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Abstract 

Modern spark ignition engines mostly use one injection system to deliver gasoline into the combustion 

chamber, using either direct injection or port fuel injection. Both technologies have their respective 

advantages. To integrate their advantages and to promote the use of renewable fuels, dual injection engines 

are in development in recent years. Dual injection represents an advanced combustion system and is a novel 

technology to address the urgent issues of sustainability and environmental protection. This study reviews 

the state-of-the-art research on dual injection spark ignition engines with a focus on renewable fuels, their 

advantages and engine performance. The main advantages of dual injection include greater control flexibility, 

enhanced cooling effect, knock mitigation, engine downsizing, extended lean-burn limits, higher thermal 

efficiency and reductions of several emission species. The most promising renewable fuels for dual injection 

are ethanol, methanol and hydrogen. Each renewable fuel is aimed at different advantages of dual injection. 

Alcohol-gasoline dual injection provides great anti-knock ability by taking advantage of alcohols’ large 

enthalpies of vaporisation and high octane numbers, while hydrogen-gasoline dual injection provides 

extended lean-burn limits by taking advantage of hydrogen’s low ignition energy, wide flammability limit 

and high flame speed. Direct injection of renewable fuels is the optimal injection strategy because it 

effectively utilises the strong cooling effect of alcohols or avoids the volumetric efficiency reduction and pre-

ignition of hydrogen. Dual injection generally demonstrates higher thermal efficiency than single injection. 

In addition, dual injection effectively reduces particulate emissions while there are usually trade-offs among 

gaseous emissions. 

 

Keywords: Dual injection; Renewable fuels; Spark ignition engines; Thermal efficiency; Combustion; 

Emissions 
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Highlights 

 Dual injection provides great control flexibility by integrating advantages of DI and PFI.  

 Alcohols and hydrogen enhance knock mitigation and lean-burn limits respectively. 

 Renewables DI plus gasoline PFI is the optimal strategy for both alcohols and hydrogen. 

 Dual injection increases thermal efficiency and reduces certain emission products.  

 Dual injection is an effective and efficient technology to use renewable fuels in SI engines. 
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Abbreviations and symbols 

ABE Acetone-butanol-ethanol blend LTC Low temperature combustion 

AFR Air fuel ratio MBT Minimum spark advance for best torque 

BTDC Before top dead centre NEDC New European Driving Cycle 

CDC Conventional diesel combustion NMHC Non-methane hydrocarbons 

CFD Computational fluid dynamics PEMS Portable emission measurement system 

CI Compression ignition PFI Port fuel injection 

DDFS Direct dual fuel stratification PM Particulate matter 

DFSC Dual fuel sequential combustion PN Particle number 

DI Direct injection RCCI Reactivity controlled compression ignition 

DME Dimethyl ether RDE Real driving emissions 

DMF 2, 5-dimethylfuran RON Research octane number 

EGR Exhaust gas recirculation RVP Reid vapour pressure 

GDI/EDI/
MDI/HDI 

Gasoline/ethanol/methanol/hydrogen 
direct injection 

SI Spark ignition 

GPI/EPI/
MPI/HPI 

Gasoline/ethanol/methanol/hydrogen port 
injection 

THC Total hydrocarbons 

ICCI Intelligent charge combustion ignition TWC Three-way catalyst 

IMEP Indicated mean effective pressure WLTP 
Worldwide harmonised Light vehicle Test 
Procedure 

KLST Knock limited spark timing WOT Wide open throttle 

LHV Lower heating value λ Excess air ratio 
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1. Introduction 

Modern economies rely heavily on the transport of goods and people, which are and will be largely 

powered by internal combustion engines in the next few decades [1-3]. The global numbers of cars and trucks 

were around 1.1 billion and 377 million in 2015, which are projected to reach 2.0 billion and 790 million in 

2040, respectively [4]. Passenger cars are mostly (>80%) powered by spark ignition (SI) engines worldwide, 

except for the European Union, India and South Korea markets where compression ignition (CI) engines have 

a significant share (39%-52%) [5, 6]. Rapid increases in the number of vehicles consume significant amounts 

of fossil fuels and emit a large percentage of total greenhouse gas emissions [7]. The International Energy 

Agency estimated that global energy consumption more than doubled during 1971 to 2015, and the percentage 

of energy use by the transport sector increased noticeably from 23% to 29% during the same period while 

other sectors mostly did not change [8]. Vehicle engines are also a major contributor to urban air pollution, 

posing a serious health hazard to the public [9, 10]. A recent study estimated that vehicle tailpipe emissions 

caused 385000 premature deaths and US$1 trillion of health damage worldwide in 2015 [11]. 

 

Fig. 1. Advancement of the European automotive emission standards for gasoline passenger cars. 

A non-methane hydrocarbons (NMHC) limit of 68 mg/km is introduced in addition to the total hydrocarbons 

(THC) limit since Euro 5 [12]. The particulate matter (PM) limit only applies to vehicles with DI engines and 

a limit of 4.5 mg/km is applied when using a revised measurement procedure (i.e. PMP) [12]. The particle 

number (PN) limit only applied to vehicles with DI engines and a limit of 6×1012 #/km was used in the first 

three years of Euro 6 [13].  
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Regulations are becoming increasingly stringent to reduce both the air pollutant and greenhouse gas 

emissions. Fig. 1 demonstrates the advancement of emission limits for gasoline passenger cars from Euro 1 

to 6. The limit values have been reduced substantially and more pollutant species have been regulated during 

the past three decades. For instance, the NOx limit has been reduced by 60% from 0.15 g/km in Euro 3 [14] 

to 0.06 g/km in Euro 5 and 6 [12, 13]. Although the limit values are unchanged after Euro 5, the emission 

testing methods have become more stringent in Euro 6. Firstly, a Worldwide harmonised Light vehicles Test 

Procedure (WLTP) is introduced for type approval of new vehicles using chassis dynamometers, which is 

more representative of real-world driving than the outdated New European Driving Cycle (NEDC) [15, 16]. 

In addition to the laboratory based WLTP, a Real Driving Emissions (RDE) test procedure has been 

introduced to measure vehicle emissions in the real world using a Portable Emission Measurement System 

(PEMS) [15]. The RDE test aims to reduce the significant discrepancy between the laboratory and real-world 

performance of emissions and fuel consumption [17, 18]. An initial conformity factor of 2.1 was used in 2017, 

with the aim of reducing it to 1.0 as soon as possible and at the latest by 2023 [19]. Regarding regulations on 

greenhouse gas emissions, the European Union has tightened its fleet-wide average emission target from 130 

g CO2/km in 2015 to 95 g CO2/km in 2021 which corresponds to a fuel consumption of 4.1 L/100 km for 

gasoline cars [20]. 

To meet the ever stricter regulations on emissions and fuel economy, significant efforts have been taken 

to improve engine combustion system and to search for renewable fuels. For SI engines, it is critical for the 

fuel to mix with the intake air and form a suitable mixture before the electrical discharge from the spark plug 

is initiated. There are mainly three fuel injection technologies, namely carburettor, port fuel injection (PFI) 

and direct injection (DI) [21, 22]. PFI replaced carburettors in the 1980s due to its advantages in fuel saving 

via more precise control of fuel injection and emission reductions via exhaust after-treatment using a three-

way catalyst (TWC). DI was developed in the 1990s and offers further advantages in fuel saving when 

compared with PFI. In spite of this, DI has not fully replaced PFI in modern SI engines. Table 1 shows the 

fuel injection technologies of the top 20 most popular car models in 2019 in Australia. As shown in Table 1, 

PFI and DI have similar market shares (14 vs 16 engine models) although DI is considered more advanced 

than PFI. This is because either of these two fuel injection technologies has its respective advantages and 

limitations, which will be discussed in detail in Section 3. This leads to a novel idea of using DI and PFI 

simultaneously in one engine (i.e. dual injection), which has the potential to integrate their advantages while 

avoiding their drawbacks. Dual injection offers greater flexibility in controlling mixture formation and 

combustion processes and is a promising technology to help achieve the ever stricter emissions and fuel 

efficiency standards. Dual injection has been in development in recent years and a few mass production cars 

have already adopted this concept, such as the Toyota RAV4, Toyota Camry and Volkswagen Golf. These 

vehicle models have shown advantages in engine downsizing (such as high compression ratios and 

turbocharging) and fuel economy compared with their competitors. In these dual injection engines, the same 

fuel (i.e. gasoline) is used for both PFI and DI. 
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Table 1. Engine specifications of the top 20 most popular gasoline cars in Australia in 2019. 

No. Car model Sales* 

Engine specifications† 

Engine model 

code 

Displacement 

(L) 

Air intake 

system 

Injection 

system 

Compression 

ratio 

Fuel consumption 

(L/100km) 

1 Toyota Hilux 47649 2TR-FE 2.7 Aspirated PFI 10.2:1 10.4-11.1 

2 Ford Ranger 40690 No petrol model is available 

3 Toyota Corolla 30468 

2ZR-FE 1.8 Aspirated PFI 10.0:1 6.4-6.8 

2ZR-FXE 1.8 Aspirated PFI 13.0:1 3.5-4.2 (hybrid) 

M20A-FKS 2.0 Aspirated DI 13.0:1 6.0-6.5 

4 Hyundai i30 28378 

Gamma 1.6 Turbocharged DI 9.5:1 7.1-7.5 

Nu 2.0 Aspirated DI 11.5:1 7.3-7.4 

G4KH 2.0 Turbocharged DI 9.5:1 8.0 

5 Mitsubishi Triton 25819 4G64 2.4 Aspirated PFI 9.0:1 11.4 

6 Mazda CX-5 25539 

PE-VPS 2.0 Aspirated DI 13.0:1 6.9 

PY-VPR 2.5 Aspirated DI 13.0:1 7.4 

PY-VPR 2.5 Turbocharged DI 10.5:1 8.2 

7 Mazda 3 24939 
PE-VPS 2.0 Aspirated DI 13.0:1 5.7-6.4 

PY-VPS 2.5 Aspirated DI 13.0:1 6.0-6.6 

8 Toyota RAV4 24260 

M20A-FKS 2.0 Aspirated DI+PFI 13.0:1 6.5-6.8 

A25A-FKS 2.5 Aspirated DI+PFI 13.0:1 7.3 

A25A-FXS 2.5 Aspirated DI+PFI 14.0:1 4.7-4.8 (hybrid) 

9 Kia Cerato 21757 
G4NA 2.0 Aspirated PFI 10.3:1 7.4-7.6 

G4FJ 1.6 Turbocharged DI 10.0:1 6.8 

10 Mitsubishi ASX 20806 
4B11 2.0 Aspirated PFI 10.0:1 7.6-7.7 

4B12 2.4 Aspirated PFI 10.5:1 7.9 

11 Nissan X-Trail 19726 
MR20DD 2.0 Aspirated DI 11.2:1 8.2 

QR25DE 2.5 Aspirated PFI 10.0:1 7.9-8.3 

12 Toyota Landcruiser 18335 1UR-FE 4.6 Aspirated PFI 10.2:1 13.4 

13 Hyundai Tucson  18251 
T-GDI 1.6 Turbocharged DI 10.1:1 7.7 

2.0 GDI 2.0 Aspirated DI 11.5:1 7.8-7.9 

14 Mitsubishi Outlander 17514 

4J11 MIVEC 2.0 Aspirated PFI 10.5:1 7.0 

4B11 MIVEC 2.0 Aspirated PFI  - 1.7 (plug-in hybrid) 

4J12 MIVEC 2.4 Aspirated PFI 10.5:1 7.2 

4B12 MIVEC 2.4 Aspirated PFI 12.0:1 1.9 (plug-in hybrid) 

15 Holden Colorado 17472 No petrol model is available 

16 Isuzu D-Max 16892 No petrol model is available 

17 Toyota Camry 16768 

2AR-FE 2.5 Aspirated PFI 10.4:1 7.8-8.3 

A25A-FXS 2.5 Aspirated DI+PFI 14.0:1 4.2-4.5 (hybrid) 

2GR-FKS 3.5 Aspirated DI+PFI 11.8:1 8.7-8.9 

18 Subaru Forester 15096 
e-Boxer 2.0 Aspirated DI 12.5:1 6.7 (hybrid) 

FB25 2.5 Aspirated DI 12.0:1 7.4 

19 Mazda CX-3 14813 SKYACTIV-G 2.0 Aspirated DI 13.0:1 6.3-6.7 

20 Volkswagen Golf 14355 

CZDA 1.4 Turbocharged DI 10.0:1 5.4-5.7 

CJSB 1.8 Turbocharged DI+PFI 9.6:1 6.8 

DJHB 2.0 Turbocharged DI+PFI 9.3:1 7.2-7.3 

CHHA 2.0 Turbocharged DI+PFI 9.6:1 6.5 

* The 2019 new car sales were from the Federal Chamber of Automotive Industries at https://www.caradvice.com.au/817278/vfacts-

2019-new-car-sales-results <accessed 23.04.2020> 

† The engine specifications of 2019 car models were from https://www.redbook.com.au/ <accessed 23.04.2020> 

 

https://www.caradvice.com.au/817278/vfacts-2019-new-car-sales-results/
https://www.caradvice.com.au/817278/vfacts-2019-new-car-sales-results/
https://www.redbook.com.au/
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The potential of dual injection in fuel saving and emissions reduction can be further enhanced when 

combined with renewable fuels by taking advantage of their fuel properties (Table 2), such as high octane 

number, increased cooling effect and wide flammability limit which will be discussed in Section 4. 

Renewable fuels are becoming increasingly important in combating global warming and fossil fuel depletion, 

among which ethanol is the most widely used alternative fuel for SI engines [23-25]. Currently, it is usually 

used by blending with gasoline (e.g. E10) to partially substitute fossil fuel due to its limited supply and 

compatibility with existing engines. However, blending renewable fuels with gasoline at fixed ratios would 

not achieve an optimal performance over the wide engine operating conditions. Thus the in-cylinder blending 

of gasoline and renewable fuels in the dual injection concept provides the flexibility to utilise renewable fuels 

more effectively and efficiently than pre-blending. Dual injection has great potential in improving the 

combustion performance of SI engines by changing the blending ratio and injection strategy according to the 

operating condition.  

The dual injection concept is not new and has been investigated extensively in CI engines. Two dual 

injection configurations have been widely explored in CI engines, namely DI+PFI and DI+DI. Depending on 

the proportion of premixed fuel, dual injection CI engines can work in low temperature combustion (LTC) 

or conventional diesel combustion (CDC) mode, where LTC behaves more like a premixed flame while CDC 

behaves more like a diffusion flame. DI+PFI is usually studied in LTC mode such as reactivity controlled 

compression ignition (RCCI) [26-31] and dual fuel sequential combustion (DFSC) [32, 33], although it also 

works in CDC mode such as natural gas/hydrogen/alcohols PFI + diesel DI [34-36]. Meanwhile, DI+DI is 

studied in both LTC (e.g. intelligent charge combustion ignition (ICCI) [37, 38] and direct dual fuel 

stratification (DDFS) [39, 40]) and CDC (e.g. hydrogen-diesel [41] and methanol-diesel [42] dual DI) modes. 

When it comes to SI engines, however, dual injection is a relatively new concept and has attracted great 

attention in recent years. So far there is a lack of critical review in this area. 

This paper aims to review the recent progress in dual injection of gasoline and renewable fuels in SI 

engines. The dual injection concept here specifically refers to the combination of DI and PFI which has 

attracted the most research attention, although there are a few studies on dual PFI [43-49] and dual DI [50, 

51]. This paper is organised as follows. Firstly, the properties, benefits and challenges of the key suitable 

renewable fuels for dual injection SI engines are introduced. Then the mechanisms, advantages and 

disadvantages of DI and PFI are examined. Following that, the main advantages of dual injection concept in 

integrating DI and PFI’s advantages and promoting the use of renewable fuels in SI engines are discussed. 

Finally, the combustion and emissions performance of various dual injection SI engines are reviewed. 

 

2. Renewable fuels for SI engines 

Properties of renewable fuels that are compatible with the dual injection concept in SI engines are 

compared with gasoline in Table 2. The alternative fuels proposed can be broadly broken into gaseous fuels, 

alcohols, oxygenates and furans. All of these alternative fuels have been thoroughly investigated in 



 

9 

automotive applications, with the exception of furans which have more recently attracted research attention 

due to the development of catalytic processes that may lead to scalable production capacity from biomass [52, 

53]. Although the production of several of these fuels could be achieved with fossil fuels such as coal and oil, 

in this work we wish to emphasise the opportunity that exists with producing all of these alternative fuels 

renewably. In Table 2, we also overview a range of parameters that will determine the performance of each 

fuel in an SI engine application. This includes both chemical and physical properties that will dictate the 

charge cooling effect, volatility, spray, ignition and combustion dynamics. 

Out of the many fuel properties that dictate SI engine performance, arguably, the most important two 

are the research octane number (RON) and volatility characteristics. RON captures the knock resistance of a 

fuel, with higher values enabling the engine to run with a higher compression ratio which improves power 

output and thermal efficiency. As shown in Table 2, all renewable fuels exhibit a larger RON than gasoline. 

Out of these fuels, hydrogen has the highest RON by a considerable margin. The driveability of a vehicle is 

influenced by a fuel’s volatility which is partially captured by the Reid vapour pressure (RVP). The renewable 

fuels overviewed in Table 2 vary widely in RVP, with higher alcohols having the lowest RVP and gaseous 

fuels showing the highest RVP. Apart from the central importance of RON and RVP, several other fuel 

properties are essential for good combustion performance. 

From an emissions perspective, one of the key benefits of fuels containing oxygen (such as alcohols, 

ethers and furans) is their demonstrated role in reducing CO and HC emissions. Despite this, oxygenated 

fuels have reduced lower heating values (LHV) which can be considered a disadvantage. On the other hand, 

furans have energy densities that are more comparable with gasoline and generally have fuel properties that 

are quite similar, making them a fuel type with great “drop in” potential in SI engines. Oxygenated fuels such 

as alcohols also have higher enthalpies of vaporisation which can increase the charge cooling effect and intake 

air density. The charge cooling effect also plays a role in reducing the flame temperature which leads to NOx 

reduction. On the contrary, the lower RVP and higher enthalpy of vaporisation of alcohols can lead to engine 

cold start issues. 

In terms of fuel chemical composition, the only carbon free fuel is hydrogen. Benefits of using hydrogen 

as a transport fuel include its increased LHV, wide flammability limit, and its considerable RON. Owing to 

its wide flammability limit, hydrogen mixtures can be combusted in an overly lean manner for improved 

thermal efficiency compared to the stoichiometric mixtures usually applied in SI engines. In spite of these 

advantages, there are safety matters to consider such as invisible flames during the combustion process and 

the possibility of flashback into the intake port due to hydrogen’s high laminar flame velocity. 
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Table 2. Physico-chemical properties of renewable fuels and gasoline that are compatible with the dual injection concept in SI engines. 

Properties Gasoline Hydrogen Methanol Ethanol Iso-Butanol n-Butanol Methane MTBE ETBE MF DMF 

Chemical formula ~ C4-C12 H2 CH3OH C2H5OH C4H9OH C4H9OH CH4 C5H12O C6H14O C5H6O C6H8O 

Molar mass (g/mol) 58-170 2 32 46 74 74 16 88 102 82 96 

H/C ratio 1.7-1.9 Carbon free 4 3 2.5 2.5 4 2.4 2.33 1.2 1.33 

Oxygen content (%w) 0 0 50 34.8 21.6 21.6 0 18.2 15.7 19.5 16.7 

Density @ 20 °C (g/cm3) 0.72-0.78 0.0013*[54] 0.796 0.798 0.801 0.810 0.72[55] 0.735 0.742 0.913 0.890 

Dynamic viscosity 
(mPa·s) 

0.37-0.44 0.009[54] 0.6 1.5 8.3 3.6 0.01[54] 0.31 0.53 0.4 0.53 

Boiling point (°C) 25-210 -253[54] 65 78 108 118 -162[54] 55 73 65 92 

Auto-ignition 
temperature (°C) 

257 572[56] 385 363 415 343 540[54] 374 375 450 286[57] 

Ignition energy (mJ) 0.25[56] 0.018[58] 0.14[58] 0.23[59] NA 0.6[60] 0.28[58] NA NA 0.225^[60] NA 

RVP @ 37 °C (kPa) 54-103 NA 32 16 3.3 2.2 NA 32 30 18.5[61] 13.4[61] 

LHV (MJ/kg) 41-44 120[54] 19.7 26.8 33.1 33.2 50[55] 38.2 36 31.2 32.9 

Enthalpy of vaporisation 
(kJ/kg) 

373 448[54] 1110 912 566 584 510[54] 340 323 358 332 

RON 88-98 120-140[55] 109 109 105 98 120[55] 117 118 103 101 

Flammability limits (%) 1.4-7.6[54] 4-75[54] 7.3-36[54] 4.3-19[54] 1.2-10.9[62] 1.4-11.2[62] 5-15[54] 1.5-8.5[63] 1.2-7.7[64] 1.9-14[65] NA 

Stoichiometric AFR 14.7 34.3[54] 6.4 9 11.1 11.1 17.2[55] 11.7 12.2 10.1 10.7 

Laminar flame speed 
(m/s) 

0.37-0.43[66] 1.85[66] 0.56[67] 0.39[66] 0.45[68] 0.48[68] 0.38[66] 0.35[69] 0.30[70] 0.47[71] 0.38[72] 

Adiabatic flame 
temperature  @ 1 bar, 

20 °C, λ=1 
2346 2377[73] 2216 2310 2372 2388 2222[73] 2623 2399 2535 2509 

Notes: MTBE, methyl tert-butyl ether; ETBE, ethyl tert-butyl ether; DMF: 2,5-dimethylfuran; MF, 2-methylfuran; NA, not applicable/available; * @ 15 °C; ^ Furan;  

All remaining data are from [74]. 
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3. Fuel injection technologies of SI engines 

Fuel injection systems of modern SI engines are dominated by DI and PFI, as shown in Table 1. In a 

PFI system (Fig. 2a), fuel is metered by a nozzle and sprayed into the intake manifold, which is carried into 

cylinders by the intake air [75]. There are two types of PFI, namely single- and multi-point injection. Single-

point injection (e.g. throttle body injection) injects fuel at the main intake manifold which serves all the 

cylinders, while multi-point injection injects fuel at the back of intake valve(s) of each cylinder. Multi-point 

injection distributes fuel more evenly and precisely among cylinders than single-point injection, and thus is 

the dominant type in modern PFI engines. In a DI system (Fig. 2b), fuel is sprayed into the engine combustion 

chamber directly via a high pressure injector. DI engines are designed in two combustion modes, namely 

homogeneous stoichiometric combustion and stratified lean combustion [76]. The homogeneous mode injects 

fuel during early intake stroke to form a homogenous stoichiometric mixture by the time of spark discharge. 

The stratified mode injects fuel later to form an ignitable mixture in the regions around the spark plug but a 

lean mixture in other regions, which can be realised by either a wall-, air- or spray-guided mixing process. 

Although the stratified mode has higher fuel efficiency, the conversion efficiency of the TWC is low. As a 

result, current DI engines mostly adopt the homogenous stoichiometric combustion mode. 

   
         (a)          (b)          (c) 

Fig. 2. Schematics of PFI (a), DI (b) and dual injection (c) systems. 

 

Table 3 compares the advantages and disadvantages of PFI and DI systems [22, 76, 77]. PFI usually 

starts injection before the intake valves open and fuel films are formed on the surfaces of intake ports and 

valves. The liquid fuel absorbs heat from the hot surfaces and evaporates partially before being entrained into 

the engine combustion chamber by the intake air. Therefore, PFI engines have sufficient time for fuel 

evaporation and mixing, and low pressure injection (of a few bar) is applied. The homogenous stoichiometric 

combustion of PFI engines ensures a high TWC conversion efficiency. In addition, the good evaporation and 

mixing processes reduce the formation of particulate emissions. On the other hand, port wall wetting causes 

a time lag between the injection and fuel delivery into cylinders, leading to metering errors and slow transient 

responses. Particularly, over-fuelling is required for cold start when intake port is cold, which results in 

worsened fuel economy and increased HC emissions. 
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DI engines inject fuel directly into each cylinder, therefore time lag is eliminated and transient response 

is improved. Fuel evaporation inside the combustion chamber cools the air, which increases volumetric 

efficiency and reduces knock propensity. Thus a higher compression ratio can be achieved to increase the 

thermal efficiency. DI technology also offers an extended exhaust gas recirculation (EGR) tolerance limit 

and enhanced potential for system optimisation [22]. However, all these benefits come at a cost. Since the 

time allowed for fuel evaporation and mixing is reduced, high pressure injection (up to 20 MPa) is required 

to generate fine spray droplets. High pressure fuel injection and mixture formation have higher control 

complexity over a wide engine operating range, and fuel impingement may occur on the cylinder and piston 

walls. Unevaporated liquid fuel droplets by spark timing will participate in diffusion burning and thus produce 

high particulate emissions like diesel engines. Saliba et al. [78] investigated the gaseous and particulate 

emissions performance of 15 DI and 67 PFI light-duty petrol vehicles. The results demonstrated insignificant 

difference of regulated gaseous emissions between PFI and DI vehicles. However, the particulate emissions 

of DI vehicles were higher by a factor of two than PFI vehicles. Higher particulate emissions of DI engines 

were also reported in [79-83] which tested smaller sample sizes. The latest emission regulations such as Euro 

6 and China 6 have enforced PM and PN limits, and thus DI engines will need to adopt gasoline particulate 

filters to meet the new regulations [84, 85]. Finally, injector deposits and ignition fouling are also challenges 

in DI engines. Injector deposits are formed due to the exposure to high-temperature combustion environment, 

which can reduce injector fuel flow rates and alter the designed spray characteristics [86]. Ignition fouling is 

caused by fuel impingement on the electrodes of spark plug due to the close spacing between injector and 

spark plug [22]. 

Table 3. Comparison of advantages and disadvantages between PFI and DI technologies. 

 PFI DI 

Advantages Long time for fuel evaporation and mixing 

Low cost of low pressure injection system 

Low gaseous emissions with TWC 

Low PM and PN emissions 

Improved transient response 

High compression ratio and fuel efficiency 

Low HC during cold start 

Extended EGR tolerance limit 

Enhanced potential for system optimisation 

Disadvantages Fuel delivery delay due to port wall wetting 

Low compression ratio and fuel efficiency 

Fuel evaporation in intake port reduces volumetric 
efficiency 

Over fuelling and high HC during cold start 

Short time for fuel evaporation and mixing 

High cost of high pressure injection system 

Reduced TWC efficiency under lean mode 

High PM and PN emissions 

In-cylinder fuel impingement 

Injector deposits and ignition fouling  

 

4. Advantages of dual injection 

As discussed above, both DI and PFI have their respective advantages. DI+PFI dual injection (Fig. 2c) 

is a novel concept to integrate their advantages. Dual injection concept offers greater flexibility in the control 

of mixture formation and combustion processes. It is also a more effective and efficient method to use the 

limited supply of renewable fuels than blending them with gasoline at fixed ratios. In addition, the use of 
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renewable fuels can further enhance the benefits of dual injection by taking advantage of their fuel properties 

such as higher enthalpy of vaporisation, greater octane number and wider flammability limit. Specifically, 

dual injection provides the following advantages when compared with DI or PFI. 

 

4.1. Control flexibility 

Dual injection enables an engine to switch between PFI, DI and dual injection modes to achieve optimal 

performance under various operating conditions. For example, DI can be used for engine cold start to avoid 

over-fuelling of PFI and thus to improve the fuel efficiency and HC emissions. Under low load conditions, 

the engine can work in PFI mode to avoid fuel impingement and poor evaporation of DI due to the low-

pressure and low-temperature in-cylinder environment. Dual injection has also been proposed to address the 

issue of high particulate emissions under cold-start and transient conditions since a large fraction of 

particulate emissions are generated at these times in a test cycle [87, 88]. As engine load increases, the 

percentage of DI fuel can be increased to cool the combustion temperature and thus to suppress engine knock. 

Moreover, the anti-knock ability can be greatly enhanced by using fuels with high RON and/or large enthalpy 

of vaporisation (such as ethanol and premium unleaded petrol). Such a strategy is often referred to as octane-

on-demand [89-92] and several patents have been granted using this idea [93-97].  

Dual injection can also change the renewable fuel and gasoline blending ratio in real time according to 

the operating condition. Experiments showed that different biofuel-gasoline blending ratios were needed to 

achieve an optimal engine performance under different operating conditions [43, 98-102]. The supply of 

renewables is limited and can only partially substitute gasoline fuel. Thus dual injection enables an on-

demand control of in-cylinder blending ratio, which is a more effective and efficient use of renewable fuels 

than pre-blending them with gasoline at a fixed ratio. Daniel et al. [103, 104] compared the combustion 

performance of gasoline-biofuel dual injection with DI of gasoline-biofuel blends. The results showed 

advantages of dual injection over DI, including a shorter combustion duration, greater in-cylinder pressure 

and higher thermal efficiency, and reduced CO and mean PM diameter. 

 

4.2. Enhanced cooling effect 

DI has stronger cooling effect than PFI because of fuel evaporation inside the engine combustion 

chamber. Such cooling effect brings various benefits to SI engines, including higher volumetric efficiency, 

lower NOx emissions, reduced knock propensity, larger compression ratio, greater turbocharging and higher 

thermal efficiency. Moreover, the cooling effect of DI could be further strengthened by using fuels with larger 

enthalpies of vaporisation. Table 2 shows that the enthalpies of vaporisation of alcohol fuels, in particular 

ethanol and methanol, are much larger than gasoline. Therefore, existing dual injection studies mostly used 

gasoline for PFI and alcohols for DI. 
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The cooling effect of DI can be quantified in various ways. The simplest way is to directly measure the 

air temperature inside the cylinders. Cold-wire resistance thermometers were applied to measure the in-

cylinder air temperatures of PFI and DI engines [105, 106], which required fast-response and thin sensors 

due to the highly transient nature of in-cylinder flows. As a result, such experiments were only conducted 

under non-firing conditions to protect the fragile sensors [105, 106]. Attar et al. [107] developed a tracer-

based PLIF method to measure the in-cylinder gas temperature of a DI engine under both motoring and firing 

conditions. So far, the majority of experimental studies quantified the cooling effect indirectly by measuring 

parameters that linked to charge cooling, such as in-cylinder pressures [108], volumetric efficiencies [109] 

and anti-knock effects [110, 111]. Wu et al. [112] measured the volumetric air flow rate of a gasoline PFI 

plus gasoline/DMF/ethanol DI engine. They found that air flow rate increased with the DI ratio and the 

increase was much bigger for ethanol than DMF and gasoline. Zhuang and Hong [113, 114] found that the 

volumetric efficiency of a gasoline PFI plus ethanol DI engine increased with the DI ratio only when the 

injection was during intake valve open. However, volumetric efficiency or intake flow rate could only reflect 

a proportion of the charge cooling effect that occurred before the intake valves are closed. In a DI SI engine, 

fuel evaporation would continue during the compression stoke or even the combustion process. Therefore, 

knock onset was considered a better parameter to quantify the cooling effect. It is worth mentioning that the 

anti-knock ability of DI can come from two parts, namely the thermal benefit (i.e. cooling effect) and 

chemical benefit (i.e. higher RON). It was found that the benefit of ethanol’s cooling effect was comparable 

to its higher RON [111, 115]. To quantitatively compare ethanol’s thermal and chemical benefits, an increase 

of 2-8 kJ/kg in the mixture cooling power is equivalent to one-point increase in the RON [116], or adding 

10% ethanol into gasoline increases the RON by five points [117]. 

Meanwhile, numerical simulation is an economic and powerful tool to overcome the challenges of 

experimental methods and has been adopted to quantify the cooling effect of DI and dual injection systems. 

Wyszynski et al. [109] used a 0-D model to estimate the theoretical increases in volumetric efficiency of DI 

over PFI. Kasseris and Heywood [111] used an 1-D model to evaluate the anti-knock benefits of a DI engine 

fuelled with ethanol-gasoline blends [111]. However, 0-D and 1-D models were for specific aims and thus 

the output information was usually very limited. Huang et al. [102] used a 3-D computational fluid dynamics 

(CFD) model to investigate the cooling effect of a gasoline PFI plus ethanol DI dual injection engine. They 

found that the overall cooling effect increased with DI ratio within 0%-58% but not with higher DI ratios, 

due to ethanol’s low evaporation rate and in-cylinder wall wetting. Ethanol evaporates relatively slowly when 

compared with gasoline under low-temperature conditions (such as naturally-aspirated engines) [118, 119], 

which limits the amount of the realised cooling effect from ethanol. This can be improved by increasing the 

air temperature. Kasseris and Heywood [110] explored the effect of intake air temperature on cooling effect 

by 3-D CFD modelling. They found that all the theoretical cooling effect could be realized under a high intake 

air temperature condition of 120 ℃. 
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4.3. Knock mitigation 

The anti-knock ability of a fuel is described by RON in SI engines. Table 2 shows that renewable fuels 

all have higher RON than gasoline. In addition, dual injection of gasoline and alcohol fuels can further 

enhance the anti-knock ability by taking advantage of the cooling effect of DI and the higher enthalpies of 

vaporisation of alcohols. As discussed above, the thermal and chemical benefits have the same level of 

importance in knock mitigation [111, 115]. The advantages of dual injection in knock mitigation have been 

extensively investigated by engine experiments. Liu et al. [120] investigated the knock characteristics of a 

methanol PFI plus gasoline DI engine and reported that dual injection could effectively suppress engine knock, 

extend high-load limit and improve fuel economy. Experiments on an ethanol PFI plus gasoline DI engine 

showed simultaneous reductions of knock propensity and emissions when ethanol was injected during intake 

valve open [121]. Meanwhile, Zhuang et al. [122] evaluated the knock mitigation ability of a gasoline PFI 

plus ethanol DI engine. They found that dual injection effectively reduced knock by increasing the ethanol 

DI ratio, and permitted a more advanced spark timing and higher intake air pressure when compared with 

gasoline PFI or DI. However, experiments on a gasoline PFI plus n-butanol DI engine showed that dual 

injection of 20% and 50% n-butanol had a higher knock propensity and intensity than gasoline PFI, although 

dual injection demonstrated a higher indicated mean effective pressure (IMEP) [123]. A comparison between 

the results in [123] and [120-122] clearly demonstrates that biofuels (e.g. ethanol and methanol) with higher 

enthalpies of vaporisation and larger RON will have greater anti-knock ability. 

 

4.4. Engine downsizing 

Engine downsizing is considered a key technology to achieve future carbon reduction targets [124, 125]. 

The concept of engine downsizing is to use a smaller engine in a car to provide similar power performance 

to a larger engine by boosting with a turbocharger while keeping the compression ratio as high as possible to 

achieve the best thermal efficiency. The main advantages of engine downsizing include lower mechanical 

and thermal losses, reduced engine weight, and more operation time within the optimal performance zone of 

an engine [125]. Turner et al. [126] demonstrated that it was possible to reduce engine displacement by 60% 

and fuel consumption by 35%, while still achieve a comparable torque performance of a modern large (e.g. 

5.0 L) naturally-aspirated engine. However, the key challenges of downsizing of SI engines are the increased 

knock propensity at high load and reduced fuel economy at part load [124]. The greater control flexibility 

and anti-knock ability of dual injection could help address these challenges. As shown in Table 1, by applying 

dual injection, the Toyota M20A-FKS/A25A-FKS/A25A-FXS naturally-aspirated engines have achieved 

high compression ratios of 14:1 in a hybrid configuration and 13:1 in a conventional configuration in mass 

production cars (i.e. Camry and RAV4 models). The Volkswagen CJSB/DJHB/CHHA turbocharged engines 

have also adopted dual injection systems. It should be pointed out that the same fuel (i.e. gasoline) is used for 

both PFI and DI in these dual injection engines. It is expected that more aggressive engine downsizing (e.g. 

higher turbocharging, larger compression ratio and more spark advance) could be adopted by using renewable 

fuels with the dual injection concept due to their greater RON and enthalpies of vaporisation. 



 

16 

 

4.5. Fast combustion speed 

Renewable fuels mostly have higher flame speeds than gasoline. Therefore, adding renewable fuels into 

gasoline engines could enhance the burning rate. Most studies have observed faster combustion speeds of 

dual injection systems either indirectly via in-cylinder pressure related parameters or directly via visualisation 

of in-cylinder flows by experimental and numerical methods. For example, experiments on engines equipped 

with gasoline PFI plus biofuels DI [112, 113], alcohols PFI plus gasoline DI [127] and gasoline PFI plus 

hydrogen DI [128] dual injection systems all reported faster combustion speeds with shorter/earlier 

combustion durations/phases (e.g. 0-10%, 10%-90% and 50% of mass fraction burnt), higher/earlier phase 

of peak in-cylinder pressure, or higher/earlier phase of peak heat release rate. Jiang et al. [129] visualised the 

combustion process in a gasoline PFI plus ethanol/DMF DI optical engine and found that both gasoline-

ethanol and gasoline-DMF dual injection systems had faster combustion speeds than gasoline PFI. CFD 

modelling results of a gasoline PFI plus ethanol DI engine also showed higher flame propagation speed of 

dual injection than gasoline PFI when the ethanol ratio was less than 76% [102, 130]. 

 

4.6. Extended lean burn limit 

Lean burn technology is an effective strategy to reduce fuel consumption and NOx emissions of SI 

engines due to lower pumping losses and combustion temperatures [131, 132]. However, the application of 

lean burn technology is limited by the issues of higher cyclic variation, lower combustion speed and higher 

ignition energy. Dual injection of renewable fuels offers the potential to extend the lean burn limit. In 

particular, hydrogen has significantly higher flame velocity, wider flammability limit, lower ignition energy 

and faster diffusion rate than gasoline [133], and thus has been extensively investigated for extending the lean 

burn limit of SI engines. Experiments on a gasoline PFI plus hydrogen DI engine showed that hydrogen 

addition increased thermal efficiency and reduced cyclic variation under lean conditions [128, 134, 135]. The 

lean burn limit increased with hydrogen DI ratio and could reach an excess air ratio (λ) of 2.65 with 10.5% 

of hydrogen [134]. Hydrogen addition could also extend the EGR limit under lean-burn conditions [136]. 

Gong et al. [137, 138] reported that a dual injection engine equipped with hydrogen PFI plus methanol DI 

could effectively extend the lean-burn limit from λ=1.6 without hydrogen to λ=2.2 with 3%–6% of hydrogen 

DI, as well as reduced cyclic variation. 

Liquid renewable fuels could also improve the lean-burn performance of dual injection engines. Zhuang 

et al. [139] reported that the lean-burn limit of a gasoline PFI plus ethanol DI engine was increased by on 

average 20% when compared with gasoline PFI. In addition, the lean burn limit increased with the increase 

of the ethanol ratio and the advance of DI timing. Experiments on a dimethyl ether (DME) PFI plus gasoline 

DI engine under lean-burn conditions also observed increased thermal efficiency and reduced cyclic variation 

under dual injection mode [140]. 
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4.7. Higher thermal efficiency and selected emissions reduction 

The ultimate goal of the dual injection concept is to increase engine thermal efficiency and thus to save 

fossil fuels. This has been well achieved by the advantages discussed above, in particular greater control 

flexibility, engine downsizing, faster combustion speed and extended lean burn limit. In terms of pollutant 

emissions, most dual injection studies have reported reductions in particulate and specific gaseous emissions. 

The detailed effects of dual injection on thermal efficiency and pollutant emissions will be reviewed and 

discussed in Section 5. 

 

5. Performance of dual injection engines 

This section discusses the thermal efficiency and pollutant emissions performance of various dual 

injection engines. It should be noted that the dual injection concept can be applied relatively flexibly so that 

different fuels are used in dual injection with various combinations, such as dual injection of gasoline plus 

one renewable fuel (e.g. gasoline PFI + ethanol DI [141]), dual injection of a single fuel (e.g. ethanol PFI + 

ethanol DI [142]), or dual injection of two renewable fuels (e.g. acetone-butanol-ethanol blend (ABE) PFI +  

hydrogen DI [143] and hydrogen PFI + methanol DI [144, 145]). However, the supply of renewable fuels is 

still limited so that they can only partially substitute gasoline use in real world applications. Therefore, this 

section focuses on dual injection of renewable fuels with gasoline, which is considered as a more effective 

and efficient method to use renewable fuels in SI engines than pre-blending them with gasoline at fixed ratios. 

So far, the renewable fuels that have attracted the most research interests in such application are ethanol, 

methanol and hydrogen. For conciseness, gasoline/ethanol/methanol/hydrogen PFI and 

gasoline/ethanol/methanol/hydrogen DI are abbreviated as GPI/EPI/MPI/HPI and GDI/EDI/MDI/HDI in this 

section, respectively. 

 

5.1. Ethanol-gasoline dual injection engines 

Ethanol is the most popular alternative fuel to gasoline in SI engines and thus has attracted the most 

research attention for dual injection applications. Compared with gasoline, ethanol has several advantages 

including a larger RON, a greater enthalpy of vaporisation and a faster laminar flame speed. These advantages 

make ethanol an ideal anti-knock agent in dual injection engines to implement engine downsizing 

technologies. Cohn et al. [146] firstly proposed an ethanol boosted engine concept which had the potential to 

increase the gasoline engine efficiency by approximately 30%. They proposed to directly inject a small 

volume of ethanol into the combustion chamber as an anti-knock agent only when high torque output was 

required, whilst gasoline was delivered via PFI. This could effectively mitigate the engine knock due to 

ethanol’s high RON, and supplemented by the stronger cooling effect due to DI and ethanol’s greater enthalpy 

of vaporisation. The reduced knock propensity made it possible to adopt a high compression ratio and 

turbocharging in a downsized engine, and consequently to increase the fuel efficiency significantly. A series 

of patents have been granted based on this concept [93, 95-97]. Similarly, Ford Motor Company introduced 
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an EcoBoost turbocharged DI engine in the 2010 Lincoln MKS [147], which used gasoline PFI for starting 

and light to medium load operation, and E85 DI was only applied to supress knock during high load operation. 

The EcoBoost engine demonstrated great leveraging effects of E85 in lowering gasoline consumption. 

Following that, significant research has been conducted to investigate the performance of ethanol-

gasoline dual injection engines. Fig. 3 compares the thermal/fuel efficiency performance of various ethanol-

gasoline dual injection engines. The corresponding engine operation conditions and emissions performance 

are given in Table 4. Since the most important advantage of ethanol fuel is knock mitigation, most existing 

studies explored engine performance under knock limited spark timing (KLST) or minimum spark advance 

for best torque (MBT) conditions while the air fuel ratio (AFR) was kept stoichiometric, as shown in Table 

4. Although the original ethanol boosted engine concept proposed to use ethanol via DI, both DI and PFI 

were explored for ethanol utilisation in the research community, namely GPI+EDI and EPI+GDI. Fig. 3 

shows that both dual injection configurations could improve the engine thermal/fuel efficiency compared 

with single injection, mainly due to ethanol’s faster combustion speed and more spark advance allowed by 

ethanol’s anti-knock ability. Regarding the emissions performance, Table 4 shows that both configurations 

could effectively reduce the PM and PN emissions when compared with GDI [104, 121, 148-151]. For 

gaseous emissions, the variation trends are highly dependent on engine operating conditions and there are 

usually trade-offs between emission species such as NOx vs CO/HC due to their different or conflicting 

emission formation pathways [152]. 

 

 

Fig. 3. Improvements in thermal/fuel efficiency of ethanol-gasoline dual injection engines. The results 

are shown as the mean and range of efficiency improvements observed. 
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Table 4. Comparison of emissions performance of ethanol-gasoline dual injection engines. 

Experiments 
Engine conditions (compression ratio, 
induction, speed, AFR, spark timing, load) 

Comparison 

baselines* 

Emissions performance* 

CO HC NOx PM PN 

Wu et al. (2011) 
[112] 

11.5:1, aspirated, 1500 rpm, λ=1, KLST, 
IMEP=4.5-8.5bar 

GPI+EDI vs GPI  ↓ ↓   

Daniel et al. 
(2013) [104] 

11.5:1, aspirated, 1500 rpm, λ=1, KLST, 
IMEP=5.5bar 

GPI+ExDI vs ExDI     ↑ 

Zhuang & Hong 
(2013) [113] 

9.8:1, aspirated, 3500-5000 rpm, λ=1, 15° 
BTDC, light-medium 

GPI+EDI vs GPI ↑ ↑ ↓   

Zhuang & Hong 
(2014) [153] 

9.8:1, aspirated, 3500-4000 rpm, λ=1 & lean 
burn limit, 21-25° BTDC & KLST, light-
medium 

GPI+EDI vs GPI  ⥮ ⥮   

Kim et al. 
(2015) [121] 

9.5/13.3:1, aspirated, 1000 rpm, λ=1, KLST, 
wide open throttle (WOT) 

EPI+GDI vs GDI ↓ ⥮ ⥮ ↓ ↓ 

Liu et al. (2015) 
[148] 

13:1, aspirated, 1600 rpm, λ=1, MBT, WOT 
EPI+GDI vs GDI     ↓ 

GPI+EDI vs GDI     ↓ 

Wang et al. 
(2015) [154] 

13:1, aspirated, 1600 rpm, λ=1, MBT, WOT 
EPI+GDI vs GDI      

GPI+EDI vs GDI      

Huang & Hong 
(2016) [155] 

9.8:1, aspirated, 3500-4000 rpm, λ=1, 15° 
BTDC & MBT, medium 

GPI+EDI vs GPI ⥮ ⥮ ↓   

Zhuang et al. 
(2017) [122] 

9.8:1, aspirated, 3500 rpm, λ=1, KLSA, 
IMEP=7.2-8.5bar 

GPI+EDI vs GDI ↓ ⥮ ↑   

Zhuang et al. 
(2018) [139] 

9.8:1, aspirated, 3500-4000 rpm, lean burn limit, 
25° BTDC, IMEP=5.5-7.5bar 

GPI+EDI vs GPI  ⥮ ↑   

Han et al. (2018) 
[149] 

10.5:1, boosted, 1500 rpm, λ=1, KLST, 
IMEP=9-13bar 

EPI+GDI vs ExDI  ↓ ⥮  ↓ 

Kang et al. 
(2019) [50] 

12:1, aspirated, 1500 rpm, λ=1, MBT, WOT 
EPI+GDI vs GDI       

GPI+EDI vs GPI      

Qian et al. 
(2019) [91] 

10:1, boosted, 2000 rpm, λ=1, KLST, 
BMEP=6bar 

EPI+GDI vs GDI ↑ ↓ ↓   

Sun et al. (2019) 
[150] 

9.6:1, aspirated, 1500-2100 rpm, λ=1, MBT, 
partial load 

EPI+GDI vs GDI  ↓   ↓ 

Yu et al. (2019) 
[156] 

9.6:1, aspirated, 1500 rpm, λ=1.0-1.4, MBT, 
IMEP=2-4bar 

EPI+GDI vs EPI ⥮ ⥮ ⥮  ⥮ 

Zhuang et al. 
(2019) [157] 

9.8:1, aspirated, 3500 rpm, λ=1.0, 15° BTDC, 
light-medium 

GPI+EDI vs GPI ⥮ ⥮ ⥮   

Kalwar et al. 
(2020) [151] 

10.5:1, aspirated, 2000 rpm, λ=1.0, 24° BTDC, 
IMEP=5-7bar 

EPI+GDI vs GDI ↓ ↑ ↓ ↓ ↓ 

* Symbols: ↑, increased; ↓, decreased; ⥮, depended on operating conditions; Nil, not reported; Ex, ethanol-gasoline blends. 

 

Studies have been conducted to compare engine performance between different dual injection 

configurations [50, 148, 154, 158]. They all reported that GPI+EDI offered better thermal efficiency than 

EPI+GDI because EDI could better utilise the cooling effect of ethanol. As a result, the majority of existing 

studies adopted the dual injection configuration of GPI+EDI. Particularly, Huang and Zhuang et al. have 

conducted significant works in this area by both experiments and CFD simulations. Firstly, they 

systematically evaluated the leveraging effect [113, 157], knock mitigation [122, 153] and lean burn 

performance [139, 153] of a GPI+EDI engine under various conditions. The experimental results showed that 

engine performance was improved by EDI, including higher thermal efficiency, lower NOx, extended lean 
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burn limits and more spark advance without knock issues. However, CO and HC were increased by EDI. To 

understand the underlying mechanisms, CFD simulations [102, 130, 159] and spray experiments [160, 161] 

were performed to investigate the spray evaporation and combustion processes of the GPI+EDI engine. The 

CFD results revealed that the flame propagated faster and combustion temperature was lower in GPI+EDI 

than GPI, leading to higher thermal efficiency and lower NOx. However, ethanol evaporated slowly under the 

low-temperature condition before combustion started, causing incomplete combustion. Moreover, over-

cooling effect and in-cylinder wall wetting occurred when ethanol DI ratio was over 58%, which worsened 

the incomplete combustion issue. This led to the increases of CO and HC observed in the engine experiments. 

To address these issues, EDI heating was proposed as an economic and effective method to generate fine and 

fast evaporating DI sprays in the GPI+EDI engine [155]. The experimental results showed that ethanol fuel 

heating was an effective method to solve the problems of ethanol’s slow evaporation and over-cooling effect 

in the EDI+GPI engine in terms of minimising the emissions. 

 

5.2. Methanol-gasoline dual injection engines 

Methanol has a comparable RON and an even higher enthalpy of vaporisation than ethanol. Therefore, 

methanol is another effective anti-knock agent in dual injection engines to implement engine downsizing 

technologies. Liu and co-workers have conducted significant experimental works to explore the performance 

of methanol-gasoline dual injection engines. They found that MPI+GDI could effectively suppress engine 

knock, extend high-load limits and reduce PN emissions when compared with GDI [120, 162]. They further 

compared the performance between methanol and ethanol, and found that MPI+GDI had better fuel efficiency 

and knock mitigation ability than EPI+GDI [127]. Kalwar et al. [151] also observed a higher brake thermal 

efficiency for MPI+GDI than that of EPI+GDI. This could be attributed to methanol’s slightly stronger 

cooling effect and higher laminar flame velocity than ethanol. Experiments were also conducted to compare 

the performance of different methanol-gasoline dual injection configurations. Same as for ethanol-gasoline 

dual injection, they found that GPI+MDI demonstrated higher fuel efficiency, greater anti-knock ability and 

larger PN reductions than MPI+GDI [148, 154]. The enthalpy of vaporisation of water is even much larger 

than that of methanol and thus has significant anti-knock potentials. Experiments on a GDI engine showed 

that KLST could be advanced by water-methanol blends PFI, with pure water PFI having the most advanced 

KLST [163].  

 

5.3. Hydrogen-gasoline dual injection engines 

Hydrogen is carbon free and is an attractive alternative fuel for SI engines. Compared with gasoline, the 

most important advantages of hydrogen are its significantly higher flame velocity, wider flammability limits 

and lower ignition energy. These advantages make hydrogen an excellent agent to extend the lean burn limit 

of SI engines, and thus to improve the fuel efficiency. Hydrogen can be introduced into the engine via either 

PFI or DI, and many studies were conducted to investigate their performance under lean burn conditions. 
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Unlike alcohol-gasoline dual injection engines which could vary the alcohol ratio in a wide range from 0% 

to 100%, hydrogen-gasoline dual injection engines usually used only a small hydrogen ratio (typically <15%) 

to partially substitute gasoline fuel. 

Ji et al. [164] studied the performance of an HPI+GDI engine under a lean condition of λ=1.2. 

Comparing with GDI, HPI+GDI effectively increased the thermal efficiency and significantly reduced the 

PN, CO and HC emissions and cyclic variation, while NOx emissions were increased by hydrogen addition. 

However, an inherent disadvantage of HPI is the reduced volumetric efficiency because hydrogen displaces 

air in the intake port [133]. This can be avoided well by HDI after intake valve closes. HDI also has the 

potential to avoid pre-ignition – another major challenge of HPI – by controlling the DI timing [133]. 

Therefore, GPI+HDI attracted more research attention. Yu and co-workers carried a series of works on the 

lean burn performance of GPI+HDI engines. Compared with GPI, GPI+HDI effectively improved the thermal 

efficiency, expanded the lean burn limit and reduced the cyclic variation [134, 135, 165]. In addition, 

GPI+HDI had better ignition reliability during cold start [166] and extended the EGR limit [136] than GPI. 

In terms of emissions performance, CO, HC and PN were greatly reduced while NOx was increased by 

hydrogen addition [128, 167, 168]. The increased NOx of GPI+HDI could be controlled by increasing the 

excess air ratio (e.g. λ=1.5) [128], by using EGR [136] and by split hydrogen injection [169, 170]. Yu et al. 

[171] further compared GPI+HDI with GPI+GDI, and reported that GPI+HDI demonstrated larger 

improvements in thermal and exergy efficiencies with the increase of DI ratio.  

 

5.4. Other renewable fuel-gasoline dual injection engines 

Although receiving less research attention, other renewable fuels have also been explored for dual 

injection engines, such as n-butanol, ABE, DMF and DME. Compared with gasoline, n-butanol has a 

comparable RON and moderately higher enthalpy of vaporisation. Therefore, n-butanol is a less effective 

anti-knock agent when compared with methanol and ethanol. Experiments on a GPI plus n-butanol DI engine 

showed that dual injection could achieve up to 7% lower energy consumption than GPI [123]. He et al. [172] 

and Wang et al. [173] examined the performance of different n-butanol-gasoline dual injection configurations. 

It was reported that GPI plus n-butanol DI had similar IMEP under a lean condition (λ=1.3) [172] but higher 

IMEP under stoichiometric and rich (λ=0.9) conditions [173] than n-butanol PFI plus GDI. Meanwhile, GPI 

plus n-butanol DI emitted higher PN but lower PM emissions than n-butanol PFI plus GDI [173]. ABE is a 

solution of acetone, butanol and ethanol, which reduces the separation and purification costs of bio-butanol 

production.  Guo et al. [174-176] investigated the performance of ABE-gasoline dual injection engines. Their 

results showed that both ABE PFI plus GDI and GPI plus ABE DI could effectively improve the engine 

combustion and emissions performance compared with the gasoline only condition [174, 175], and GPI plus 

ABE DI performed better than ABE PFI plus GDI [176].  

DMF has a higher RON but lower enthalpy of vaporisation than gasoline. Therefore, the anti-knock 

ability of DMF is much smaller than that of ethanol and methanol. Experiments on a GPI plus DMF DI engine 

demonstrated that thermal efficiency was increased at high load, was comparable at medium load but was 
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lower at low load when compared with GPI [112]. Meanwhile, HC was decreased while NOx was increased 

at all loads.  

Finally, although DME is considered an alternative fuel to diesel, Shi et al. [140] studied the 

performance of a DME PFI plus GDI engine under split DI and lean-burn conditions. Compared with GDI, 

dual injection increased thermal efficiency, reduced HC and NOx emissions, but increased CO emissions. 

 

6. Summary and outlook 

This study critically reviewed the dual injection concept for SI engines. It can be concluded that dual 

injection is an effective and efficient method to use renewable fuels in SI engines. Dual injection offers greater 

flexibility in the control of mixture formation and combustion processes by integrating the advantages of both 

DI and PFI technologies and is a promising technology to help achieve the increasingly stringent emission 

standards. Compared with the conventional single injection engines, the main advantages of dual injection 

engines include greater control flexibility, enhanced cooling effect, knock mitigation, engine downsizing, 

faster combustion speed, extended lean-burn limits, higher thermal efficiency, and reductions of some 

emission species. So far, the renewable fuels that have attracted the most research attention for dual injection 

SI engines are ethanol, methanol and hydrogen. Each of them is aimed at different advantages of the dual 

injection concept. Alcohol-gasoline dual injection engines provide great anti-knock ability by taking 

advantage of alcohols’ large enthalpies of vaporisation and high octane numbers, while hydrogen-gasoline 

dual injection engines provide extended lean-burn limits by taking advantage of hydrogen’s low ignition 

energy, wide flammability limits and fast flame velocity. The renewable fuels can be delivered into the dual 

injection engines via either PFI or DI. However, renewables DI plus gasoline PFI is the optimal strategy for 

both alcohol and hydrogen fuels. This is because alcohols DI can better utilise the cooling effect of alcohol 

fuels which has the same level of importance in knock mitigation as high octane rating of alcohols. Meanwhile, 

hydrogen DI can effectively avoid volumetric efficiency reductions and pre-ignition by adjusting the DI 

timing. Regarding the combustion and emissions performance, dual injection engines generally reported 

higher thermal efficiencies when compared with PFI or DI single injection engines. In addition, dual injection 

engines could effectively reduce particulate emissions but there were usually trade-offs among gaseous 

emissions. 

Whilst most of the reviewed studies have revealed the benefits of dual injection over conventional single 

injection, it should be noted that all these studies were conducted under steady state conditions. Future studies 

are needed to investigate the performance of dual injection engines under transient conditions and to address 

the challenges of the optimal control of two injection systems. It is expected that increasing production of 

dual injection cars (but fuelled by one fuel) will be available in the automotive markets, with more mature 

engine design and global drive for renewable transport fuel. We advocate that future studies investigate 

practical applications of dual injection of two fuels on real vehicles with a focus on the most promising 

renewable fuels such as ethanol, methanol and hydrogen that are identified in this study. 
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