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Abstract – The design of optimal neurocontrollers that replace
the conventional automatic voltage regulators for excitation
control of turbogenerators in a multimachine power system is
presented in this paper. The neurocontroller design is based on
Dual Heuristic Programming (DHP), a powerful adaptive critic
technique. The feedback variables are completely based on local
measurements from the generators. Simulations on a three-
machine power system demonstrate that DHP based
neurocontrol is much more effective than the conventional PID
control for improving dynamic performance and stability of the
power grid under small and large disturbances. This paper also
shows how to design optimal multiple neurocontrollers for
nonlinear systems, such as power systems, without having to do
continually online training of the neural networks, thus avoiding
risks of instability.

Keywords: Multiple Neurocontrollers, Power System Stability,
Voltage Regulation, Generators, Multimachine Power Systems,
Adaptive Critics, Artificial Neural Networks.

I.  INTRODUCTION

Power systems containing turbogenerators are large-scale
nonlinear systems.  The traditional excitation controllers for
the generators are designed by linear control theory based on
a single-machine infinite bus (SMIB) power system model.
These SMIB power system mathematical models are
linearized at specific operating points and then excitation
controllers are designed. The machine parameters change
with loading in a complex manner, resulting in different
behavior at different operating points and the controller
which stabilizes the system under specific operating
conditions, may no longer yield satisfactory results when
there is a drastic change in the power system operating
conditions and configurations.  Conservative designs are
therefore traditionally used, particularly in multimachine
systems, to attempt satisfactory control over the entire
operating range of the power system.

In recent years, renewed interest has been shown in power
systems control using nonlinear control theory, particularly to
improve system transient stability [1,2].  Instead of using an
approximate linear model, as in the design of the
conventional power system stabilizer, nonlinear models are

used and nonlinear feedback linearization techniques are
employed for the generator models, thereby alleviating the
operating point dependent nature of the linear designs.  Using
nonlinear controllers, generator transient stability can be
improved significantly.  However, nonlinear controllers have
a more complicated structure and are difficult to implement
relative to linear controllers.  In addition, feedback
linearization methods require exact system parameters to
cancel the inherent system nonlinearities, and this contributes
further to the complexity of the stability analysis. However,
the use of Artificial Neural Networks (ANNs) as
neurocontrollers offers a possibility to overcome this
problem.

Multilayer perceptron type artificial neural networks are
able to identify/model time varying single turbogenerator
systems [3] and, with continually online training, these
models can track the dynamics of the power system, thus
yielding adaptive identification.  ANN controllers have been
successfully implemented on single turbogenerators using
ANN identifiers and indirect feedback control [4].  Adaptive
critic design have also been applied to control generators in a
SMIB power system successfully [5].  Moreover, ANN
identification of turbogenerators in a multi-machine power
system has also been reported [6].

The design and performance of nonlinear excitation
neurocontrollers based on Dual Heuristic Programming
(DHP) theory (a member of the adaptive critics family) for
multimachine power systems, to replace the traditional
Automatic Voltage Regulators (AVRs) are discussed in this
paper.  With DHP, optimal neurocontrollers can be designed
offline, avoiding the computational load of online learning
and the issues of instability.  A three-machine power system
with DHP excitation neurocontrollers on every machine is
presented in this paper.  The results show that both voltage
regulation and system stability enhancement can be achieved
with these proposed neurocontrollers, regardless of the
changes in the system operating conditions and
configurations.  This paper also shows that it is possible to
have multiple neurocontrollers controlling multiple
generators simultaneously.
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II.  MULTIMACHINE POWER SYSTEM

The multi-machine laboratory power system in Fig. 1 is
modeled in the MATLAB/SIMULINK environment using the
Power System Blockset (PSB) [7].  Each machine is
represented by a seventh order model. There are three coils
on the d-axis and two coils on the q-axis and the stator
transient terms are not neglected.  A three machine five-bus
power system is chosen, to illustrate the effectiveness of the
adaptive critic based neurocontrollers. The power system in
Fig. 1 consists of two generators and the third machine is the
infinite bus.

G1 G2

G3

1 2

3

4 5

900 Km
Exciter

AVR Vref2

Exciter

AVR

Vref1

Vf1 Vf2Vt1 Vt2

900 Km

900 Km

Σ

Pref1

∆ω1Governor Governor

Turbine Turbine

Σ

∆ω2

Pref2

Fig. 1.  Three machine five bus power system.

For the purposes of practical implementation studies at the
University of Natal’s machine research laboratory in South
Africa, a simulation study on laboratory power system is
carried out first.  The laboratory power system consists of
two generators, each 3 kW, 220 V, designed to have all their
per-unit parameters, except the field winding resistance, the
same as those normally expected of a 1000 MW generator.
The parameters of the generators, determined by the IEEE
standards are given in Table 1 [8].  A time constant regulator
is used on each generator to insert negative resistance in
series with the field winding circuit, in order to reduce the
actual field winding resistance to the correct per-unit value.

The conventional AVR and exciter combination transfer
function block diagram is similar for both generators and is
shown in Fig. 2 and the time constants are given in Table 2.
The exciter saturation factor Se is given by

        S Ve fd= 0 6093 0 2165. exp( . )       (1)

Tv1, Tv2, Tv3 and Tv4 are the time constants of the PID voltage
regulator compensator; Tv5 is the input filter time constant; Te

is the exciter time constant; Kav is the AVR gain; Vfdm is the
exciter ceiling; and, Vma and Vmi are the AVR maximum and
minimum ceilings.

A separately excited 5.6 kW dc motor is used as a prime
mover, called the micro-turbine, to drive each of the
generators.  The torque-speed characteristic of the dc motor is
controlled to follow a family of rectangular hyperbola for

different positions of the steam valve, as would occur in a
real typical high pressure (HP) turbine cylinder.  The three
low pressure (LP) cylinders’ inertia are represented by
appropriately scaled flywheels.  The micro-turbine and the
governor transfer function block diagram is shown in Fig. 3,
where, Pref is the turbine input power set point value, Pm is
the turbine output power, and Äù is the speed deviation.  The
turbine and governor time constants are given in Table 3.

Table 1.  Generator parameters

Td0’ = 4.50 s Xd’ = 0.205 pu Rs = 0.006
Td0” = 33 ms Xd” = 0.164 pu H = 5.68
Tq0” = 0.25 s Xq = 1.98 pu F = 0
Xd = 2.09 pu Xq” = 0.213 pu p = 2

PID Compensation
 and limits
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Fig. 2. Block diagram of the AVR and exciter combination.

Table 2.  AVR and exciter time constants

Tv1 0.616 s Tv4 0.039 s
Tv2 2.266 s Tv5 0.0235 s
Tv3 0.189 s Te 0.47 s

 

Kg sTg
sTg

( )1 1
1 2

+

+
1
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1
1 4+sTg

∑ ( )1 5
1 5

+
+
sFTg
sTg
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Pref

+
- Pm ∆ω

Micro-turbine

∆P

Fig. 3. Block diagram of the micro-turbine and governor combination.

Table 3.  Micro-turbine and governor time constants

Phase advance compensation, Tg1 0.264
Phase advance compensation, Tg2 0.0264
Servo time constant, Tg3 0.15
Entrained steam delay, Tg4 0.594
Steam reheat time constant, Tg5 2.662
pu shaft output ahead of reheater, F 0.322

III.  DERIVATIVE ADAPTIVE CRITICS’ BASED VOLTAGE
CONTROLLER

Adaptive Critic Designs (ACDs) are neural network
designs capable of optimization over time under conditions of
noise and uncertainty.  A family of ACDs was proposed by
Werbos [9] as a new optimization technique combining
concepts of reinforcement learning and approximate dynamic
programming.  For a given series of control actions, that must
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be taken in sequence, and not knowing the quality of these
actions until the end of the sequence, it is impossible to
design an optimal controller using traditional supervised
learning.

Dynamic programming prescribes a search which tracks
backward from the final step, rejecting all suboptimal paths
from any given point to the finish, but retains all other
possible trajectories in memory until the starting point is
reached.  However, many paths which may be unimportant,
are nevertheless also retained until the search is complete.
The result is that the procedure is too computationally
demanding for most real problems.  In supervised learning,
an ANN training algorithm utilizes a desired output and,
comparing it to the actual output, generates an error term to
allow learning.  For an MLP type ANN the backpropagation
algorithm is typically used to get the necessary derivatives of
the error term with respect to the training parameters and/or
the inputs of the network.  However, backpropagation can be
linked to reinforcement learning via a network called the
Critic network, which has certain desirable attributes.

Critic based methods remove the learning process one step
from the control network (traditionally called the “Action
network” or “actor” in ACD literature), so the desired
trajectory or control action information is not necessary.  The
critic network learns to approximate the cost-to-go or
strategic utility function, and uses the output of an action
network as one of its inputs directly or indirectly.  When the
critic network learns, backpropagation of error signals is
possible along its input pathway from the action network.  To
the backpropagation algorithm, this input pathway looks like
just another synaptic connection that needs weight
adjustment.  Thus, no desired signal is needed.  All that is
required is a desired cost function J given in eq. (2).

      ∑
∞

=
+=

0k

k )kt(U)t(J γ                      (2)

where γ is a discount factor for finite horizon problems (0 < γ
< 1), and U(.) is the utility function or local cost.

The Critic and the Action networks, can be connected
together directly (Action-dependent designs) or through an
identification model of a plant (Model-dependent designs).
There are three classes of implementations of ACDs called
Heuristic Dynamic Programming (HDP), Dual Heuristic
Programming (DHP), and Globalized Dual Heuristic
Dynamic Programming (GDHP), listed in order of increasing
complexity and power [10].  This paper presents the DHP,
model dependent design, and compares its performance
against the results obtained using conventional PID
controllers.

The critic network is trained forward in time, which is of
great importance for real-time operation.  DHP has a critic
network which estimates the derivatives of J with respect to a
vector of observables of the plant, ∆Y.  The critic network
learns minimization of the following error measure over time:

)t(E)t(EE
t

T∑=                             (3)

where

  
)t(Y
)t(U

)t(Y
)]1t(Y[J

)t(Y
)]t(Y[J

)t(E
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∂
∆∂

∆∂
γ

∆∂
∆∂ −+−=         (4)

where ∂(.)/∂∆Y(t)) is a vector containing partial derivatives of
the scalar (.) with respect to the components of the vector ∆Y.
The critic network’s training is more complicated than in
HDP since there is a need to take into account all relevant
pathways of backpropagation as shown in Fig. 4, where the
paths of derivatives and adaptation of the critic are depicted
by dashed lines.

In DHP, application of the chain rule for derivatives
yields
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where λi(t+1) = ∂J(t+1)/∂∆Yi(t+1)), and n, m are the
numbers of outputs of the model and the action networks,
respectively. By exploiting eq. (5), each of n components of
the vector E(t) from eq. (4) is determined by

          

∑
= ∂

∂
∂
∂−

∂
∂−

∂
+∂−
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m
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Fig. 4. DHP Critic network adaptation.
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The action network is adapted in Fig. 5 by propagating
λ(t+1) back through the model to the action.

The goal of such adaptation can be expressed as:

     t0
)t(A

)1t(J
)t(A
)t(U ∀=

∂
+∂+

∂
∂

γ                       (7)

The weights’ update expression is:

         
A

T

A W
)t(A

)t(A
)1t(J

)t(A
)t(U

W
∂
∂

∂
∂

γ
∂
∂

α∆ 






 ++−=                 (8)

where α is a positive learning rate.
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Time
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lines

Time
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Yref
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λ(t+1) = 
∂ J(t+1)
∂ ∆Y(t+1)

∂ U(t)
∂ A(t)

A(t)=
[∆Vf(t)]

Σ

Y(t) = [∆ω, ∆Vt]

∆Y(t)

∆Y((t),(t-1),(t-2))
^

Fig. 5.  DHP action network adaptation.

IV.  THREE ARTIFICIAL NEURAL NETWORKS -MODEL,
CRITIC AND ACTION

Neurocontrollers are designed to replace the AVRs on
generators G1 and G2 (Fig. 1), and the ANN models of
generators G1 and G2, and the networks to which they are
connected are obtained as described in [6].  The ANN model
in Figs. 4 & 5 is a three layer feedforward network with
twelve inputs, a single hidden layer of fourteen neurons and
two outputs.  The inputs to the ANN are the deviation of the
actual power ∆P to its turbine, the deviation of the actual
field voltage ∆Vf to its exciter, the deviation of the actual
speed ∆ω, and the deviation of the actual RMS terminal
voltage ∆Vt of its generator.  These four inputs are also
delayed by the sample period of 10 ms and, together with
eight previously delayed values, form twelve inputs
altogether.  For this set of inputs, the outputs are the

estimated speed deviation 
∧

∆ ω and the estimated terminal

voltage deviation tV
∧

∆ , of the generator.
The critic network in Figs. 4 & 5 is also a three layer

feedforward network with six inputs, thirteen hidden neurons
and, two outputs. The inputs to the critic network are the
speed deviation ∆ω  and terminal voltage deviation ∆Vt.

These inputs are time delayed by a sample period of 10 ms,
and together with the four previously delayed values, form
the six inputs for the critic network. The outputs of the critic
are the derivatives of the J function with respect to the output
states of the generators.

The action network (DHP neurocontroller) in Figs. 4 & 5 is
also a three layer feedforward network with six inputs, a
single hidden layer with ten neurons and a single output.  The
inputs are the generator’s actual speed and actual terminal
voltage deviations, ∆ω  and ∆Vt respectively.  Each of these
inputs is time delayed by 10 ms and, together with four
previously delayed values, form the six inputs. The output of
the action network (DHP neurocontroller), A(t) = [∆Vf], the
deviation in the field voltage, which augments the input to the
generator’s exciter.

V.  SIMULATION OF THE DHP CONTROLLERS AND THEIR
PERFORMANCE

The training procedure for the critic and action networks is
similar to adaptive critic designs for SMIB [5].  It consists of
two training cycles: the critic’s and the action’s. The critic’s
adaptation is done initially with a pretrained action network
[4,11], to ensure that the whole system, consisting of the
ACD and the power system, remains stable.  The action
network is pretrained on a linearized model of the generator.
The action is trained further while keeping the critic network
parameters fixed.  This process of training the critic and the
action one after the other is repeated until an acceptable
performance is achieved.  The ANN model parameters are
assumed to have converged globally during its offline
training (without any neurocontrollers) [6] and, it is not
adapted concurrently with the critic and action networks.

A discount factor γ of 0.5 and the utility function given in
eq. (9) are used in the Bellman’s equation (eq. (2)) for the
training of the critic network (eq. (4)) and the action network
(eq. (7)).  Once the critic network’s and action network’s
weights have converged, the action network (neurocontroller)
is connected to the generator G1 to replace the AVR (Fig. 6).
A similar procedure is carried out in developing G2’s DHP
neurocontroller to replace its AVR.

       
2)]2t(16.0)1t(4.0)t(4.0[

2)]2t(V16)1t(V4)t(V4[)t(U

−+−++

−+−+=

ω∆ω∆ω∆

∆∆∆             (9)

At two different operating conditions and three different
disturbances, the transient performance of the DHP
neurocontrollers are compared with that of the conventional
automatic voltage regulators (whose parameters are carefully
tuned for the first set of the operating condition given in
Table 4 [12]).
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Table 4. Operating points

         Condition one             Condition two
G1 G2 G1 G2

Pe (pu) 0.2000 0.2000 0.3000 0.3000
Q (pu) -0.0200 -0.0200 -0.0400 -0.0400
Vt (pu) 1 1 1 1

G1 G2

G3

1
2

3

4 5

900 Km
Exciter

Vref2

Exciter

Vref1

Vf1 Vf2Vt1
Vt2

900 Km

900 Km

Σ

Pref1

∆ω
1

Turbine Turbine

Σ

∆ω
2

Pref2

Σ Σ

Neurocontoller

TDL TDL

Neurocontoller

TDL TDL∆Vf1 ∆Vf2

Governor Governor

∆ω
1 ∆ω2

Fig. 6.  Multi-machine power system with neurocontrollers on
generators G1 and G2.

A.  3% Step change in Vt1 at First Operating Condition

At the first operating condition (Table 4), a 3% step increase
occurs in the desired terminal voltage of G1.  Figs. 7 and 8
show that the DHP neurocontrollers ensure no overshoot on
the terminal voltage and provides superior speed deviation
damping unlike with the AVRs.

B.  5% Step Change in Vt2 at Second Operating Point

At the second operating condition (Table 4), a 5% step
increase occurs in the desired terminal voltage of G2.  Figs. 9
and 10 show that the DHP neurocontrollers again provide the
best damping, which prove that the neurocontrollers have
learned and adapted themselves to the new operating
condition.  In fact, Fig. 10 shows signs of an inter-area mode
oscillations starting up at about 4.3 seconds, and the
neurocontrollers are far more successful in damping this, than
the conventional designed AVRs.
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Fig. 7. Terminal voltage of generator G1 for a 3% step change in its desired
terminal voltage.
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Fig. 8.  Speed deviations of generator G1 for a 3% step change in its desired
terminal voltage.
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Fig. 9.  Terminal voltage of generator G2 for a 5% step change in its desired
terminal voltage.
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C.  Three Phase Short Circuit

At the second operating condition (Table 4), a 100 ms short
circuit occurs halfway between buses 3 and 4 (Fig. 6).  Figs.
11 and 12 show that the DHP neurocontrollers again have a
better damping on the speed deviation and terminal voltage of
G1. Though not shown, this is seen also on the speed
deviation and the terminal voltage of G2.
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Fig. 11. Speed deviation of generator G1 for a 100 ms 3-phase short
circuit between bus 3 and 4.
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Fig. 12. Terminal voltage of generator G1 for a 100 ms 3-phase short
circuit between bus 3 and 4.

All these results show that at operating conditions different
from the one at which the AVRs were tuned, their
performances have degraded.  On the other hand, the DHP
neurocontrollers have given excellent performance under all
the conditions tested.  Many other tests, both small and large
disturbances, were carried out at different power levels and
power factors to confirm this.

VI.  CONCLUSIONS

A new design method based on derivative adaptive critics
for voltage/excitation control of generators in a three machine
power system have been presented.  All control variables are
based on local measurements, thus, the control is
decentralized.  Simulations show that dynamic response of
the DHP based neurocontrolled generators are superior to the
response of the conventionally controlled generators with
AVRs, particularly so when operating conditions change and
large disturbances are experienced.  Furthermore, it has been
shown that it is possible to have multiple optimal
neurocontrollers on a power system with no requirement for
online training.  Thus, avoiding risks of instability with
neurocontrol.  Practical implementation of these DHP
neurocontrollers are currently in progress.
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