one with 7 neurons which are the number of

cloud categories.

In the training process, the parameters of the ResNet-

50 except the last fully connected layer are initialized by the

pre-trained model on ImageNet. As for the last fully con-

nected layer, the biases are initialized to 0 and the weights are

initialized to a normal distribution with the standard deviation

of 0.01. The parameter αi in Equation (3) is assigned to the

reciprocal of the i-th category classification accuracy learned

from the ResNet-50 model with the traditional cross-entropy

loss. We set γ in Equation (3) to 1 and 4 for GCD-A and

GCD-B, respectively. The ResNet-50 is optimized by the

stochastic gradient descent (SGD) with the batch size of 32.

The momentum and the weight decay are set to 0.9 and

2 × 10−4, respectively. In addition, the learning rate starts

at 0.0001 and is reduced by a factor of 10 at the 30-th epoch

of 50 epochs.

The experimental setup of GCD-B is the same as GCD-A

with the exception of the momentum and the weight decay

being set to 0.95 and 5 × 10−4, respectively.

C. RESULT ANALYSIS

We first compare the proposed DGL with other methods,

i.e., bag-of-visual-words (BoVW) [30], local binary patterns

(LBP) [31], the completed LBP (CLBP) [32] and the ResNet-

50 optimized by the cross-entropy loss. The BoVW densely

extracts the SIFT descriptors [33] from each cloud image

and then generates a codebook with 300 clusters using

k-means algorithm. In addition, we employ the spatial pyra-

mid matching scheme [34] where each cloud image is par-

titioned into three levels with 1, 4, and 16 sub-regions,

respectively. Therefore, the final representation of BoVW

for each cloud image is a 6300-dimensional histogram. The

LBP is represented by a series of binary codes which are the

difference signs between the center pixel and its neighbors.

We utilize the uniform invariant LBP descriptor LBPriu2P,R to

estimate the performance of the ground-based cloud classifi-

cation, where P and R represent the neighbor number of the

center pixel and the circle radius. Herein, (P,R) is set to (8, 1),

(16, 2) and (24, 3), respectively. Accordingly, the dimensions

of the feature vectors are 10, 18 and 26 under the three (P,R)

conditions. The CLBP is evolved from the LBP, and it addi-

tionally considers the center pixel and the magnitude of local

differences. The final cloud image is represented by combin-

ing these three descriptors jointly. The parameter (P,R) is set

to (8, 1), (16, 2) and (24, 3) respectively, and therefore each

cloud image is represented as the feature vectors with the

dimensions of 200, 648 and 1352, respectively. To demon-

strate the effectiveness of the proposed DGL, we also train the

ResNet-50 using the traditional cross-entropy in Equation (1)

which has the same initialization and learning strategy as the

proposed DGL.

TABLE 1. The classification accuracies (%) of different methods on GCD-A
and GCD-B.

The comparison results of different methods on GCD-A

and GCD-B are shown in Table 1. Herein, ResNet-50 +

CEL indicates the ResNet-50 is trained by the traditional

cross-entropy loss, and ResNet-50 + DGL represents the

ResNet-50 is trained by the proposed DGL. From the table we

can observe that the CNN-basedmethods (ResNet-50+CEL,

ResNet-50 + DGL) outperform the hand-crafted methods

(LBP and CLBP) and the learning-based methods (BoVW)

on both GCD-A and GCD-B. It is because CNN is composed

of multiple convolutional and pooling layers which could

learn complex nonlinear representations according to differ-

ent distributions of ground-based datasets. Such an advantage

endows the deep features with more discriminative ability.

Furthermore, the accuracies of ResNet-50 + DGL are supe-

rior to those of ResNet-50 + CEL on the two datasets, which

indicates the effectiveness of assigning higher weights to the

hard-classified samples.

Then, we analyze the classification performance of the

cross-entropy loss and DGL for each cloud category, and

the confusion matrices of them on GCD-A and GCD-B are

presented in Fig. 5 and Fig. 6, respectively. From the left parts

of the two figures, we can see that the classification results

of the cross-entropy loss exist imbalance among these cloud

categories on both GCD-A and GCD-B. Specifically, as for

GCD-A, class 3 and class 7 only achieve the classification

accuracies of 67.90% and 63.73%, while class 4 achieves

the accuracy of 100%. Hence, class 3 and class 7 are the

hard-classified cloud categories. Similarly, as for GCD-B,

class 5 and class 7 are hard-classified cloud categories due

to their low classification accuracies. These hard-classified

cloud categories are with larger intra-class variations and

smaller inter-class variations, which deteriorates the learning

ability of the network, and therefore it is unreasonable for

cross-entropy loss to treat each cloud samples equally. On the

other side, the classification results of the DGL on GCD-A

and GCD-B are shown in the right parts of Fig. 5 and Fig. 6.

According to the figures, the classification accuracies of class

3 and class 7 on GCD-A achieve 74.15% and 68.63% which

lead to the improvements of 6.25% and 4.90% compared

with ResNet-50+ CEL. Similarly, the improvements achieve

6.69% and 5.74% for class 5 and class 7 on GCD-B, respec-

tively. It is because the samples from the hard-classified

categories are penalized by DGL heavily when they are
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FIGURE 5. The confusion matrices of CEL and DGL on GCD-A.

FIGURE 6. The confusion matrices of CEL and DGL on GCD-B.

TABLE 2. The classification accuracies (%) of the proposed DGL with different γ on GCD-A and GCD-B.

misclassified, and therefore the CNNmodel pays more atten-

tion on these samples. Meanwhile, the classification accu-

racies of the easy-classified categories, such as classes 1,

2 and 4 in GCD-A, and classes 1, 3 and 5 in GCD-B, are

almost unchanged. That is to say, the improvement of the

overall classification accuracy derives from the improvement

of hard-classified categories.

D. PARAMETER ANALYSIS

The parameter γ in Equation (3) is introduced to regulate the

strength of themodulation term.We analyze the classification

performance of the proposed DGL with different γ and

the results are illustrated in Table 2. From the table, when

γ = 0, it is equivalent to the cross-entropy loss and obtains

83.15% classification accuracy. When γ increases, the hard-

classified cloud samples are assigned to larger weights, and

accordingly the DGL enforces the network to pay more atten-

tion to the hard-classified samples. Hence, the DGL shows

obvious gains over the cross-entropy loss as γ increases,

and it achieves the peak classification results of 85.28% and

92.80% when γ is equal to 1 and 4 for GCD-A and GCD-B.

Moreover, when γ is greater than 1 and 4 on GCD-A and

63086 VOLUME 7, 2019



M. Li et al.: DGL for Ground-Based Cloud Classification in Weather Station Networks

GCD-B respectively, the classification performance of the

DGL declines, but it is still superior to the cross-entropy loss.

In a word, the optimal γ is set to 1 and 4 for GCD-A and

GCD-B, respectively.

V. CONCLUSION

In this paper, we have presented the DGL to supervise the

training process of CNN for ground-based cloud classifica-

tion in weather station networks. The proposed DGL inte-

grates the prior knowledge of each cloud category using

the modulation term. By increasing the weights of the

hard-classified cloud samples, the proposed DGL forces the

network to pay more attention to the hard-classified cloud

samples so as to learn discriminative and robust features for

ground-based cloud representations. To validate the effec-

tiveness of the proposed DGL, we have conducted a series

of comparative experiments on two ground-based datasets

and the results show that the proposed DGL achieves better

classification performance than the other methods.
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