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Abstract—In this study, a parallel network based on hand
detection and body pose estimation is proposed to detect
and distinguish human’s right and left hands. The network
is employed to human-robot interaction (HRI) based on
hand gestures. This method fully uses hand feature infor-
mation and hand information in the human body structure.
One channel in the network uses a ResNet-Inception-Single
Shot MultiBox Detector to extract hand feature information
for human’s hand detection. The other channel estimates
human body pose first and then estimates the positions of
the left and right hands using the forward kinematic tree of
the human skeleton structure. Thereafter, the results of the
two channels are fused. In the fusion module, the human
body structure can be utilized to correct hand detection
results and distinguish between the right and left hands.
Experimental results verify that the parallel deep neural
network can effectively improve the accuracy of hand de-
tection and distinguish between the right and left hands
effectively. This method is also used for the hand gesture-
based interaction between astronauts and an astronaut
assistant robot. Our method can be suitably used in this
HRI system.

Index Terms—Assistant assistant robot, Dual-hand de-
tection, Human body estimation, Human-robot interaction,
Parallel deep neural network

I. INTRODUCTION

H
UMAN-robot interaction (HRI) is important in robotics

and aims to make humans and robots to communicate

with each other. Robots have smooth operation, high precision,

and wide range, whereas contrast, humans can make percep-

tions, decisions, and plans efficiently. Therefore, if they can

work collaboratively, then they will finish tasks effectively.

Traditional HRI methods are centered on robots. The de-

velopment of technologies, such as computers and artificial

intelligence, has gradually evolved HRI from robot-centered

to human-centered methods. These new HRI methods are

based primarily on hand gestures [1], voice [2], and electroen-

cephalogram [3]. These methods are the main directions for

the future development of HRI because of their natural and

intuitive features.

Among these methods, the vision-based hand gesture HRI is

a good choice [4]–[6]. It includes hand detection, hand gesture

recognition, and hand tracking. Hand detection is the premise

and basis for the others. Vision-based hand detection is a

special object detection. But it has a few disadvantages, such

as complex background, occlusions, and illumination variation.

These factors influent the precision of hand detection and

recognition. Traditional visual-based hand detection methods

are based primarily on skin color, motion flow information,

and shape models [7]. These traditional methods only extract

the shallow information of the hand, and they are subject to

some restrictions. For example, skin color-based hand detec-

tion relies heavily on skin color information. Motion flow-

based hand detection cannot detect static hands. Moreover,

model-based hand detection is heavily influenced by complex

backgrounds.

Compared with traditional hand detection methods, deep

learning method can extract deep abstract hand features, and

minimize the disadvantages of vision-based hand detection.

Therefore, we can also use deep learning models [8]–[10] that

are used for object detection. Some of these models, such as

region-based convolution neural network (R-CNN) [11], Fast

RCNN [12], Faster RCNN [13], you only look once (YOLO)

[14], and Single Shot MultiBox Detector (SSD) [15], have

achieved great effects. However, false detection or detection

failure occurs in the hand detection process even when these

deep learning models are used.

Distinction between the left and right hands is more difficult

than hand detection especially when too many hand gestures

are available, because both hands are only slightly different.

Reference [16] uses the assumption that defines the direction

and position of both hands to solve the problem of hand

distinction in hand tracking. Nonetheless, if the hand direction

or position is not in the defined condition, then this method

will not work. Reference [17] and [18] use deep learning

model to detect and distinguish the right and left hands.

However, this method is only suited to several special hand

gestures, such as the hand gestures used in driving vehicles.

If too many hand gestures are available, then the use of only

deep learning models to detect hand features for distinguishing

the right and left hands is insufficient.

Hand detection is distinct from the detection of other objects

because most objects are independent, but hands are depen-

dent. Hands are related to the human body. When we observe

other people’s hands, we base not only the characteristics of

the hand, but also the structural features of the human body.

Therefore, this study simulates the way humans detect hands.

We combine the hand detection based on hand features with

the dual-hand position estimation in accordance with the hu-



man body structure to detect human’s left and right hands. As a

result, a parallel deep neural network is designed. First, the two

sub-networks connected in parallel uses the ResNet-Inception-

Single Shot MultiBox Detector (RI-SSD) and human pose

estimation method to extract the characteristics of the hand

and human body structure, respectively. Then, a fusion module

is used to fuse the results for obtaining human’s dual-hand

detection. To the best of our knowledge, we are the first to

combine the hand detection with human body estimation for

dual-hand detection.

We summarize the main contributions of our work as fol-

lows: (1)a RI-SSD network that changes the structure of SSD

using ResNet and Inception network is proposed to increase

the accuracy of hand detection. (2)An improved body pose

estimation method based on body structure forward kinematic

(FK) tree is proposed to estimate the keypoints of left and

right hands. (3)A fusion module is proposed to fuse the results

of hand detection and dual-hand position estimation for dual-

hand detection. (4)Our dual-hand detection method can be

used in static and dynamic hand gesture recognition systems.

The method is also used in a space HRI system.

The remainder of the paper is structured as follows. In

Section 2, the RI-SSD structure is introduced. In Section 3,

the body pose estimation and dual-hand detection method with

fused information are introduced. Experimental results and

validation are presented in Section 4. Section 5 elaborates the

conclusion and future work.

II. RI-SSD FOR HAND DETECTION

In the hand detection channel, the deep learning method is

used to detect human’s hands. SSD [15], which is proposed

by WeiLiu et al., is a good choice for object detection. Its

accuracy rate is higher than that of YOLO [14], and its speed

is faster than that of Fast-RCNN [12]. The SSD method is

based on the anchor of Faster R-CNN. As shown in Fig.1(a),

SSD uses the traditional classification network VGG-16 and

introduces some additional layers as feature extraction layers.

The changes in the extra layer ratios are evident. Thus, SSD

method can detect multi-scale objects.

However, performance of SSD in detecting small targets is

unsatisfactory. The reason is that the shallow layers of this

method have sufficient contextual information but inadequate

semantic information, whereas the deep layers have sufficient

semantic information but inadequate contextual information.

The two kinds of information are essential for detecting small

objects. When humans interact with robots, a long distance

may exist between them. At this time, the human’s hands are

regarded as small targets. These small targets need sufficient

contextual information to provide detailed features and inten-

sive sampling and sufficient semantic meaning to distinguish

them from the background [19]. Consequently, use of the SSD

alone to detect human’s hand directly is insufficient. To solve

the problem of SSD, we propose an improved SSD network

called RI-SSD.

We redesign the SSD structure, inspired by GoogleNet’s

Inception block [20] and the deep residual network [21],

to ensure accuracy in object detection, especially for small
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Fig. 1. (a) The structure of SSD network (b) The structure of RI-SSD
network.

objects. First, we use the ResNet101 network [21] instead of

the VGG-16 of the SSD. Compared with the VGG-16, the

ResNet101 can extract image features better, which helps to

improve the detection rate of hands. Second, the Inception

structure is added to the deep layers of the SSD. The deeper

the network layer is, the more powerful its abstract features

become. However, some training problems, such as gradient

disappearance and over-fitting, are also generated. Considering

the tradeoff between performance and speed, we introduce the

Inception structure in some extra layers behind ResNet101

to increase the types of convolution kernels. Thus, the scope

of the receptive field is expanded. Thereby increasing the

sensitivity of the model to small objects and avoiding loss

of large objects.

Figure 1(b) shows the structure of RI-SSD. It includes 13

layers. The first five layers are the first five layers of RseNet.

The sixth and seventh layers are convolution layers changed

by fully connected (FC) layers of RseNet, the following three

layers are Inception layers, and then a 1×1 sized SSD layer

follows them. The last two layers are FC and classification

layers. Each layer except the last two layers has convolution,

pooling and rectified linear unit (ReLU) layers. The input

layer size is 300×300, and the other feature maps’ sizes are

shown in Figure 1(b). The traditional SSD uses the VGG-

16 for feature extraction in shallow layers (light blue box in

Figure 1(a)). According to the reference [22], the image feature

extraction effect of ResNet-101 is better than that of VGG-

16; therefore, the VGG-16 layers in the SSD are replaced by

the ResNet-101 layers (gray box in Figure 1(b)). The tradi-

tional SSD uses deep layers to capture objects, and the deep

SSD layers use only one type of convolution kernel (a 3×3

convolution kernel). Through the convolution operation, deep

feature maps will produce the location offset and confidence

of the object. In object detection, large convolution kernels

capture large objects, and small receptive fields can locate



small objects. Therefore, the feature maps in shallow layers

may lose the details of objects. Accordingly, we modify some

SSD layers and replace these layers with the Inception building

block (green box in Figure 1(b)) to form the Inception layers

(purple box in Figure 1(b)). A 1×1 convolutional kernel, a

3×3 convolutional kernel, and a 5×5 convolutional kernel

are stacked in the Inception building block instead of the

original 3×3 convolutional layer. The 5×5 convolution kernel

is replaced by a series of two 3×3 convolution kernels. In

this way, considerable details of objects can be obtained.

We reduce the number of feature maps for each layer on

the Inception building block to match the total number of

original feature maps. In reflecting different proportions of

the receptive fields, we set different weights (w = 1, 2, 1) to

the output of each type of convolution (conv1×1, conv3×3,

conv5×5). In this approach, the network can capture large and

small objects effectively.

The network outputs the confidence and location of human’s

hands. Its loss function is [15]:

fh(x
hand
ij , ch, l, g) =

1

N
(fh c(x

hand
ij , ch) + αfh l(x

hand
ij , l, g))

(1)

fh l =

N
∑

i∈Pos

∑

hand∈(x,y,ω,h)

xhand
ij smoothL1(l

hand
i − ĝhandj )

(2)

fh c = −

N
∑

i∈Pos

xhand
ij log(ĉih)−

∑

i∈Neg

log(ĉi0) (3)

The loss function fh includes two parts, namely, confidence

and location losses. In the equation above, N is the number of

default boxes for matching with ground truth box. N is set to

4. Because in the reference[15], the N is set to 4, in order to

compare our method with the SSD, we set the same value of

N . xhand
ij = (0, 1) indicates the i-th hand default box matches

the j-th hand ground truth box. ch is hand confidence. l is

prediction box, and g is groundtruth box. Parameter α is used

to adjust the ratio between confidence and location losses, and

α is set to 1 to balance the weights of these losses. fh c is

confidence loss which uses softmax loss. i ∈ Neg means there

is no hand in the i-th default box. ĉih means hand confidence

of i-th default box, ĉi0 means background condifence of i-th
default box. When the i-th default box matches the j-th ground

truth box of hand category, the higher the probability of the

hand, the smaller the loss. When there is no hand in the i-

th default box, the higher the probability of background, the

smaller the loss. fh l is the location loss which uses smooth L1

loss. The (x, y, ω, h) are the centre position (x, y), width (ω)
and height (h) of the hand groundtruth box. i ∈ Pos means

the i-th default box matches a ground truth box. lhandi means

the i-th prediction box, ĝhandj means the j-th groundtruth.

III. DUAL-HAND DETECTION METHOD

A. Parallel deep neural network structure

In detecting the hands in real life, we consider not only

the characteristics of the hand, but also the characteristics of

the hand in the human body structure. This approach enables

accurate hand detection. At present, most methods of hand

detection are only founded on the characteristics of the hand.

As a result, the detection fails or localization errors occur when

the background is complex or the hand is partially occluded.

Accordingly, this study simulates the way humans detect

hands. The characteristics of the hands and the hands in the

human body structure are combined to detect the human’s

pair of hands. A parallel deep neural network structure is

designed. One sub-network adopts the above-mentioned RI-

SSD to detect hands by extracting the characteristics of

hands. The other sub-network estimates dual-hand positions

by extracting the characteristics of the human body structure.

Thereafter, a fusion module is utilized to fuse the results of

the two sub-networks to detect human’s two hands.

In this process, the hand image is input to the hand detection

sub-network and the human pose estimation sub-network.

The hand detection sub-network detects human’s hand by

the RI-SSD network. In this process, the location of a box

surrounding the hand and the confidence of the hand can be

obtained. Meanwhile, the human pose estimation sub-network

estimates human body pose and obtains the body skeleton.

Then, the human body forward kinematics (FK) tree is utilized

to obtain the positions of both hands. Finally, the outputs of the

two sub-networks are merged through the result fusion module

to obtain the location and confidence of the box surrounding

the left and right hands.

B. Dual-hand position estimation based on body pose

estimation

In the human pose estimation sub-network, we propose an

improved human pose estimation method which can estimate

the central positions of human’s left hand right hands based on

an existing pose estimation method and human body forward

kinematics tree. In this part, the human body pose should be

estimated first. The human pose estimation method in [23],

[24] is used. This method uses part affinity fields (PAF) to

achieve 2D pose estimation for multiple people, and ensure

real-time performance of pose estimation. The human body

pose estimation database uses the COCO Keypoints Challenge

database. A total of 18 keypoints, which correspond to human

joints, are available in the database. The keypoints near the

hand positions are the left and right wrists. Our goal is to

estimate the center positions of the right and left hands. Thus,

we need to use the human forward kinematics to estimate the

positions of both hands. The method framework is presented

in Figure 2.

As shown in Figure 2, the human pose estimation method

first uses the VGG-19 to obtain the astronaut image features,

and then passes the image features into part conference map

(PCM) [23] and PAFs to obtain the human pose based on the

COCO human body keypoints. Thereafter, we obtain the left

hand center position L l and the right hand center position

L r through the human body FK tree module. The output

of Stage1 is the corresponding PCM map S1 and PAFs map

L1. The input of Stage2 includes the outputs S1 and L1 of

Stage1 and the feature map of the original image. Notably,



VGG-19

PCM

PAFs
L1

S1

Stage 1

PCM

PAFs
Lt

St

Stage t, (t  2)³

Human Body FK Tree

PCM

1

1

Stage 1g

PCM

t

St

Stage g t, (, (t  2)³

Human pose estimation

Hand Image

Nose
Left eyeRight eye

Left earRight ear

Left shoulderRight shoulder

Left elbowRight elbow

Left wristRight wrist

Left hipRight hip

Left kneeRight knee

Left ankleRight ankle

Nose
Left eyeRight eye

Left earRight ear

Left shoulderRight shoulder

Left elbowRight elbow

Left wristRight wrist

Left hipRight hip

Left kneeRight knee

Left ankleRight ankle

Human body keypoints

L_l: xl, yl

L_r: xr, yr

Fig. 2. Human pose estimation framework.

Nose
Left eyeRight eye

Left earRight ear

Left shoulderRight shoulder

Left elbowRight elbow

Left wristRight wrist

Left hipRight hip

Left kneeRight knee

Left ankleRight ankle

Nose
Left eyeRight eye

Left earRight ear

Left shoulderRight shoulder

Left elbowRight elbow

Left wristRight wrist

Left hipLeRight hip

Left kneeRight knee

Left ankleRight ankle

Human body keypoints

01

2

5

6

3

4

7

8

Neck

Left shoulderRight shoulder

Right elbow

Left elbow

Right wrist

Left wrist

Right hand Left hand

01

2

5

6

3

4

7

8

NeckNeck

LeLeftft shohoululdederRiRighght shshouldldergh

Right elbowRigh

Left elbowow

Right wristRigh

Left wrist wriststst

andRight haht hRigh LeLeft handft hand

Upper_limb model

0

1 5

2 6

3

4 8

7

Dependency map

Fig. 3. Dependency map.

the network at each subsequent stage is similar to Stage2. The

loss function of the model is the norm L2 which describes the

distance between the prediction result and the ground truth

[24]:

f t
S =

J
∑

j=1

∑

p

W (p) ·
∥

∥St
j(p)− S∗

j (p)
∥

∥

2

2
(4)

f t
L =

C
∑

c=1

∑

p

W (p) ·
∥

∥Lt
c(p)− L∗

c(p)
∥

∥

2

2
(5)

where S = (S1, S2, · · · , SJ) has J confidence maps; L =
(L1, L2, · · · , LC) has C vector fields , f t

S and f t
L are the loss

functions of the output St and Lt of the Stage t, respectively,

St
j is the output PCM map of Stage t, Lt

c is the output PAFs

map of Stage t, S∗

j is the ground truth of PCM, L∗

c is the

ground truth of PAFs, W is a binary mask, p is an image

position. Then, the final loss function of the network f is

f =

T
∑

t=1

(f t
S + f t

L) (6)

T is the number of the Stage, and it is set to 6. Because

based on the reference[24], in Stage 6, it can get both high

accuracy and fast speed. Human body keypoints are obtained

from the COCO Keypoints Challenge database, which has a

total of 18 keypoints, as shown on the right side of Figure 2.

However, the keypoints selected at the positions of the hands

are the left and right wrists (most of the human body database

keypoints select the left and right wrists). Therefore, the output

of human pose estimation should be input into the human body

FK tree module to estimate the center positions of human’s

two hands [25].

Prior to inputting the human body pose estimation result into

the human FK tree module, the dependency map including the

right and left hands from the human body keypoint map must

be extracted first. As shown in Figure 3, the human upper

limb model is first extracted from the human keypoint map

and numbered. Then, the dependency map with parent and

child nodes is set up accordance with the numbers. Finally,

on the basis of the dependency of the parent and child nodes,

the center positions of the left and right hands are estimated.

I denotes an image containing an astronaut, and pi = (x, y)
denotes the pixel position of the i-th keypoint in the image,

where i ∈
{

0, 1, 2, · · · , 8
}

. The keypoints correspond to the

human’ upper limb joint points, and the edges (i, j) of each

pair of adjacent nodes in the map represent the following

dependencies:

Lj = s · hi,j(Li, I, s) + Li (7)

where i and j are a pair of parent and child nodes in the

dependency map, and s is the scale parameter. hi,j is a function

with a two-dimensional vector as the output that represents the

relative positions of the parent and child nodes. Have regard

to the position of root node Li, the scale s and an image I , we

can refer to the dependency map and estimate the positions of

the left and right hands (L4 and L8) by Equation (5).

The function hi,j in Eauation (5) is defined as follows:

hi,j(Li, I, s) = gi,j(f(Li, i, s)) (8)

where gi,j is a regression. f(Li, i, s) is a predefined function

that computes the image features of the image block centered

at Li in scale s. The size of the image block is sufficiently large

to contain as little background as possible while including all

possible Lj .

Each gi,j is a multidimensional output that generates a two-

dimensional vector. A parent node i may have multiple child

nodes
{

j1, j2, · · · , jL
}

. Given that the input characteristics are

the same, we can define a multidimensional output regression

to output the relative positions of all child nodes:

gi(·) = (gi,j1(·), · · · , gi,jL(·)) ∈ R2L (9)

Therefore, the left wrist position L3 and right wrist position

L7 can be obtained by the human body pose estimation

method, where the left wrist is regarded as the root node of

the left hand, and the right wrist is regarded as the root node

of the right hand. Thus, the center positions of human’s two

hands L4 and L8 can be obtained using Equations (5)-(7).

C. Dual-hand detection with fused information

The hand detection sub-network can detect hand and locate

the range of hand. However, the method cannot distinguish

between the left and right hands and results in false detection

in some cases. The human body pose estimation sub-network

can distinguish between the left and right hands and estimate

the center position of hands. Nevertheless, the approach pro-

duces inaccurate estimated positions and cannot locate the

range of hands. The fusion module can combine the output

results of the two sub-networks to realize the detection and
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precise localization of human’s left and right hands, reasonably

and effectively. The fusion module is shown in Fig.4.

In Figure 4, the L hb indicates the location of the detected

hand box, x, y are the center coordinate values of the hand

box, w and h are the width and height of the hand box,

respectively, L l and L r are the positions of the estimated

right and left hands L4 and L8, respectively, E hb is the

location of the estimated hand box, and H t indicates the type

of hand. The hand is divided into three types. H indicates the

hand, LH indicates the left hand, and RH indicates the right

hand. Whether the hand confidence ch output by the hand

detection sub-network is greater than a threshold confidence

ct is determined. If ch is greater than the threshold ct, then

the hand detection result is completely trusted.

At this time, the hand position estimated by the human body

structure is only used to assist in distinguishing the right and

left hands. That is, whether the estimated position of hand is

in the hand box area is determined. If the position of the left

hand is in the hand box, then the area is deemed to be the left

hand. If the position of the right hand is in the hand box, then

the area is considered to be the right hand. If the positions of

the left and right hands are not in the hand box, then the area

is only displayed as a hand. The judgment formula is











LH if (x− 2
w
< xl < x+ 2

w
) ∩ (y − 2

h
< yl < y + 2

h
)

RH if (x− 2
w
< xr < x+ 2

w
) ∩ (y − 2

h
< yr < y + 2

h
)

H else

(10)

If ch is smaller than the threshold ct, then the estimated

positions of the left and right hands are used to determine

and correct the hand detection and location results. That is,

the estimated hand box, E hb, is attracted by the estimated

hand position. As shown in Figure 5, the box is centered on

the position of the hand estimated in accordance with the

human body structure, and the side length of the square l
is the distance between the wrist and the corresponding hand.

Then, we calculate the Jaccard similarity of E hb and L hb

L_hb

Elbow

Wrist

Hand

ristt

Hand

E_hb

l

Fig. 5. L hb and E hb.

by the hand detection and location sub-network. The Jaccard

similarity calculation formula is shown as follows [15]:

J(L hb,E hb) =
|L hb

⋂

E hb|

|L hb
⋃

E hb|
∈
[

0, 1
]

(11)

Jt is define as the threshold of Jaccard similarity value.

If the similarity is greater than Jt, then the L hb area is

considered to be a hand, and the left and right hands are

distinguished by the hand estimation result. If the similarity is

less than or equal to Jt, then the L hb area is considered not

to be a hand. The judgment formula is

{

LH/RH if J(L hb,E hb) > Jt

Nothand if J(L hb,E hb) ≤ Jt
(12)

Jt is chosen as 0.5. Because through experiments, when

the Jt is 0.5, it can get the highest accuracy for dual-hand

detection.

IV. EXPERIMENTAL RESULTS AND VALIDATION

A. Validation of RI-SSD

For the hand detection database, we select two public

databases, namely, Oxford hand database [26] generated by

Oxford University and the Egohands database [27] produced

by Indiana University. The Oxford hand database is collected

from various public image dataset sources, such as Skin and

2007 and 2010 PASCAL VOC datasets. Most images are

random hand gestures in our daily life. The Egohands database

contains 48 different videos of egocentric interactions with

pixel-level ground-truth annotations. Most images are hand

gestures that interact with objects. We train the SSD network

on both databases. We find that we can obtain 96.64% accuracy

rate on the Egohands database. However, the hand gestures of

Egohands are those for catching objects. We cannot achieve

good performance on other hand gestures. Meanwhile, we

can only obtain 68.74% accuracy rate on the Oxford hand

database, which includes many types of hand gestures in daily

life. Thus, we combine the training images of the two hand

databases and train the SSD and our RI-SSD on this combined

database.As a result, the final number of training images is

7029.

The experiment is carried out in the Caffe environment,

and the SSD and RI-SSD are tested on the testing images of

Egohands database, Oxford hand database and their combined

database. In the training stage, we use stochastic gradient
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Fig. 6. The Training error curves of SSD and RI-SSD.

TABLE I
MAP AND SPEED OF SSD AND RI-SSD

Model name Test database mAP Speed(ms)

Oxford hand database 74.16

SSD300 Egohands database 97.03 9

Oxford+Egohands 85.60

Oxford hand database 80.21

RI-SSD300 Egohands database 97.56 17

Oxford+Egohands 88.89

descent (SGD) method. The initial learning rate, momentum,

and weight decay are set to 0.001, 0.9, and 0.9, respectively.

The change mode of learning rate uses the multistep method.

The total number of training sessions is 60000 iterations. The

learning rate successively drops by 10 at 20000 and 40000

iterations. The train and test processes are conducted under

the GTX 1060 GPU.

The training error curves of SSD and RI-SSD are shown in

Figure 6. The test mean average precision (mAP) and speed

of the two networks are shown in Table I.

As shown in Figure 6 and Table I, when the test database

is combined with Oxford hand and Egohands databases, the

accuracy of the RI-SSD300 is 3.29% higher than that of the

SSD300, and the RI-SSD300 can still achieve real-time hand

detection. Therefore, the proposed RI-SSD network structure

can effectively improve the accuracy of human’s hand de-

tection. This result is due to that the Oxford hand database

has many small-sized hands, and the RI-SSD can detect these

hands better than SSD network.

The detection effects of different hand gestures in the

Oxford hand database are shown in Figure 7 for demonstrating

the effectiveness of the RI-SSD further. As shown in Figure 7,

the designed RI-SSD can get a better detection accuracy than

that of the SSD network on small hand images.

In Figure 7, the first row contains the results from the

SSD300, and the second row includes the results from the RI-

SSD300. Hands in images are circled with bounding boxes.

Evidently, Figure 7 demonstrates that the designed RI-SSD can

obtain better detection accuracy than SSD network on small

Fig. 7. Hand detection of SSD and RI-SSD on some images [26].

Original image Body pose estimation
Body pose estimation 

with two hands

Left handRight hand

Fig. 8. The results of estimated dual-hand positions.

hand images.

B. Body pose estimation with dual-hand positions

Center positions of human’s two hands are estimated on

the basis of the above-mentioned hand position estimation

principle. The specific steps are described as follows:

1) Estimate the astronaut’s human skeleton structure in accor-

dance with the human body pose estimation method.

2) Extract the dependence map of the human upper limb joint

points including the center points of the two hands.

3) Estimate the positions of human’s two hands in accordance

with the human body KF tree.

4) Select the center points as the final left and right hand

positions within the range of estimated position points.

The estimated results are shown in Figure 8, where the left

image is the original image, the middle image is the body pose

estimation using the method of reference [24], and the right

image is the body pose estimation with the positions of the

left and right hands by the human body structure FK tree. In

this image, the right hand position is indicated by a blue dot,

and the left hand position is indicated by a green dot. Figure 8

shows that the method can estimate the positions of human’s

two hands effectively.

C. Dual-hand detection based on RI-SSD and body pose

estimation

During the experiment of human hand detection, the detec-

tion of the RI-SSD has shown several disadvantages.

1) The method cannot distinguish between human’s left and

right hands.

2) Some objects in the background that are similar to a hand

in color or shape will be mistaken as hands when the

background is complex.

3) A location error or a detection failure may occur when the

hand size in the image is small or the hand image is blurred

due to excessive speed.
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TABLE II
MAP OF RI-SSD AND THE PARALLEL NETWORK

Model name mAP of hands mAP of left hands mAP of right hands

RI-SSD 97.56 − −

Parallel network 98.34 89.27 90.18

The fusion method of the parallel network mentioned above

demonstrated that the hand detection results output by the

RI-SSD network and the dual-hand positions estimated in

accordance with the human body pose can be effectively

combined to distinguish human’s left and right hands. Hand

detection errors can also be avoided.

Labels of Oxford hand database are only hands. The

database is not appropriate for distinguishing the left and

right hands. The Egohands database labels have the left and

right hands. Therefore, we use the Egohands database in this

experiment.

For the confidence threshold ct, we select the best value of

ct through experimentation. The value is changed from 0.1 to

1, and the mAP line of the hand detection using our parallel

deep neural network is shown in Figure 9.

Accordingly, we use 0.8 as the value of ct. We also test the

RI-SSD and our dual-hand detection method using the parallel

deep neural network on the Egohands database. The test results

are given in Table II.

Figure 9 and Table II show that the parallel deep neural

network structure, which combines the hand detection and

location results and the human body pose estimation results,

is more accurate than the RI-SSD that extracts only the hand

features. The proposed method is also effective in distinguish-

ing between the right and left hands. In addition, the detection

accuracies of the left and right hands are lower than the hand

detection accuracy. This result is due to that some volunteers’

hands are too close to the camera during the acquisition

process. Hence, the area of the hand in the image becomes

too large to estimate the pose of the human body. As a result,

the positions of the left and right hands cannot be estimated

and can only be identified as hands.

In order to compare our method with the state-of-the-art

dual-hand detection methods, we test our method on the VIVA

Hand Detection database. It’s a public dual-hand detection

database, and it consists of driving car hand gestures from

54 RGB videos collected in naturalistic driving settings of

TABLE III
DUAL-HAND DETECTION RESULTS ON THE VIVA HAND DETECTION

DATABASE

Model name Static only mAP of left hands mAP of right hands

MS-RFCN [17] Yes 75.3 69.8

Ours Yes 64.2 59.6

CNN with spatial region sampling [27] Yes 52.7 42.3

ACF [28] Yes 47.5 33.7

Modified Faster-rcnn Yes 39.0 12.0

RI-SSD
Parallel Deep Neural 

NetworkThe Original Image

Image 1

Image 2

Image 3

Fig. 10. For image 1, the RI-SSD and parallel network can both detect
and locate both hands, but the parallel network can also distinguish
between the right and left hands. For image 2, when the hands are too
large foe estimating the human body pose, the parallel network can only
detect the two hands as a hand. For image 3, RI-SSD generates an
incorrect detection, but the parallel network can remove this incorrect
detection.

illumination variation, large hand movements, and common

occlusion. The result is shown in Table III.

Table III shows that our method can get a good result on

the VIVA database. The result of our method is better than

most of the methods but not the best. For one thing, our

method relies on body pose estimation. Some images in VIVA

database have a little body information, so our method cannot

distinguish between left hand right hands. For another, the

advantage of our method is detecting dual hands for a variety

of hand gestures. But the VIVA database only contains a few

gestures like holding the steering wheel gesture, the result on

this database does not fully demonstrate the superiority of our

method.

Some experimental results are shown in Figure 10, where

the three images in the first column are the original images,

the three images in the second column are the results of RI-

SSD, and the three images in the third column are the results

of the parallel deep neural network. The range of the right

hand in the image is marked by a blue box, the range of the

left hand in the image is marked by a green box, and the range

of the hand in the image is marked by a red box. Figure 10

shows that the proposed fusion method and the parallel deep

neural network can distinguish and locate the locations of the

left and right hands effectively.
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Fig. 11. AAR-2 platform.

D. Application in astronaut-robot interaction system

1) Second generation astronaut assistant robot (AAR-2)

platform: Second generation astronaut assistant robot (AAR-

2) is an in-cabin flying robot used in space stations [29], [30].

It has high intelligent, and astronauts can communicate with

it face-to-face using hand gestures. It can also collect infor-

mation from the space station to the astronauts to assist them

completing some space tasks. The upper part of Figure 11

shows an imaginary map of an astronaut interacting with the

AAR-2 through hand gestures in the space station. During the

gesture-based interaction between the astronaut and the AAR-

2, the astronaut uses hand gestures to convey instructions to

the AAR-2. The AAR-2 collects hand gesture images through

a vision sensor (Kinect v2), and then detects and recognizes

the astronaut’s hand gestures. Thereafter, recognized hand

gestures are converted into instructions, through which the

AAR-2 can perform the corresponding operations [1]. AAR-

2’s physics experimental platform is illustrated in the bottom

right of Figure 11. The AAR-2 is mounted on an air float

simulator and can simulate space microgravity environment

and help the AAR-2 to move in three degrees of freedom

(translational motions along x and y axises and rotational

motion around z axis) on a marble platform. At present, the

AAR-2 can realize functions such as translational motion,

rotational motion, target approximation and data transmission.

When astronauts interact with AAR-2 face to face using

hand gestures, they need natural and reasonable hand gestures.

For astronaut’s SHRI hand gestures, the following require-

ments must be met:

a) Hand gestures should be simple and easy to learn.

b) Hand gestures should be natural and reasonable.

c) Hand gestures can be used to not only send control com-

mands to the AAR-2 but also control the real-time motion

state of the AAR-2.

On the basis of these requirements, a dual-hand gesture that

uses the left hand to send commands and the right hand to

operate the AAR-2 is designed. The left hand of the astronaut

is primarily used to send control commands to the AAR-2. For

these hand gestures, we chose the American signal language

TABLE IV
MAPS OF DIFFERENT HAND GESTURES ON SRSSL DATABASE

Model name B S F P L R O D

Our method 97.35 98.63 96.56 98.46 98.48 97.94 98.95 96.97

TABLE V
MAPS OF LEFT HAND AND RIGHT HAND ON SRSSL DATABASE

Model name mAP of left hands mAP of right hands

Our method 85.66 85.97

(ASL) hand gesture database [31]. This database contains 26

hand gestures that represent 26 English letters. It is appropriate

to SHRI because it can be memorized easily and is reasonable

and natural. Eight hand gestures of the ASL are selected as

the left-hand gestures, which are shown in the bottom right of

Figure 11. The ASL letter corresponding to each hand gesture

is the first letter of the control command. The astronaut’s right

hand is utilized to manipulate the motion state of the AAR-2.

For example, when the left-hand gesture is “Line motion”,

the AAR-2 performs translational motion by detecting the

translation of the right hand. When the left-hand gesture is

“Rotational motion”, the AAR-2 performs a rotational motion

of roll, pitch, or yaw by detecting the rotation of the right

hand.

2) Space Robot Simple Sign Language (SRSSL) database:

The database of astronauts’ hand detection and location uses

the self-made Space Robot Simple Sign Language (SRSSL)

database. This hand gesture database collects the RGB image

hand gestures from six volunteers, and each of them include

the eight astronaut-robot interaction hand gestures. The hand

gesture images from each person have 100 images. That is,

600 hand gesture images are available. Hand gesture images

from five people (500 images) are selected as the training data,

and the other person’s hand gesture images (100 images) are

used as the test data.

Transfer Learning method [21] is employed in the training

process to save time. We train the RI-SSD on this database. At

the beginning, we train on the hand database synthesized by

Oxford hand and Egohands databases. Thereafter, we retrain

the network on SRSSL database by transfer learning method.

3) Experimental result: After the training, we combine

the RI − SSDSpaceHandNet with the human body pose

estimation method mentioned above and obtain the parallel

deep neural network for the dual-hand detection of SRSSL

database. The mAPs of different hand gestures on the SRSSL

database are shown in Table III, and the mAPs of the right

and left hands on the SRSSL database are shown in Table IV.

As shown in Tables III and IV, the proposed parallel network

can detect the hand gestures in SRSSL effectively. It also

can distinguish between the left and right hands accurately.

The accuracies of the left and right hands are lower than

the accuracies of these hand gestures. This result is due to

that the SRSSL database has many large hand images and

that the human pose cannot be estimated. Our method can



be implemented in the astronaut-robot interaction platform

effectively.

V. CONCLUSION REMARK AND FUTURE WORK

This paper presented a parallel deep neural network that

combines the characteristics of the hand with those of the

human body. This method can effectively improve the accuracy

of hand detection and distinguish between the left and right

hands. Moreover, this method can be implemented to the

interaction between the astronaut and AAR-2 to realize the

detection of astronauts’ two hands.

The contributions of the study are summarized as follows:

(1)A parallel deep neural network structure was designed.

This network can extract the characteristics of the hand and

human body structure. It can also effectively detect and

locate the left and right hands of astronauts. (2)In the hand

detection sub-network, a RI-SSD was designed. The designed

RI-SSD can effectively improve the accuracy of hand detection

compared with the traditional SSD network. (3)In the human

pose estimation sub-network, the positions of the right and

left hands were estimated using pose estimation method and

human body FK tree. (4)An effective result fusion method

was designed. This method can effectively fuse the outputs of

the two sub-networks to distinguish and locate human’s two

hands.

The experiments on the proposed parallel deep neural net-

work method mainly have the following contributions: (1)The

experimental results of hand detection and location showed

that the proposed RI-SSD network can effectively improve the

accuracy of hand detection and ensure real-time performance.

(2)The results of the dual-hand position estimation experiment

showed that the use of using the human FK tree can effectively

estimate the positions of the left and right hands. (3)The

results of the dual-hand detection and location experiment

showed that the proposed parallel deep neural network and

fusion method can improve the accuracy of hand detection

and distinguish and locate the left and right hands effectively.

(4)A set of SRSSL was created for the interaction between

the astronaut and AAR, and the parallel deep neural network

was applied to the astronaut-robot interaction platform. The

results showed the method performs effectively in the space

HRI system.

The proposed parallel deep neural network can distinguish

and locate the astronaut’s two hands accurately. However,

there are still some areas still need improvement. The current

method can only be employed to the detection and location of

both hands and cannot detect the hands when they are severely

occluded in the experiment. Thus, the dual-hand tracking

method will be further enhanced.
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