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Abstract 

Prediction, estimation, and smoothing are fundamental to signal 

processing. To perform these interrelated tasks given noisy data, 

we form a time series model of the process that generates the 

data. Taking noise in the system explicitly into account, maximum­

likelihood and Kalman frameworks are discussed which involve the 

dual process of estimating both the model parameters and the un­

derlying state of the system. We review several established meth­

ods in the linear case, and propose severa! extensions utilizing dual 

Kalman filters (DKF) and forward-backward (FB) filters that are 

applicable to neural networks. Methods are compared on several 

simulations of noisy time series. We also include an example of 

nonlinear noise reduction in speech. 

1 INTRODUCTION 

Consider the general autoregressive model of a noisy time series with both process 

and additive observation noise: 

x(k) 

y(k) 

I(x(k - 1), ... x(k - M), w) + v(k - 1) 

x(k) + r(k), 

(1) 

(2) 

where x(k) corresponds to the true underlying time series driven by process noise 

v(k), and 10 is a nonlinear function of past values of x(k) parameterized by w. 
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The only available observation is y(k) which contains additional additive noise r(k) . 
Prediction refers to estimating an x(k) given past observations. (For purposes of 

this paper we will restrict ourselves to univariate time series.) In estimation, x(k) 
is determined given observations up to and including time k. Finally, smoothing 

refers to estimating x(k) given all observations, past and future. 

The minimum mean square nonlinear prediction of x(k) (or of y(k)) can be writ­

ten as the conditional expectation E[x(k)lx(k - 1)], where x(k) = [x(k), x(k -
1),· .. x(O)] . If the time series x(k) were directly available, we could use this data 

to generate an approximation of the optimal predictor. However, when x(k) is not 

available (as is generally the case), the common approach is to use the noisy data 

directly, leading to an approximation of E[y(k)ly(k -1)] . However, this results in a 

biased predictor: E[y(k)ly(k-l)] = E[x(k)lx(k -1) +R(k -1)] i= E[x(k)lx(k-l)]. 

We may reduce the above bias in the predictor by exploiting the knowledge that 

the observations y(k) are measurements arising from a time series. Estimates x(k) 
are found (either through estimation or smoothing) such that Ilx(k) - x(k)11 < 
II x (k ) - y( k) II. These estimates are then used to form a predictor that approximates 

E[x(k)lx(k - 1)].1 

In the remainder of this paper, we will develop methods for the dual estimation of 

both states x and weights Vi. We show how a maximum-likelihood framework can 

be used to relate several existing algorithms and how established linear methods 

can be extended to a nonlinear framework. New methods involving the use of dual 

Kalman filters are also proposed and experiments are provided to compare results. 

2 DUAL ESTIMATION 

Given only noisy observations y(k), the dual estimation problem requires considera­

tion of both the standard prediction (or output) errors ep(k) = y(k) - f(ic.(k-1)' w) 

as well as the observation (or input) errors eQ(k) = y(k) - x(k) . The minimum ob­

servation error variance equals the noise variance 0'; . The prediction error, however, 

is correlated with the observation error since y(k) - f(x(k - 1)) = r(k - 1) + v(k), 
and thus has a minimum variance of 0'; + 0';. Assuming the errors are Gaussian, 

we may construct a log-likelihood function which is proportional to eT:E-1e, where 

eT = [eQ(O), eQ(l) .... eQ(N), ep(M), ep(M + 1), .. . ep(N)], a vector of all errors up to 

time N, and 
o o 

o 

(3) 

Minimization of the log-likelihood function leads to the maximum-likelihood esti­

mates for both x(k) and w. (Although we may also estimate the noise variances 0'; 
and 0';, we will assume in this paper that they are known.) Two general frameworks 

for optimization are available: 

lBecause models are trained on estimated data x(k), it is important that estimated 
data still be used for prediction of out-of training set (on-line) data. In other words, if our 
model was formed as an approximation of E[x(k)lx(k - 1)], then we should not provide it 
with y(k - 1) as an input in order to avoid a model mismatch. 
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2.1 Errors-In-Variables (EIV) Methods 

This method comes from the statistics literature for nonlinear regression (see Seber 

and Wild, 1989), and involves batch optimization of the cost function in Equation 

3. Only minor modifications are made to account for the time series model. These 

methods, however, are memory intensive (E is approx. 2N >< 2N) and also do not 

accommodate new data in an efficient manner. Retraining is necessary on all the 

data in order to produce estimates for the new data points. 

If we ignore the cross correlation between the prediction and observation error, then 

E becomes a diagonal matrix and the cost function may be expressed as simply 

2::=1 "Ye~(k) + e~(k), with "Y = (J';/((J'; + (J';). This is equivalent to the Gleaming 
(CLRN) cost function (Weigend, 1995), developed as a heuristic method for cleaning 

the inputs in neural network modelling problems. While this allows for stochastic 

optimization, the assumption in the time series formulation may lead to severely 

biased results. Note also that no estimate is provided for the last point x(N). 

When the model/ = wT x is known and linear, EIV reduces to a standard (batch) 

weighted least squares procedure which can be solved in closed form to generate 

a maximum-likelihood estimate of the noise free time series. However, when the 

linear model is unknown, the problem is far more complicated. The inner product 

of the parameter vector w with the vector x( k - 1) indicates a bilinear relationship 

between these unknown quantities. Solving for x( k) requires knowledge of w, while 

solving for w requires x(k). Iterative methods are necessary to solve the nonlin­

ear optimization, and a Newton's-type batch method is typically employed. An 

EIV method for nonlinear models is also readily developed, but the computational 

expense makes it less practical in the context of neural networks. 

2.2 Kalman Methods 

Kalman methods involve reformulation of the problem into a state-space framework 

in order to efficiently optimize the cost function in a recursive manner. At each time 

point, an optimal estimation is achieved by combining both a prior prediction and 

new observation. Connor (1994), proposed using an Extended Kalman filter with a 

neural network to perform state estimation alone. Puskorious and Feldkamp (1994) 

and others have posed the weight estimation in a state-space framework to allow 

Kalman training of a neural network. Here we extend these ideas to include the 

dual Kalman estimation of both states and weights for efficient maximum-likelihood 

optimization. We also introduce the use offorward-backward in/ormation filters and 

further explicate relationships to the EIV methods. 

A state-space formulation of Equations 1 and 2 is as follows: 

where 

x(k) 

y(k) 

[ 

x(k) 1 x(k - 1) 
x(k) = . 

~(k - M + 1) 

= F[x(k - 1)] + Bv(k - 1) 

= Cx(k) + r(k) 

[ 

f(x(k), ... , x(k - M + 1), w) 1 
F[x(k)] = ~(k) 

x(k - M + 2) 

(4) 

(5) 

B = [ il' (6) 
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and C = BT. If the model is linear, then f(x(k)) takes the form wT x(k), and 

F[x(k)] can be written as Ax(k), where A is in controllable canonical form. 

If the model is linear, and the parameters ware known, the Kalman filter (KF) 

algorithm can be readily used to estimate the states (see Lewis, 1986). At each 

time step, the filter computes the linear least squares estimate x(k) and prediction 

x-(k), as well as their error covariances, Px(k) and P.;(k). In the linear case with 

Gaussian statistics, the estimates are the minimum mean square estimates. With 

no prior information on x, they reduce to the maximum-likelihood estimates. 

Note, however, that while the Kalman filter provides the maximum-likelihood es­

timate at each instant in time given all past data, the EIV approach is a batch 

method that gives a smoothed estimate given all data. Hence, only the estimates 

x(N) at the final time step will match. An exact equivalence for all time is achieved 

by combining the Kalman filter with a backwards information filter to produce a 

forward-backward (FB) smoothing filter (Lewis, 1986).2 Effectively, an inverse co­

variance is propagated backwards in time to form backwards state estimates that 

are combined with the forward estimates. When the data set is large, the FB filter 

offers Significant computational advantages over the batch form. 

When the model is nonlinear, the Kalman filter cannot be applied directly, but 

requires a linearization of the nonlinear model at the each time step. The resulting 
algorithm is known as the extended Kalman filter (EKF) and effectively approxi­
mates the nonlinear function with a time-varying linear one. 

2.2.1 Batch Iteration for Unknown Models 

Again, when the linear model is unknown, the bilinear relationship between the time 

series estimates, X, and the weight estimates, Vi requires an iterative optimization. 

One approach (referred to as LS-KF) is to use a Kalman filter to estimate x(k) with 

Vi fixed, followed by least-squares optimization to find Vi using the current x( k). 
Specifically, the parameters are estimated as Vi = (X~FXKF) -1 XKFY, where XKF 
is a matrix of KF state estimates, and Y is a 1 x N vector of observations. 

For nonlinear models, we use a feedforward neural network to approximate f(·), and 

replace the LS and KF procedures by backpropagation and extended Kalman filter­

ing, respectively (referred to here as BP-EKF, see Connor 1994). A disadvantage 

of this approach is slow convergence, due to keeping a set of inaccurate estimates 

fixed at each batch optimization stage. 

2.2.2 Dual Kalman Filter 

Another approach for unknown models is to concatenate both wand x into a joint 

state vector. The model and time series are then estimated simultaneously by 

applying an EKF to the nonlinear joint state equations (see Goodwin and Sin, 1994 

for the linear case). This algorithm, however, has been known to have convergence 

problems. 

An alternative is to construct a separate state-space formulation for the underlying 

weights as follows: 
w(k) 

y(k) 

w(k -1) 

= f(ic.(k - 1), w(k)) + n(k), 

(7) 

(8) 

2 A slight modification of the cost in Equation 3 is necessary to account for initial 
conditions in the Kalman form. 
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where the state transition is simply an identity matrix, and f(x(k-1), w(k)) plays 

the role of a time-varying nonlinear observation on w. 

When the unknown model is linear, the observation takes the form x(k _1)Tw(k). 
Then a pair of dual Kalman filters (DKF) can be run in parallel, one for state 

estimation, and one for weight estimation (see Nelson, 1976) . At each time step, 

all current estimates are used. The dual approach essentially allows us to separate 

the non-linear optimization into two linear ones. Assumptions are that x and w 
remain uncorrelated and that statistics remain Gaussian. Note, however, that the 

error in each filter should be accounted for by the other. We have developed several 

approaches to address this coupling, but only present one here for the sake of brevity. 

In short, we write the variance of the noise n( k) as 0 p~ (k )OT + (J'; . in Equation 

8, and replace v(k - 1) by v(k - 1) + (w(k)T - wT(k))x(k - 1) in Equation 4 for 

estimation of x(k). Note that the ability to couple statistics in this manner is not 

possible in the batch approaches. 

We further extend the DKF method to nonlinear neural network models by in­

troducing a dual extended Kalman filtering method (DEKF) . This simply requires 

that Jacobians of the neural network be computed for both filters at each time step. 

Note, by feeding x(k) into the network, we are implicitly using a recurrent network. 

2.2.3 Forward-Backward Methods 

All of the Kalman methods can be reformulated by using forward-backward (FB) 

Kalman filtering to further improve state smoothing. However, the dual Kalman 

methods require an interleaving of the forward and backward state estimates in 

order to generate a smooth update at each time step. In addition, using the FB 

estimates requires caution because their noncausal nature can lead to a biased w 
if they are used improperly. Specifically, for LS-FB the weights are computed as: 

w = (XRFXFB)-lXKFY ,where XFB is a matrix of FB (smooth) state estimates. 

Equivalent adjustments are made to the dual Kalman methods. Furthermore, a 

model of the time-reversed system is required for the nonlinear case. The explication 

and results of these algorithms will be appear in a future publication. 

3 EXPERIMENTS 

Table 1 compares the different approaches on two linear time series, both when 

the linear model is known and when it is unknown. The least square (LS) estima­

tion for the weights in the bottom row represents a baseline performance wherein 

no noise model is used. In-sample training set predictions must be interpreted 

carefully as all training set data is being used to optimize for the weights. We 

see that the Kalman-based methods perform better out of training set (recall the 

model-mismatch issue l ). Further, only the Kalman methods allow for on-line es­

timations (on the test set, the state-estimation Kalman filters continue to operate 

with the weight estimates fixed). The forward-backward method further improves 

performance over KF methods. Meanwhile, the clearning-equivalent cost function 

sacrifices both state and weight estimation MSE for improved in-sample prediction; 

the resulting test set performance is significantly worse. 

Several time series were used to compare the nonlinear methods, with the results 

summarized in Table 2. Conclusions parallel those for the linear case. Note, the 

DEKF method performed better than the baseline provided by standard backprop-
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Table 1: Comparison of methods for two linear models 
Model Known 

Tram 1 Test 1 Tram 2 Test 2 
Est. Pred. Est. Pred. w J:<;st. Pred. J:<;st. Pred. 
.094 .322 - 1.09 - .165 .558 - 1.32 

.203 .134 - 1.08 - .343 .342 - 1.32 

.134 .559 .132 0.59 - .197 .778 .221 0.85 

.094 .559 .132 0.59 - .165 .778 .221 0.85 

Model Unknown 
Est. Pred. Est. Pred. w Est. Pred. Est. Pred. 

.172 .545 - 1.81 

.278 .049 - 14.1 

.138 .563 .139 .605 .134 .197 .778 .226 0.85 

.099 .347 .136 .603 .281 .169 .612 .229 0.89 

.135 .557 .133 .595 .212 .198 .779 .221 .863 

.096 .329 .134 .596 .187 .165 .587 .221 .859 

- .886 - 1.09 .612 - 1.08 - 1.32 

w 

-
-
-
-

w 

.122 
11.28 

.325 

.369 

.149 

.065 

0.590 

MSE values for estimation (Est.), prediction (Pred.) and weights (w) (normalized to 

signal var.). 1 - AR(ll) model, (1'; = 4, (1'; = 1. 2000 training samples, 1000 testing 

samples. EIV and CLRN were not computed for the unknown model due to memory 

constraints. 2 - AR(5) model, (1'; = .7., (1'; = .5., 375 training, 125 testing. 

Table 2: Comparison of methods on nonlinear time series 
NNet 1 NNet 2 NNet 3 

Tram Test Tram Test Tram Test 

Es. Pro Es . Pro Es. Pro Es. Pro Es. Pro Es. Pro 
BP-EKF .17 . 58 .15 .63 .08 .31 .08 .33 .16 .59 .17 .59 
DEKF .14 .57 .13 .59 .07 .30 .06 .32 .14 .56 .14 .55 

BP .95 .57 .95 .69 .22 .30 .29 .36 .92 .68 .92 .68 

The series Nnet 1,2,3 are generated by autoregressive neural networks which exhibit limit 

cycle and chaotic behavior. (1'; = .16, (1'; = .81, 2700 training samples, 1300 testing 

samples. All network models fit using 10 inputs and 5 hidden units. Cross-validation 

was not used in any of the methods. 

agation (wherein no model of the noise is used). The DEKF method exhibited fast 

convergence, requiring only 10-20 epochs for training. A DEFB method is under 

development. 

The DEKF was tested on a speech signal corrupted with simulated bursting white 

noise (Figure 1). The method was applied to successive 64ms (512 point) windows 

of the signal, with a new window starting every 8ms (64 points). The results in 
the figure were computed assuming both (1'; and (1'; were known. The average 

SNR is improved by 9.94 dB. We also ran the experiment when (1'; and (1'; were 

estimated using only the noisy signal (Nelson and Wan, 1997), and acheived an SNR 

improvement of 8.50 dB. In comparison, available "state-of-the-art" techniques of 

spectral subtraction (Boll, 1979) and RASTA processing (Hermansky et al., 1995), 

achieve SNR improvements of only .65 and 1.26 dB, respectively. We extend the 

algorithms to the colored noise case in a second paper (Nelson and Wan, 1997). 

4 CONCLUSIONS 

We have described various methods under a Kalman framework for the dual estima­

tion of both states and weights of a noisy time series. These methods utilize both 
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Clean Speech 

Noise 

Noisy Speech 

IIIIiII Cleaned Speech 

-1Itf .... , ~. t .... ~ • ..------il'" ? ... -'" 
Figure 1: Cleaning Noisy Speech With The DEKF. 33,000 pts (5 sec.) shown. 

process and observation noise models to improve estimation performance. Work 

in progress includes extensions for colored noise, blind signal separation, forward­

backward filtering, and noise estimation. While further study is needed, the dual 

extended Kalman filter methods for neural network prediction, estimation, and 

smoothing offer potentially powerful new tools for signal processing applications. 
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