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Abstract—The scattering of an arbitrary electromagnetic wave by
a thin disk located in free space is formulated rigorously in terms of
coupled dual integral equations (CDIEs) for the unknown images of
the jumps and average values of the normal to the disk scattered-field
components. Considered are three cases of the disk: (1) Zero-thickness
perfectly electrically conducting (PEC) disk, (2) thin electrically
resistive (ER) disk and (3) dielectric disk. Disk thickness is assumed
much smaller than the disk radius and the free space wavelength, in
ER and dielectric disk cases, and also much smaller than the skin-
layer depth, in the ER disk case. The set of CDIEs are “decoupled” by
introduction of the coupling constants. Each set of DIEs are reduced to
a Fredholm second kind integral equation by using the semi-inversion
of DIE integral operators. The set of “coupling” equations for finding
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the coupling constants is obtained additionally from the edge behavior
condition. Thus, each problem is reduced to a set of coupled Fredholm
second kind integral equations. It is shown that each set can be
reduced to a block-type three-diagonal matrix equation, which can be
effectively solved numerically by iterative inversions of the two diagonal
blocks and 2× 2 matrix.

1. INTRODUCTION

The problem of electromagnetic wave scattering by a thin disk has
been attracting the interest of researchers since long ago. This is
explained by many applications of this canonical shape. Besides of
traditional applications in the printed disk antennas with PEC [1, 2]
or ER disks [3], thin dielectric disk is met as a simplified model of
the tree leave [4]. Moreover, thin few-micron radius disks are used
as resonators of semiconductor lasers with ultralow thresholds [5–7].
Many approximations and computational electromagnetics methods
have been used in their analysis. High frequency approximation
techniques (for the PEC disk scattering problem) are approximate
methods commonly used when the size of the disk is much larger then
the free-space wavelength. They are physical optics technique and
physical theory of diffraction method; geometrical theory of diffraction;
uniform theory of diffraction and uniform asymptotic theory method;
equivalent current method. Boundary element method (BEM) is a
numerical method using the Method of Moments (MoM) to solve an
electric field (in PEC and ER disk case) or coupled field (electric
field and magnetic field) integral equations for electric and magnetic
currents on the disk. As it requires calculating only the boundary
values, it is significantly more efficient (in terms of computational
resources) for not large (versus the free-space wavelength) disk,
otherwise using this method leads to the inversion of the large
matrix. Moreover, in both cases (small and large disk) sometimes
using of this method leads to the computational errors associated
with ill-conditioned matrices. Finite element method (FEM) is also
a numerical method. Every FEM code divides the entire problem
domain into small elements. The domain must be finite and bounded.
Modeling an unbounded (e.g., radiation) problem requires that the
problem domain be bounded with special boundary that absorbs
all incident energy. The boundary condition models have been
well developed for 2D problems but have not for FEM 3D codes
yet. The Finite Difference Time Domain (FDTD) method builds a
direct solution of Maxwell’s time-dependent curl equations. It uses
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simple approximations to evaluate the space and time derivatives and
absorbing boundary condition to truncate the computational domain
for an open 3D region problems. FDTD-based code divides space
domain into the small elements as a FEM code and uses space and time
recurrent formulas to find electrical and magnetic fields. Time stepping
is continued until a steady state solution is obtained. Although FDTD
is known as powerful numerical method, it has disadvantages such as
numerical dispersion, backreflection from the borders of computational
window, etc [8].

Here we develop the method of spectral domain integral equations
combined with analytical regularization [9–14]. In contrast to high-
frequency approximation techniques, FEM and FDTD methods, it is
a rigorous method. It enables us to reduce each problem to the sets
of coupled Fredholm second kind integral equations. These sets of
equations can be discretized to the matrix equations of the same kind
by applying any reasonable descritization scheme. Favorable features
of this-kind equations guarantee that the obtained matrices are well
conditioned.

2. PROBLEM STATEMENT

We consider the problem of diffraction of harmonic electromagnetic
field by a zero-thickness disk of radius a. Assume that the center of
the disk is located at the point (ρ = 0, z = 0). Denote the total field
as a sum of the scattered and incident fields:

E = Ein + Esc H = Hin + Hsc (1)

Introduce dimensionless cylindrical coordinates (ρ = r/a, ϕ, ζ = z/a)
with the origin at the disk center point. Demand the incident and
scattered fields to satisfy the set of homogeneous Maxwell equations
outside of the sources and outside the disk.

curlE = ikaZ0H, Z0 curlH = −ikaE. (2)

( , )in inE H
z

a

ϕ

Figure 1. Problem geometry.
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Demand the field components to satisfy the following generalized
boundary conditions on the disk [15]:

[
E+

tg + E−
tg

]
= 2Z0R · −→n × [

H+
tg −H−

tg

]
,

Z0

[
H+

tg + H−
tg

]
= −2Q · −→n × [

E+
tg −E−

tg

]
.

(3)

Here, Z0 is the free-space impedance and R and Q are the electric and
magnetic resistivities. For the dielectric disk they are given by

R =
iZ

2
cot

(√
εrµrkτ

2

)
, Q = R/Z2, |εrµr| À 1, τ ¿ λ0. (4)

Here, Z is the relative impedance of the disk material, k = ω/c is
the wavenumber, εr is the relative permittivity, µr is the relative
conductivity, λ0 is the wavelength in free space, and τ is the thickness
of the disk. For the ER disk they are given by

R =
1

Z0στ
, Q = ∞, σ/ω À 1, τ ¿ λ0. (5)

For a zero-thickness PEC disk they are given by

R = 0, Q = ∞ (6)

On the rest part of the plane (z = 0) the components of the field are
continuous. Besides, the components of the scattered field must satisfy
the 3-D radiation condition and the edge condition [16] (condition of
local integrability of power).

3. FIELDS COMPONENTS REPRESENTATION

To obtain convenient field component representations, assume that
they are continuous everywhere in the free space except the plane
(ζ = ξ) and satisfy the homogeneous Maxwell Equations (2) in doubly-
connected domain Ω = Ω+∪Ω− = R3\{ζ = ξ}. Then each component
satisfies Helmholtz equation ∆u+(ka)2u = 0 in Ω and can be presented
in terms of Fourier-Bessel transform:

u(ρ, ϕ, ζ) =

∞∑
m=−∞

eimϕum(ρ, ζ) =

∞∑
m=−∞

eimϕ

∞∫

0

eiγ(κ)|ζ−ξ|u±m(κ)J|m|(κρ)κ dκ (7)

Note that the function u±(ρ, ϕ, ζ) is presented in terms of Fourier
series in ϕ where each coefficient is the m-th order scalar Hankel
transformation of eiγ(κ)|ζ−ξ|u±m(κ). Here, γ(κ) =

√
(ka)2 − κ2 is
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the complex valued function with the chosen branch Re(γ(κ)) ≥ 0,
Im(γ(κ)) ≥ 0, and u±m(κ) are the images of um(ρ, ζ) in Ω+ and Ω−,
respectively. Introduce normal to the plane (ζ = ξ) field components
in terms of Fourier-Bessel transforms like (7) and use Maxwell’s
Equations (2) to find tangential field components. Finally we obtain:

(
E

sgn(ζ−ξ)
z

Z0H
sgn(ζ−ξ)
z

)
=

∞∑
m=−∞

eimϕ

∞∫

0

eiγ(κ)|ζ−ξ|J|m|(κρ)

(
κe

sgn(ζ−ξ)
m,z (κ)

κh
sgn(ζ−ξ)
m,z (κ)

)
dκ (8)

(
E

sgn(ζ−ξ)
r

−iE
sgn(ζ−ξ)
ϕ

)
=

∞∑
m=−∞

eimϕ

∞∫

0

eiγ(κ)|ζ−ξ|H̄m(κρ)

(
sgn(ζ − ξ) iγ(κ)e

sgn(ζ−ξ)
m,z (κ)

−ka h
sgn(ζ−ξ)
m,z (κ)

)
dκ (9)

(
Z0H

sgn(ζ−ξ)
r

−iZ0H
sgn(ζ−ξ)
ϕ

)
=

∞∑
m=−∞

eimϕ

∞∫

0

eiγ(κ)|ζ−ξ|H̄m(κρ)

(
sgn(ζ−ξ) iγ(κ)h

sgn(ζ−ξ)
m,z (κ)

ka e
sgn(ζ−ξ)
m,z (κ)

)
dκ(10)

here

H̄m(κρ) =

(
J ′|m|(κρ) mJ|m|(κρ)/(κρ)

mJ|m|(κρ)/(κρ) J ′|m|(κρ)

)
(11)

is vector Hankel transform [17, 18].
Note that thus presented fields components satisfy radiation

condition of Silver-Muller automatically.

4. SET OF DUAL INTEGRAL EQUATIONS

Our goal is to find integral equations for the following unknown
functions:

u±m(κ) =
(
e+
m,z(κ)± e−m,z(κ)

)
/2, v±m(κ) =

(
h+

m,z(κ)± h−m,z(κ)
)
/2.

To this end, we substitute the incident and scattered field expressions
into the generalized boundary conditions (3) and satisfy field continuity
condition outside the disk. The following set of CDIEs are obtained:




∞∫
0

H̄m(κρ)

(
γ(κ)

(
u−m(κ) + u0,−

m (κ)
)

+ 2Rkau−m(κ)

ika
(
v+

m(κ) + v0,+
m (κ)

)
+ 2Riγ(κ)v+

m(κ)

)
dκ = 0̄ (ρ < 1)

∞∫
0

H̄m(κρ)

(
ikau−m(κ)

−γ(κ)v+
m(κ)

)
dκ = 0̄ (ρ > 1)

(12)





∞∫
0

H̄m(κρ)

(
γ(κ)

(
v−m(κ) + v0,−

m (κ)
)
+2Qkav−m(κ)

− (
ika

(
u+

m(κ) + u0,+
m (κ)

)
+2Qiγ(κ)u+

m(κ)
)
)

dκ = 0̄ (ρ<1)

∞∫
0

H̄m(κρ)

(
ikav−m(κ)

γ(κ)u+
m(κ)

)
dκ = 0̄ (ρ>1)

(13)
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Here u0,±
m (κ) and v0,±

m (κ) are certain given functions (generated by the
incident field).

Thus, our problem is reduced to the search of u±m(κ) and v±m(κ),
which are unknown functions considered in the following functional
spaces:

1. For the zero-thickness PEC disk case: γ1/2−ε(κ)u−m(κ),
γ1/2−ε(κ)v+

m(κ) ∈ L2 (R+)
2. For the thin ER disk case: γ1/2−ε(κ)u−m(κ) ∈ L2 (R+),

γ1/2−ε/2(κ)κ1/2−ε/2v+
m(κ) ∈ L2 (R+)

3. For the thin dielectric disk case: γ1/2−ε(κ)u−m(κ) ∈ L2 (R+),
γ1/2−ε/2(κ)κ1/2−ε/2v+

m(κ) ∈ L2 (R+) and γ1/2−ε(κ)v−m(κ) ∈
L2 (R+), γ1/2−ε/2(κ)κ1/2−εu+

m(κ) ∈ L2 (R+),
where 0 < ε ¿ 1/2 (this is a parameter which enable us to show
existence and uniqueness of solution in L2 (R+) and does not effect
numerical scheme, see Discussion). Note that this choice of spaces
is not arbitrary, but follows from the edge behavior condition. Also
note that, in the case m = 0, DIEs (20), (21) decouple and can be
reduced to two independent integral equations of the Fredholm second
kind [19, 20]. Hereinafter we will consider the case m 6= 0 and reduce
each of the coupled DIEs (12), (13) to four “quasi-coupled” DIEs. To
do this, we consider the following functions:

f−m(ρ)=
{

f−,l
m (ρ), ρ<1

f−,r
m (ρ),ρ>1

}
=

∞∫

0

(
γ(κ)

(
u−m(κ)+u0,−

m (κ)
)
+2Rkau−m(κ)

)
J|m|(κρ)dκ (14)

g+
m(ρ)=

{
g+,l

m (ρ), ρ<1

g+,r
m (ρ),ρ>1

}
=

∞∫

0

(
ika

(
v+

m(κ)+v0,+
m (κ)

)
+2Riγ(κ)v+

m(κ)
)
J|m|(κρ)dκ (15)

g−m(ρ)=
{

g−,l
m (ρ), ρ<1

g−,r
m (ρ),ρ>1

}
=

∞∫

0

(
γ(κ)

(
v−m(κ)+v0,−

m (κ)
)
+2Qkav−m(κ)

)
J|m|(κρ)dκ (16)

f+
m(ρ)=

{
f+,l

m (ρ), ρ<1

f+,r
m (ρ),ρ>1

}
=−

∞∫

0

(ika
(
u+

m(κ)+u0,+
m (κ)

)
+2Qiγ(κ)u+

m(κ))J|m|(κρ)dκ(17)

p−m(ρ)=
{

p−,l
m (ρ), ρ < 1

p−,r
m (ρ), ρ > 1

}
=

∞∫

0

ikau−m(κ)J|m|(κρ)dκ (18)

q+
m(ρ)=

{
q+,l

m (ρ), ρ < 1

q+,r
m (ρ), ρ > 1

}
= −

∞∫

0

γ(κ)v+
m(κ)J|m|(κρ)dκ (19)

q−m(ρ)=
{

q−,l
m (ρ), ρ < 1

q−,r
m (ρ), ρ > 1

}
=

∞∫

0

ikav−m(κ)J|m|(κρ)dκ (20)
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p+
m(ρ)=

{
p+,l

m (ρ), ρ < 1

p+,r
m (ρ), ρ > 1

}
=

∞∫

0

γ(κ)u+
m(κ)J|m|(κρ)dκ (21)

In terms of these functions, DIEs (12) can be written as follows:
{

∂
∂ρf−,l

m (ρ) + sgn(m) |m|ρ g+,l
m (ρ) = 0

sgn(m) |m|ρ f−,l
m (ρ) + ∂

∂ρg+,l
m (ρ) = 0

(ρ < 1)

{
∂
∂ρp−,r

m (ρ) + sgn(m) |m|ρ q+,r
m (ρ) = 0

sgn(m) |m|ρ p−,r
m (ρ) + ∂

∂ρq+,r
m (ρ) = 0

(ρ > 1)

(22)

The solutions of Equations (22) are the following functions:

f−,l
m (ρ) = Al

mρ|m| + Bl
mρ−|m| (ρ < 1) (23)

g+,l
m (ρ) = −sgn(m)Al

mρ|m| + sgn(m)Bl
mρ−|m| (ρ < 1) (24)

p−,r
m (ρ) = Cr

mρ|m| + Dr
mρ−|m| (ρ > 1) (25)

q+,r
m (ρ) = −sgn(m)Cr

mρ|m| + sgn(m)Dr
mρ−|m| (ρ > 1) (26)

Demand solutions (23), (24) to be in L2(0, 1) and (25), (26) in L2(1,∞).
Then the constants of integration Bl

m, Cr
m must be zero. The constants

of integration Al
m and Dr

m (hereinafter the coupling constants) are
unknowns constants to be found. Thus, coupled DIEs (12) are
equivalent to the following “quasi-coupled” DIEs:





∞∫
0

(
γ(κ)(u−m(κ)+u0,−

m (κ))+2Rkau−m(κ)
)
κ−1J|m|(κρ)dκ = Al

mρ|m| (ρ<1)

∞∫
0

ikau−m(κ)κ−1J|m|(κρ)dκ = Dr
mρ−|m| (ρ>1)

(27)





∞∫
0

(
ika(v+

m(κ)+v0,+
m (κ))+2Riγ(κ)v+

m(κ)
)
κ−1J|m|(κρ)dκ=−sgn(m)Al

mρ|m| (ρ<1)

(28)
∞∫
0

γ(κ)v+
m(κ)κ−1J|m|(κρ)dκ = −sgn(m)Dr

mρ−|m| (ρ>1)

Similarly, coupled DIEs (13) are equivalent to the following “quasi-
coupled” DIEs:





∞∫
0

(
γ(κ)(v−m(κ)+v0,−

m (κ))+2Qkav−m(κ)
)
κ−1J|m|(κρ)dκ = M l

mρ|m| (ρ<1)

∞∫
0

ikav−m(κ)κ−1J|m|(κρ)dκ = P r
mρ−|m| (ρ>1)

(29)
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∞∫
0

(
ika(u+

m(κ)+u0,+
m (κ))+2Qiγ(κ)u+

m(κ)
)
κ−1J|m|(κρ)dκ=sgn(m)M l

mρ|m| (ρ<1)

∞∫
0

γ(κ)u+
m(κ)κ−1J|m|(κρ)dκ = sgn(m)P r

mρ−|m| (ρ>1)

(30)

There are many of works that address the way of solving each of
obtained DIE, (e.g., [9, 10, 19, 21, 22]). Typically, in these works
such equations are reduced to the solving of the operator equation
(I + K) X = B i.e., the equation of the Fredholm second kind. Here, K
is a compact operator (matrix or integral, it depends on the method),
I is a unit operator, X is a vector of unknown functions, and B is
a given right-hand vector. Further we will consider the method of
the reduction of DIEs to the equivalent Fredholm second kind integral
equations.

5. FREDHOLM INTEGRAL EQUATIONS FOR THE PEC
DISK CASE

Consider the case of PEC disk (R = 0, Q = ∞). Then we have the
following DIEs:




∞∫
0

γ(κ)(u−m(κ)+u0,−
m (κ))κ−1J|m|(κρ)dκ = Al

mρ|m| (ρ<1)

∞∫
0

ikau−m(κ)κ−1J|m|(κρ)dκ = Dr
mρ−|m| (ρ>1)

(31)





∞∫
0

ika(v+
m(κ)+v0,+

m (κ))κ−1J|m|(κρ)dκ = −sgn(m)Al
mρ|m| (ρ < 1)

∞∫
0

γ(κ)v+
m(κ)κ−1J|m|(κρ)dκ = −sgn(m)Dr

mρ−|m| (ρ > 1)

(32)

and v−m(κ) ≡ 0, u+
m(κ) ≡ 0. Consider two pairs of direct and inverse

Abel integral transforms (Erdeyi-Kober transform or fractional (order
1/2) integration and differentiation operators).

X(0)(v) =

v∫

0

x(0)(ρ)√
v2 − ρ2

ρdρ (33)

Y (0)(ρ) =
2

π

d

dρ

ρ∫

0

y(0)(v)√
ρ2 − v2

vdv (34)

X(∞)(v) =

∞∫

v

x(∞)(ρ)√
ρ2 − v2

ρdρ (35)
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Y (∞)(ρ) = − 2

π

d

dρ

∞∫

ρ

y(∞)(v)√
v2 − ρ2

vdv (36)

Multiply the first equation of (31) with ρ|m| and apply Abel integral
transform (33). Multiply the result with

√
2/π v−|m|−1/2. Multiply

the second equation of (31) with ρ−|m| and apply inverse Abel integral
transform (36). Multiply the result with

√
π/2 v|m|−1/2 and obtain:





∞∫
0

γ (κ) κ−3/2
(
u−m (κ) + u0,−

m (κ)
)
J|m|+1/2(κv)dκ = Al

m
1√
2

Γ(|m|+1)
Γ(|m|+3/2)

v|m|+1/2

(v < 1)
∞∫
0

ika κ−1/2u−m (κ) J|m|+1/2(κv)dκ = Dr
m

√
2Γ(|m|+1/2)

Γ(|m|) v−|m|−1/2 (v > 1)

(37)
Now, multiply the first equation of (32) with ρ|m| and apply inverse
Abel integral transform (34). Multiply the result with

√
2/π v−|m|−1/2.

Multiply the second equation of (31) with ρ−|m| and apply Abel integral
transform (35). Multiply the result by

√
π/2 v|m|−1/2 and obtain:





∞∫
0

ika κ−1/2
(
v+

m(κ)+v0,+
m (κ)

)
J|m|−1/2(κv)dκ=−sgn(m)Al

m

√
2 Γ(|m|+1)

Γ(|m|+1/2)
v|m|−1/2

(v < 1)
∞∫
0

γ (κ) κ−3/2v+
m (κ) J|m|−1/2(κv)dκ = −sgn (m) Dr

m
1√
2

Γ(|m|−1/2)
Γ(|m|) v−|m|+1/2

(v > 1)

(38)
Extract the most singular parts of integrals in the neighborhood of
κ = ∞ and transform equations to “quasi-canonic” type:

∞∫

0

iκ−1/2u−m(κ)J|m|+1/2(κv)dκ =





−
∞∫
0

κ−3/2
(
w(κ)u−m(κ) + γ(κ)u0,−

m (κ)
)
J|m|+1/2(κv)dκ+Al

m
1√
2

Γ(|m|+1)
Γ(|m|+3/2)

v|m|+1/2

(v < 1)

(ka)−1Dr
m

√
2Γ(|m|+1/2)

Γ(|m|) v−|m|−1/2 (v > 1)

(39)

∞∫

0

iκ−1/2v+
m(κ)J|m|−1/2(κv)dκ =




−
∞∫
0

iκ−1/2v0,+
m J|m|−1/2(κv)dκ−(ka)−1sgn(m)Al

m

√
2 Γ(|m|+1)

Γ(|m|+1/2)
v|m|−1/2 (v < 1)

−
∞∫
0

w(κ)κ−3/2v+
m(κ)J|m|−1/2(κv)dκ−sgn(m)Dr

m
1√
2

Γ(|m|−1/2)
Γ(|m|) v−|m|+1/2 (v > 1)

(40)
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where w(κ) = γ(κ) − iκ =
√

(ka)2 − κ2 − iκ. Note that

w(κ) = O
(
(ka)2 /κ

)
if ka/κ → 0. One can show that

∞∫
0

iκ−1/2u−m (κ) J|m|+1/2 (κv) dκ and
∞∫
0

iκ−1/2v+
m (κ) J|m|−1/2(κv) dκ are

uniformly convergent integrals around the point v = 1 if
γ1/2−ε(κ)u−m(κ), γ1/2−ε(κ)v+

m(κ) ∈ L2 (R+). Hence, they are
continuous at the point v = 1. That is,

Al
m

1√
π

Γ(|m|+ 1)

Γ(|m|+ 3/2)
− (ka)−1Dr

m
2√
π

Γ(|m|+ 1/2)

Γ(|m|)

=

√
2

π

∞∫

0

κ−3/2(w(κ)u−m(κ) + γ(κ)u0,−
m (κ))J|m|+1/2(κ)dκ (41)

(ka)−1sgn(m)Al
m

2√
π

Γ(|m|+ 1)

Γ(|m|+ 1/2)
− sgn(m)Dr

m
1√
π

Γ(|m| − 1/2)

Γ(|m|)

=

√
2

π

∞∫

0

κ−1/2(w(κ)κ−1v+
m(κ)− iv0,+

m (κ))J|m|−1/2(κ)dκ (42)

Hereinafter, we will consider (41) and (42) as additional “coupling”
equations to find (exclude from consideration) the coupling constants.

To reduce DIEs (39), (40) to the integral equations of the Fredholm
second kind, we multiply (39) with vJ|m|+1/2 (λv), and (40) by
vJ|m|−1/2 (λv) and integrate in v from 0 to ∞. Using the fact that

x(l) =

∞∫

0

∞∫

0

κx(κ)Jm(κv)dκJm(lv)vdv

=

1∫

0

∞∫

0

κx(κ)Jm(κv)dκJm(lv)vdv+

∞∫

1

∞∫

0

κx(κ)Jm(κv)dκJm(lv)vdv (43)

and
x∫

0

vν+1Jν(λv)dv = xν+1λ−1Jν+1(λx) (44)

∞∫

x

v−ν+1Jν(λv)dv = x−ν+1λ−1Jν−1(λx) (45)

we obtain the integral equations, which can be reduced to the following
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form:

iu−m(λ) = −λ

∞∫

0

κ−2 (
w(κ)u−m(κ) + γ(κ)u0,−

m (κ)
)
S|m|+1/2(κ, λ)dκ

+Al
m

1√
2

Γ(|m|+ 1)

Γ(|m|+3/2)
λ1/2J|m|+3/2(λ)+(ka)−1Dr

m

√
2
Γ(|m|+1/2)

Γ(|m|) λ1/2J|m|−1/2(λ)(46)

γ(λ)v+
m(λ) = λ2

∞∫

0

κ−1 (
w(κ)κ−1v+

m(κ)− iv0,+
m (κ)

)
S|m|−1/2(κ, λ)dκ

−(ka)
−1

sgn(m)A
l
m

√
2
Γ(|m|+ 1)

Γ(|m|+1/2)
λ
3/2

J|m|+1/2(λ)−sgn(m)D
r
m

1√
2

Γ(|m|−1/2)

Γ(|m|) λ
3/2

J|m|−3/2(λ)(47)

Here,

Sµ (κ, λ) = κ1/2λ1/2

1∫

0

Jµ (κv) Jµ (λv) vdv

= κ1/2λ1/2

κ2 − λ2
(λJµ−1 (λ) Jµ (κ)− κJµ−1 (κ) Jµ (λ)) (48)

One can show that

u−m(λ) = U−1 (λ) +
U−2 (λ)

λ
+ . . . (λ →∞),

γ(λ)v+
m(λ) = λ · V +

1 (λ) + V +
2 (λ) +

V +
3 (λ)

λ
+ . . . (λ →∞),

where U−
n (λ), V +

n (λ) ∼=
λ→∞O(1) and

U−1 (λ) =
λ→∞




√
2

π

∞∫

0

κ−3/2 (
w(κ)u−m(κ) + γ(κ)u0,−

m (κ)
)
J|m|+1/2(κ)dκ

−Al
m

1√
π

Γ(|m|+ 1)

Γ(|m|+3/2)
+(ka)−1Dr

m
2√
π

Γ(|m|+1/2)

Γ(|m|)
)
λ1/2J|m|−1/2(λ) (49)

V +
1 (λ) =

λ→∞




√
2

π

∞∫

0

κ−1/2 (
w(κ)κ−1v+

m(κ)− iv0,+
m (κ)

)
J|m|−1/2(κ)dκ

−(ka)−1sgn(m)Al
m

2√
π

Γ(|m|+ 1)

Γ(|m|+1/2)
+sgn(m)Dr

m
1√
π

Γ(|m|−1/2)

Γ(|m|)
)
λ1/2J|m|+1/2(λ)(50)

As we require (41) and (42), then U−
1 (λ) = 0 and V +

1 (λ) =
0. Multiply (41) with

√
π/2λ1/2J|m|−1/2 (λ) and add to (46), and
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multiply (42) with
√

π/2λ3/2J|m|+1/2 (λ) and add to (47), to obtain:

iu−m(λ) = −λ

∞∫

0

κ−2 (
w(κ)u−m(κ) + γ(κ)u0,−

m (κ)
)
S|m|+1/2(κ, λ)dκ

−λ1/2J|m|−1/2(λ)

∞∫

0

κ−3/2 (
w(κ)u−m(κ) + γ(κ)u0,−

m (κ)
)
J|m|+1/2(κ)dκ

+Al
m

1√
2

Γ(|m|+ 1)

Γ(|m|+ 3/2)

(
λ1/2J|m|+3/2(λ) + λ1/2J|m|−1/2(λ)

)
(51)

γ(λ)v+
m(λ) = λ2

∞∫

0

κ−1 (
w(κ)κ−1v+

m(κ)− iv0,+
m (κ)

)
S|m|−1/2(κ, λ)dκ

−λ3/2J|m|+1/2(λ)

∞∫

0

κ−1/2 (
w(κ)κ−1v+

m(κ)− iv0,+
m (κ)

)
J|m|−1/2(κ)dκ

−sgn(m)Dr
m

1√
2

Γ(|m| − 1/2)

Γ(|m|)
(
λ3/2J|m|−3/2(λ)+λ3/2J|m|+1/2(λ)

)
(52)

Use the fact that

Sµ(κ, λ) =
κ1/2λ1/2

κ2 − λ2
(λJµ−1(λ)Jµ(κ)− κJµ−1(κ)Jµ(λ))

=
κ1/2λ1/2

κ2 − λ2
(κJµ(λ)Jµ+1(κ)− λJµ(κ)Jµ+1(λ)) (53)

and
Jµ+1(λ) + Jµ−1(λ) = 2µλ−1Jµ(λ) (54)

Finally we obtain the following integral equations:

γ1/2−ε(λ)u−m(λ)= iγ1/2−ε(λ)

∞∫

0

κ−1 (
w(κ)u−m(κ) + γ(κ)u0,−

m (κ)
)
S|m|−1/2(κ, λ)dκ

−iAl
m

√
2

Γ(|m|+ 1)

Γ(|m|+ 1/2)

γ1/2−ε(λ)

λ1/2
J|m|+1/2(λ) (55)

γ1/2−ε(λ)v+
m(λ) =

λ

γ1/2+ε(λ)

∞∫

0

(
w(κ)κ−1v+

m(κ)− iv0,+
m (κ)

)
S|m|+1/2(κ, λ)dκ

−sgn(m)Dr
m

√
2
Γ(|m|+ 1/2)

Γ(|m|)
λ1/2

γ1/2+ε(λ)
J|m|−1/2(λ) (56)
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Equations (55), (56) together with the “coupling” equations (41), (42)
form a set of coupled Fredholm second kind integral equa-
tions in L2 (R+) for the unknown functions γ1/2−ε(λ)u−m (λ) and
γ1/2−ε (λ) v+

m (λ). Therefore, from the Fredholm alternative, there ex-
ists the unique solution of these equations.

6. FREDHOLM INTEGRAL EQUATIONS FOR THE ER
DISK CASE

Consider the ER disk case (0 < R < ∞, Q = 0). In this case, as shown
above, we have the following DIEs:




∞∫
0

(
γ(κ)(u−m(κ)+u0,−

m (κ)) + 2Rkau−m(κ)
)
κ−1J|m|(κρ)dκ = Al

mρ|m| (ρ<1)

∞∫
0

ikau−m(κ)κ−1J|m|(κρ)dκ = Dr
mρ−|m| (ρ>1)

(57)





∞∫
0

(
ika(v+

m(κ)+v0,+
m (κ))+2Riγ(κ)v+

m(κ)
)
κ−1J|m|(κρ)dκ=−sgn(m)Al

mρ|m| (ρ<1)

∞∫
0

γ(κ)v+
m(κ)κ−1J|m|(κρ)dκ = −sgn(m)Dr

mρ−|m| (ρ>1)

(58)

and v−m(κ) ≡ 0, u+
m(κ) ≡ 0. The DIE (57), similarly to the DIE (31)

(in the case of PEC disk), can be reduced to the following integral
equations of the Fredholm second kind in L2 (R+)

γ1/2−ε(λ)u−m(λ)

= iγ1/2−ε(λ)

∞∫

0

κ−1 (
w(κ)u−m(κ) + 2Rkau−m(κ) + γ(κ)u0,−

m (κ))S|m|−1/2(κ, λ)dκ

−iAl
m

√
2

Γ(|m|+ 1)

Γ(|m|+1/2)

γ1/2−ε(λ)

λ1/2
J|m|+1/2(λ) (59)

with the additional “coupling” equation to find (exclude) the coupling
constants:

Al
m

1√
π

Γ(|m|+ 1)

Γ(|m|+ 3/2)
− (ka)−1Dr

m
2√
π

Γ(|m|+ 1/2)

Γ(|m|)

=

√
2

π

∞∫

0

κ−3/2(w(κ)u−m(κ)+2Rkau−m(κ)+γ(κ)u0,−
m (κ)

)
J|m|+1/2(κ)dκ (60)

One can see that (59) and (60) differ from the Equations (41) and (55)
only by the presence of additional term 2R ka u−m(κ), which is zero in
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the case of PEC disk. Write the second DIE (58) as follows:

2Ri

∞∫

0

γ(κ)κ−1v+
m(κ)J|m|(κρ)dκ =

{
−
∞∫
0

κ−1(ika(v+
m(κ)+v0,+

m (κ)))J|m|(κρ)dκ−sgn(m)Al
mρ|m| (ρ<1)

−2Risgn (m)Dr
mρ−|m| (ρ>1)

(61)

Similarly to the case of PEC disk one can show that
∞∫
0

γ(κ)κ−1v+
m(κ)J|m|(κρ)dκ are uniformly convergent integrals around

the point v = 1 if γ1/2−ε/2(κ)κ1/2−ε/2v+
m(κ) ∈ L2 (R+). Hence, they

are continuous at the point v = 1. That is,

i

2R
sgn(m)Al

m+ sgn(m)Dr
m =

ka

2R

∞∫

0

κ−1(v+
m(κ)+v0,+

m (κ)
)
J|m|(κ)dκ (62)

Apply inverse Hankel transform to the Equation (61). We obtain:

v+
m(λ) = − ka

2R

λ3/2

γ(λ)

∞∫

0

κ−3/2 (
v+

m(κ) + v0,+
m (κ)

)
S|m|(κ, λ)dκ

+
i

2R
sgn(m)Al

m
λ

γ(λ)
J|m|+1(λ)−sgn(m)Dr

m
λ

γ(λ)
J|m|−1(λ) (63)

Finally, as already done in the case of PEC disk, multiply (62) with
λγ−1(λ)J|m|+1(λ) and add to the (63). Then we obtain the following
integral equation:

γ1/2−ε/2(λ)λ1/2−ε/2v+
m(λ) =

− ka

2R

λ1−ε/2

γ1/2+ε/2(λ)

∞∫

0

κ−1/2(v+
m(κ)+v0,+

m (κ))S|m|+1(κ, λ)dκ−2mDr
m

λ1/2−ε/2

γ1/2+ε/2(λ)
J|m|(λ)

(64)

Equations (59), (64) together with the “coupling” equations (60), (62)
form a set of coupled Fredholm second kind integral equa-
tions in L2 (R+) for the unknown functions γ1/2−ε(λ)u−m (λ) and
γ1/2−ε/2(λ)λ1/2−ε/2v+

m (λ). Therefore, from the Fredholm alternative,
there exists the unique solution of these equations.
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7. FREDHOLM INTEGRAL EQUATIONS FOR THE
DIELECTRIC DISK CASE

Consider the dielectric disk case (0 < R < ∞, 0 < Q < ∞). Then, as
shown above, we have the following DIEs:




∞∫
0

(
γ(κ)(u−m(κ)+u0,−

m (κ)) + 2Rkau−m(κ)
)
κ−1J|m|(κρ)dκ = Al

mρ|m| (ρ<1)

∞∫
0

ikau−m(κ)κ−1J|m|(κρ)dκ = Dr
mρ−|m| (ρ>1)

(65)





∞∫
0

(
ika(v+

m(κ)+v0,+
m (κ))+2Riγ(κ)v+

m(κ)
)
κ−1J|m|(κρ)dκ=−sgn(m)Al

mρ|m| (ρ<1)

∞∫
0

γ(κ)v+
m(κ)κ−1J|m|(κρ)dκ = −sgn(m)Dr

mρ−|m| (ρ>1)
(66)





∞∫
0

(
γ(κ)(v−m(κ)+v0,−

m (κ)) + 2Qkav−m(κ)
)
κ−1J|m|(κρ)dκ = M l

mρ|m| (ρ<1)

∞∫
0

ikav−m(κ)κ−1J|m|(κρ)dκ = P r
mρ−|m| (ρ>1)

(67)





∞∫
0

(
ika(u+

m(κ)+u0,+
m (κ))+2Qiγ(κ)u+

m(κ)
)
κ−1J|m|(κρ)dκ=sgn(m)M l

mρ|m| (ρ<1)

∞∫
0

γ(κ)u+
m(κ)κ−1J|m|(κρ)dκ = sgn(m)P r

mρ−|m| (ρ>1)
(68)

Note that Equations (65), (66) do not differ from the Equa-
tions (57), (58), which can be reduced to the following integral equa-
tions, as shown above:

γ1/2−ε(λ)u−m(λ) = iγ1/2−ε(λ)

∞∫

0

κ−1 (
w(κ)u−m(κ) + 2Rkau−m(κ)

+γ(κ)u0,−
m (κ)

)
S|m|−1/2(κ, λ)dκ−iAl

m

√
2

Γ(|m|+ 1)

Γ(|m|+ 1/2)

γ1/2−ε(λ)

λ1/2
J|m|+1/2(λ) (69)

γ1/2−ε/2(λ)λ1/2−ε/2v+
m(λ) =

− ka

2R

λ1−ε/2

γ1/2+ε/2(λ)

∞∫

0

κ−1/2(v+
m(κ)+v0,+

m (κ)
)
S|m|+1(κ, λ)dκ−2mDr

m
λ1/2−ε/2

γ1/2+ε/2(λ)
J|m|(λ)

(70)

with the additional “coupling” equations to find (to exclude) the
coupling constants Al

m and Dr
m:

Al
m

1√
π

Γ(|m|+ 1)

Γ(|m|+ 3/2)
− (ka)−1Dr

m
2√
π

Γ(|m|+ 1/2)

Γ(|m|)
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=

√
2

π

∞∫

0

κ−3/2(w(κ)u−m(κ)+2Rkau−m(κ) + γ(κ)u0,−
m (κ))J|m|+1/2(κ)dκ (71)

i

2R
sgn(m)Al

m + sgn(m)Dr
m =

ka

2R

∞∫

0

κ−1 (
v+

m(κ) + v0,+
m (κ)

)
J|m|(κ)dκ (72)

Also note that Equations (67) and (68) have the same type as
Equations (65), (66). And hence they can be similarly reduced to
following:

γ1/2−ε(λ)v−m(λ)

= iγ1/2−ε(λ)

∞∫

0

κ−1 (
w(κ)v−m(κ) + 2Qkav−m(κ) + γ(κ)v0,−

m (κ)
)
S|m|−1/2(κ, λ)dκ

−iM l
m

√
2

Γ(|m|+ 1)

Γ(|m|+ 1/2)

γ1/2−ε(λ)

λ1/2
J|m|+1/2(λ) (73)

γ1/2−ε/2(λ)λ1/2−ε/2u+
m(λ)

= − ka

2Q

λ1−ε/2

γ1/2+ε/2(λ)

∞∫

0

κ−1/2(u+
m(κ)

+u0,+
m (κ))S|m|+1(κ, λ)dκ− 2m · P r

m
λ1/2−ε/2

γ1/2+ε/2(λ)
J|m|(λ) (74)

with additional “coupling” equations to find (to exclude) the coupling
constants M l

m and P r
m:

M l
m

1√
π

Γ(|m|+ 1)

Γ(|m|+ 3/2)
− (ka)−1P r

m
2√
π

Γ(|m|+ 1/2)

Γ(|m|)

=

√
2

π

∞∫

0

κ−3/2(w(κ)v−m(κ)+2Qkav−m(κ)+γ(κ)v0,−
m (κ)

)
J|m|+1/2(κ)dκ (75)

i

2Q
sgn(m)M l

m + sgn(m)P r
m =

ka

2Q

∞∫

0

κ−1 (
u+

m(κ) + u0,+
m (κ)

)
J|m|(κ)dκ (76)

Equations (69), (70), together with the “coupling” equations (71), (72),
and also Equations (73), (74), together with “coupling” equa-
tions (75), (76), are two sets of the coupled Fredholm sec-
ond kind integral equations in L2 (R+) for the unknown func-
tions γ1/2−ε(λ)u−m (λ), γ1/2−ε(λ)v−m (λ) and γ1/2−ε/2(λ)λ1/2−ε/2u+

m (λ),
γ1/2−ε/2(λ)λ1/2−ε/2v+

m (λ). Therefore, from the Fredholm alternative,
there exists the unique solution of these equations.
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8. DISCUSSIONS AND CONCLUSIONS

Discuss the way to build the numerical solutions of the sets of coupled
Fredholm second kind integral equations shortly. One can show that
each of the obtained sets of coupled equations can be reduced to the
following short form:

x(λ) + (K1,1x) (λ) = − (K1,1x0) (λ) + c1 ·G1(λ) (77)
M1,1c1 + M1,2c2 = F1(x) + F1(x0)
M2,1c1 + M2,2c2 = F2(y) + F2(y0)

(78)

y(λ) + (K2,2y) (λ) = − (K2,2y0) (λ) + c2 ·G2(λ) (79)

Here, x (λ) = u−m(λ)/λ or x (λ) = v−m(λ)/λ and y (λ) = γ(λ)u+
m(λ)/λ or

y (λ) = γ(λ)v+
m(λ)/λ are unknown functions; c1 and c2 are unknown

constants, x0 and y0 are given functions (generated by the incident
field), K1,1 and K2,2 are given integral operators, G1(λ) and G2(λ)
are given functions; Mi,j are given “coupling” equations coefficients
and, F1 and F2 are given functionals. One can reduce this set of
integral equations to the Fredholm second kind infinite matrix analog,
(I + A) X̄ = B̄ (a set of linear algebraic equations), by using any
reasonable discretization scheme. This can be

1) Galerkin method. For example, with basis functions{
λ−3/2J2n+|m|+1/2(λ)

}∞
n=0

for x(λ) and
{
λ−1/2J2n+|m|−1/2(λ)

}∞
n=0

(in the PEC disk case) or
{
λ−1J2n+|m|(λ)

}∞
n=0

(in another cases)
for y(λ) function [9, 13, 20].

2) Nyström method, with an infinite grid on the interval (0,∞).

Moreover, such kind of integral Equations (77)–(79) guarantee
that A is a block-type three-diagonal matrix:

A =




K1,1 −G1 0 0
−F 1 M1,1−1 M1,2 0

0 M2,1 M2,2−1 −F 2

0 0 −G2 K2,2




with the first diagonal block K1,1 corresponding to the Equation (77),
the third diagonal block K2,2 corresponding to the Equation (79), and
the second block (central 2× 2 block) corresponding to the “coupling”
equations (78). The features of the Fredholm second kind matrix
equation guarante the uniqueness and existence of its solution. In
our case it can be found numerically by iterative inversion of I + KN

1,1

and I +KN
2,2 N ×N blocks of the full matrix (here KN

1,1 and KN
2,2 are
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two truncated K1,1 and K2,2 blocks) and one 2× 2 matrix, instead of
the 2N ×2N matrix inversion in the case if we project the CDIEs (12)
and (13) on some basis functions [13, 14].

Thus, the problem of arbitrary electromagnetic wave scattering
is reduced to the coupled Fredholm second kind integral equations.
The unknowns are jumps and average values of the images of the
normal to the disk scattered field components. The features of such
kind equations guarantee the existence of the solutions which can
be found numerically after discretization and the following matrix
truncation. Introduction of the coupling constants null mostly all of
matrix “coupling” blocks elements. This minimizes the computational
resources for the matrix inversion.
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